CN101886960A - Device and method for automatically measuring tension of small-sized fine fibers - Google Patents

Device and method for automatically measuring tension of small-sized fine fibers Download PDF

Info

Publication number
CN101886960A
CN101886960A CN 201010218618 CN201010218618A CN101886960A CN 101886960 A CN101886960 A CN 101886960A CN 201010218618 CN201010218618 CN 201010218618 CN 201010218618 A CN201010218618 A CN 201010218618A CN 101886960 A CN101886960 A CN 101886960A
Authority
CN
China
Prior art keywords
fiber
tension
data
small
fine fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010218618
Other languages
Chinese (zh)
Other versions
CN101886960B (en
Inventor
邱书波
李天铎
王晓芳
许静
张磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Institute of Light Industry
Original Assignee
Shandong Institute of Light Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Institute of Light Industry filed Critical Shandong Institute of Light Industry
Priority to CN2010102186187A priority Critical patent/CN101886960B/en
Publication of CN101886960A publication Critical patent/CN101886960A/en
Application granted granted Critical
Publication of CN101886960B publication Critical patent/CN101886960B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

The invention relates to a device and a method for automatically measuring the tension of small-sized fine fibers. The device can automatically stretch and detect leather fibers, pulp fibers and other small-sized fine fibers and has the advantages of simple and convenient operation, accurate measurement and high visualization degree; a stretching platform in the method has small volume; and micromechanics measurement can be realized through an electron microscope or an optical microscope. The device comprises the fiber stretching platform which is provided with a detected fiber tension detecting device; the detected fibers are arranged on the fiber stretching platform; the device is connected with a computer; and the computer is also connected with a power device of the fiber stretching platform at the same time.

Description

A kind of automatically measuring tension of small-sized fine fibers devices and methods therefor
 
Technical field
The invention belongs to the fiber measurement field, relate in particular to the automatically measuring tension of small-sized fine fibers devices and methods therefor that a kind of high precision easily realizes.
Background technology
The size of fiber tension can directly influence every physics, chemical property and the processing thereafter of fiber product.The size of the fiber in many fields is smaller usually, as the paper pulp fiber in light industry field, leather fiber etc., how accurately to control the stretching of these small-sized fine fibers and accurately measures its tension force, and being needs the problem constantly exploring and solve in the fiber measurement field.At home, the fiber tension measuring method mainly contains following several so at present: a kind of is to adopt portable digital measuring instrument to measure, and a kind of is manually to draw high measurement by drawing stand, and a kind of is to utilize computer system to measure.For preceding two kinds of measuring methods, because of the moving control of the main armrest of drawing process, when measuring the tension force of small-sized fine fibers operation very inconvenient, and its visual degree is also lower.And for the third measuring method, though can realize system controlled by computer stretches, the visual degree of measurement result is also than higher, but owing to the technology limitation that is subjected to be adopted, there are problems such as measuring accuracy is low, inconvenient operation in tonometry for small-sized fine fibers, and the drawing stand volume is bigger, is unfavorable for realizing the micro-vision Detection ﹠ Controling by electron microscope or optical microscope.
Summary of the invention
Purpose of the present invention is exactly in order to overcome the defective that existing fiber tension measuring method exists, the automatically measuring tension of small-sized fine fibers devices and methods therefor that provides a kind of high precision easily to realize, it can realize drawing high automatically, detecting automatically of small-sized fine fibers such as leather fiber, paper pulp fiber, has easy and simple to handle, the high advantage of accurate, the visual degree of measurement, and the drawing stand volume that the method constitutes is little, can measure by the Micromechanics of electron microscope or optical microscope realization fiber.
For achieving the above object, the present invention adopts following technical scheme:
A kind of automatically measuring tension of small-sized fine fibers device, it comprises the tensile fiber platform, and tested fiber is installed on the tensile fiber platform, and the tensile fiber platform is provided with tested fiber tension pick-up unit, and this device is connected with computing machine; Simultaneous computer also is connected with the propulsion system of tensile fiber platform.
Described tensile fiber platform comprises clamper, and tested fiber is installed on the clamper, and clamper is installed on the specimen holder; Specimen holder is connected with micro-step motor by gearing, and micro-step motor is connected with computing machine by data collecting card by stepper motor driving circuit.
Described tension detecting apparatus comprises elastic body, and it is connected with tested fiber, also is provided with strain-ga(u)ge transducer on the elastic body simultaneously, and strain-ga(u)ge transducer also is connected with computing machine by data collecting card through signal amplification circuit.
A kind of measuring method that adopts the automatically measuring tension of small-sized fine fibers device, its step is:
(1) tested fiber two ends is fixed on the specimen holder with clamper respectively;
(2) output of the switching value of computer control data collecting card produces microsecond level pulse signal regularly, drives micro-step motor by driving circuit and rotates, and micro-step motor then stretches by actuator drives tensile fiber platform;
(3) tested fiber tensioning, its tension force acts on the elastic body that is stained with strain-ga(u)ge transducer, and elastic body is subjected to stress generation mechanical deformation, and the strain-ga(u)ge transducer resistance changes, the sensor output voltage signal;
(4) before being used for fiber measurement first, obtain the data sample of fiber tension and sensor output voltage by simulating the tensile fiber process, utilize curve fitting algorithm to determine the matched curve of fiber tension and sensor output voltage;
(5) voltage signal of strain-ga(u)ge transducer output is input to the analog input channel of data collecting card after amplifying, computing machine is gathered voltage data according to the sampling period of setting, and utilizes method of interpolation to determine fiber dynamic tension data according to tension force and voltage matched curve again;
(6) computer screen shows tension data in real time and draws its performance graph.
Tested fiber size scope is in the described step (1): length 1mm-10mm, diameter 0.1 μ m-100 μ m.
The pulse signal frequency scope is in the described step (2): 100Hz-10kHz.
In the described step (4), the simulation fiber draws high process, records at one group of set tension force gEffect is the corresponding sensor output voltage down u, set up one group of sample data:
Figure 321575DEST_PATH_IMAGE001
, be that waypoint carries out sectional linear fitting with the sample data, obtain tension force--the matched curve of voltage.
In the described step (5), when detecting tension data, improve the accuracy that detects for eliminating to disturb, in each sampling period, detected voltage data is carried out digital filtering, promptly voltage signal is carried out m sampling, again m the sampled data that obtains arranged according to size order, give up head and the tail respectively
Figure 973137DEST_PATH_IMAGE002
Individual bigger data and less data are carried out arithmetic mean to remaining data then and are obtained filtered voltage signal; After the filtering, according to tension force--the voltage matched curve utilizes method of interpolation to determine the fiber tension data.
The invention has the beneficial effects as follows: the present invention is by the accurate control stretching fiber of software process, and detect in real time, the dynamic tension data of display fibers.Have simple to operate, the high advantage of accurate, the visual degree of measurement, be particularly suitable for the automatically measuring tension of small-sized fine fibers such as leather fiber, paper pulp fiber.And, according to the formation of this measuring method to draw high stage body long-pending less, be easy to be placed on electron microscope or the optical microscope, realize that the Micromechanics of fiber is measured.
Description of drawings
Fig. 1 constitutes synoptic diagram for measurement mechanism hardware;
Fig. 2 is for producing the software program flow chart of pulse signal;
Fig. 3 is the software program flow chart of high precision timing;
Fig. 4 is the strain bridge schematic diagram.
Wherein, 1 micro-step motor, 2 specimen holders, 3 clampers, 4 tested fibers, 5 elastic bodys, 6 strain-ga(u)ge transducers, 7 data collecting cards, 8 computing machines, 9 stepper motor driving circuits, 10 signal amplification circuits.
Embodiment
The invention will be further described below in conjunction with drawings and Examples.
Among Fig. 1, the automatically measuring tension of small-sized fine fibers device comprises the tensile fiber platform, and tested fiber 4 is installed on the tensile fiber platform, and the tensile fiber platform is provided with the tension detecting apparatus of tested fiber 4, and this device is connected with computing machine 8; Simultaneous computer 8 also is connected with the propulsion system of tensile fiber platform.
The tensile fiber platform comprises clamper 3, and tested fiber 4 is installed on the clamper 3, and clamper 3 is installed on the specimen holder 2; Specimen holder 2 is connected with micro-step motor 1 by gearing, and the stepper motor driving circuit 9 of micro-step motor 1 is connected with computing machine 8 by data collecting card 7.
Tension detecting apparatus comprises elastic body 5, and it is connected with tested fiber 4, also is provided with strain-ga(u)ge transducer 6 on the elastic body 5 simultaneously, and strain-ga(u)ge transducer 6 is connected with computing machine 8 by data collecting card 7 by signal amplification circuit 10.
Measuring method of the present invention is:
(1) as shown in Figure 1, tested fiber 4 two ends are fixed on the specimen holder 2 with clamper 3 respectively;
(2) at first judge whether to produce pulse signal by computing machine, if, then fixed time interval is set according to draw speed or pulsed frequency, utilize the computer realization high precision timing again, when fixed time interval arrives, then the switching value of data collecting card 7 is exported the Dout0 negate.Like this, Dout0 will alternately export high level and low level according to certain time interval, form pulse signal.Fig. 2 is the program flow diagram that produces the feeding pulse signal, and wherein the program flow diagram of high precision timing as shown in Figure 3.Pulse signal is input to stepper motor driving circuit 9, after micro-step motor 1 rotates, is slowed down and rotation is converted to translation by mechanical transmission mechanism, the traction specimen holder 2 motions tested fiber 4 that stretches;
(3) tension force of tested fiber 4 acts on the elastic body 5, and the resistance strain gage sensor 6 on the elastic body 5 constitutes strain bridge, is used for the tension force of tested fiber 4 is converted to voltage signal.The strain bridge schematic diagram as shown in Figure 4, wherein, R 1~ R 4Be foil gauge resistance, U is an input reference voltage, and output voltage is When tested fiber 4 relaxed, tension force was zero, bridge balance,
Figure 335034DEST_PATH_IMAGE004
When tested fiber 4 tensionings, tension force is non-vanishing, and elastic body 5 is subjected to stress generation mechanical deformation, and deformation also takes place resistance strain gage thereupon, and its resistance changes and causes strain bridge imbalance, output voltage , its value changes with tested fiber 4 tension force sizes;
When (4) system is used for tested fiber 4 tonometries first, adopt curve fitting algorithm to determine the relation curve of tested fiber tension and sensor output voltage.Its process is: simulate tested fiber 4 and draw high process, record at one group of set tension force gStrain-ga(u)ge transducer 6 output voltages that effect is corresponding down u, set up one group of sample data:
Figure 112814DEST_PATH_IMAGE001
, be that waypoint carries out sectional linear fitting with the sample data, obtain tension force--the matched curve of voltage;
(5) voltage signal of strain-ga(u)ge transducer 6 outputs is input to the analog input channel of data collecting card 7 after signal amplification circuit 10 amplifies, and computing machine 8 is gathered voltage data according to the sampling period of setting.Disturb the accuracy that improves detection for elimination,, detected voltage data is carried out digital filtering, promptly voltage signal is advanced m sampling, again m the sampled data that obtains arranged according to size order, give up head and the tail respectively in each sampling period
Figure 97956DEST_PATH_IMAGE002
Individual bigger data and less data are carried out arithmetic mean to remaining data then and are obtained filtered voltage signal.After the filtering, according to tension force--the voltage matched curve utilizes method of interpolation to determine the fiber tension data;
(6) computer screen shows tension data in real time and draws its performance graph.

Claims (8)

1. an automatically measuring tension of small-sized fine fibers device is characterized in that, it comprises the tensile fiber platform, and tested fiber is installed on the tensile fiber platform, and the tensile fiber platform is provided with tested fiber tension pick-up unit, and this device is connected with computing machine; Simultaneous computer also is connected with the propulsion system of tensile fiber platform.
2. automatically measuring tension of small-sized fine fibers device as claimed in claim 1 is characterized in that, described tensile fiber platform comprises clamper, and tested fiber is installed on the clamper, and clamper is installed on the specimen holder; Specimen holder is connected with micro-step motor by gearing, and micro-step motor is connected with computing machine by data collecting card by stepper motor driving circuit.
3. automatically measuring tension of small-sized fine fibers device as claimed in claim 1, it is characterized in that, described tension detecting apparatus comprises elastic body, it is connected with tested fiber, also be provided with strain-ga(u)ge transducer on the elastic body simultaneously, strain-ga(u)ge transducer also is connected with computing machine by data collecting card by signal amplification circuit.
4. a measuring method that adopts the described automatically measuring tension of small-sized fine fibers device of claim 1 is characterized in that, its step is:
(1) tested fiber two ends is fixed on the specimen holder with clamper respectively;
(2) output of the switching value of computer control data collecting card produces microsecond level pulse signal regularly, drives micro-step motor by driving circuit and rotates, and micro-step motor then stretches by actuator drives tensile fiber platform;
(3) tested fiber tensioning, its tension force acts on the elastic body that is stained with strain-ga(u)ge transducer, and elastic body is subjected to stress generation mechanical deformation, and the strain-ga(u)ge transducer resistance changes, the sensor output voltage signal;
(4) before being used for fiber measurement first, obtain the data sample of fiber tension and sensor output voltage by simulating the tensile fiber process, utilize curve fitting algorithm to determine the matched curve of fiber tension and sensor output voltage;
(5) voltage signal of strain-ga(u)ge transducer output is input to the analog input channel of data collecting card after amplifying circuit amplifies, computing machine is gathered voltage data according to the sampling period of setting, again according to tension force--and the voltage matched curve utilizes method of interpolation to determine fiber dynamic tension data;
(6) computer screen shows tension data in real time and draws its performance graph.
5. the measuring method of automatically measuring tension of small-sized fine fibers device as claimed in claim 4 is characterized in that, tested fiber size scope is in the described step (1): length 1mm-10mm, diameter 0.1 μ m-100 μ m.
6. the measuring method of automatically measuring tension of small-sized fine fibers device as claimed in claim 4 is characterized in that, the pulse signal frequency scope is in the described step (2): 100Hz-10KHz.
7. the measuring method of automatically measuring tension of small-sized fine fibers device as claimed in claim 4 is characterized in that, in the described step (4), the simulation fiber draws high process, records at one group of set tension force gEffect is the corresponding sensor output voltage down u, set up one group of sample data:
Figure 14080DEST_PATH_IMAGE001
, be that waypoint carries out sectional linear fitting with the sample data, obtain tension force--the matched curve of voltage.
8. the measuring method of automatically measuring tension of small-sized fine fibers device as claimed in claim 4, it is characterized in that, in the described step (5), when detecting tension data, improve the accuracy that detects for eliminating to disturb, in each sampling period, detected voltage data is carried out digital filtering, promptly voltage signal is carried out m sampling, again m the sampled data that obtains arranged according to size order, give up head and the tail respectively
Figure 790275DEST_PATH_IMAGE002
Individual bigger data and less data are carried out arithmetic mean to remaining data then and are obtained filtered voltage signal; After the filtering, according to tension force--the voltage matched curve utilizes method of interpolation to determine the fiber tension data.
CN2010102186187A 2010-07-06 2010-07-06 Device and method for automatically measuring tension of small-sized fine fibers Expired - Fee Related CN101886960B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102186187A CN101886960B (en) 2010-07-06 2010-07-06 Device and method for automatically measuring tension of small-sized fine fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102186187A CN101886960B (en) 2010-07-06 2010-07-06 Device and method for automatically measuring tension of small-sized fine fibers

Publications (2)

Publication Number Publication Date
CN101886960A true CN101886960A (en) 2010-11-17
CN101886960B CN101886960B (en) 2012-04-25

Family

ID=43072966

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102186187A Expired - Fee Related CN101886960B (en) 2010-07-06 2010-07-06 Device and method for automatically measuring tension of small-sized fine fibers

Country Status (1)

Country Link
CN (1) CN101886960B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102853957A (en) * 2012-08-29 2013-01-02 昆山市万丰制衣有限责任公司 Online detecting system for yarn tension
CN105781526A (en) * 2014-12-24 2016-07-20 中国石油天然气股份有限公司 Stress testing device and stress testing method for water injection well pipe column
CN109410710A (en) * 2018-11-02 2019-03-01 珠海格力电器股份有限公司 Method and device for measuring simple pendulum period

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990008306A2 (en) * 1989-01-04 1990-07-26 Zellweger Uster, Inc. Fiber testing apparatus and method
CN2634456Y (en) * 2003-05-08 2004-08-18 叶付民 Inductive tension detector
CN1588058A (en) * 2004-08-10 2005-03-02 东华大学 Combined measuring device for fabric and yarn mechanics index and use
WO2006093581A2 (en) * 2005-03-01 2006-09-08 J & L Fiber Services, Inc. Virtual hand sheet method and system for estimating paper properties
CN101520406A (en) * 2009-04-08 2009-09-02 东华大学 Bionic sensor for testing dynamic friction of fabric
CN101548171A (en) * 2006-12-01 2009-09-30 乌斯特技术股份公司 Integrated moisture, length, and strength tester
CN201716139U (en) * 2010-07-06 2011-01-19 山东轻工业学院 Subsize finefibre tension self-operated measuring unit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990008306A2 (en) * 1989-01-04 1990-07-26 Zellweger Uster, Inc. Fiber testing apparatus and method
CN2634456Y (en) * 2003-05-08 2004-08-18 叶付民 Inductive tension detector
CN1588058A (en) * 2004-08-10 2005-03-02 东华大学 Combined measuring device for fabric and yarn mechanics index and use
WO2006093581A2 (en) * 2005-03-01 2006-09-08 J & L Fiber Services, Inc. Virtual hand sheet method and system for estimating paper properties
CN101548171A (en) * 2006-12-01 2009-09-30 乌斯特技术股份公司 Integrated moisture, length, and strength tester
CN101520406A (en) * 2009-04-08 2009-09-02 东华大学 Bionic sensor for testing dynamic friction of fabric
CN201716139U (en) * 2010-07-06 2011-01-19 山东轻工业学院 Subsize finefibre tension self-operated measuring unit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《微特电机》 20100528 王晓芳 等 面向纤维测量微操作的步进电动机控制软件设计 中国电子科技集团公司第21研究所 60-62,73 1-8 , 第05期 2 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102853957A (en) * 2012-08-29 2013-01-02 昆山市万丰制衣有限责任公司 Online detecting system for yarn tension
CN105781526A (en) * 2014-12-24 2016-07-20 中国石油天然气股份有限公司 Stress testing device and stress testing method for water injection well pipe column
CN109410710A (en) * 2018-11-02 2019-03-01 珠海格力电器股份有限公司 Method and device for measuring simple pendulum period

Also Published As

Publication number Publication date
CN101886960B (en) 2012-04-25

Similar Documents

Publication Publication Date Title
CN102507324B (en) Textile variable-speed stretching performance tester
CN105527015B (en) Flexible structure resonant frequency visual detecting system and method
CN109186834A (en) A kind of weaving stretching force detecting apparatus of yarn
CN102062571B (en) Device for enhancing test accuracy of large-deformation extensometer
CN101886960B (en) Device and method for automatically measuring tension of small-sized fine fibers
CN201716139U (en) Subsize finefibre tension self-operated measuring unit
CN208125508U (en) A kind of contactless puller system extensometer and tensile testing machine
CN104849208A (en) Fiber friction coefficient testing device and testing method thereof
CN201311276Y (en) Dynamic measuring device of brake disk thickness
CN105865688A (en) Tensioning instrument for screw detection and application thereof
CN102494956A (en) Testing method of rope bending performance
CN205352843U (en) Small -size accurate tensile test appearance
CN202209988U (en) Intelligent control type acoustic vibration measuring instrument
CN205067060U (en) Display optical characteristic's automatic intelligent test equipment
CN201787919U (en) Deformation detecting device
CN203163696U (en) Displacement measuring device in multi-field coupling comprehensive test system
CN109029537A (en) A kind of pointer-type sync bit indicator test device and its application method
CN106996961A (en) Monofilament degree of orientation measurement apparatus and measuring method based on cross correlation algorithm
CN102023117A (en) Method for measuring modulus of tensile elasticity of vulcanized rubber
CN103398897A (en) Strength-resisting test equipment
CN103487512A (en) Ultrasonic probe pressing fixing device
CN201867241U (en) Device for fast detecting natural frequency of motor rotor
CN207850991U (en) Monofilament degree of orientation measuring device based on cross zero detecting method
CN208270144U (en) A kind of magnetic flux transducer caliberating device
CN100420932C (en) Woolen-sweater-like elastic fabric collarband stretch measuring instrument

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120425

Termination date: 20120706