CN101880917B - Method for preparing nano ceramic fibers - Google Patents

Method for preparing nano ceramic fibers Download PDF

Info

Publication number
CN101880917B
CN101880917B CN 201010301298 CN201010301298A CN101880917B CN 101880917 B CN101880917 B CN 101880917B CN 201010301298 CN201010301298 CN 201010301298 CN 201010301298 A CN201010301298 A CN 201010301298A CN 101880917 B CN101880917 B CN 101880917B
Authority
CN
China
Prior art keywords
solution
step
ceramic
oxide
nano
Prior art date
Application number
CN 201010301298
Other languages
Chinese (zh)
Other versions
CN101880917A (en
Inventor
汤玉斐
滕乐天
赵康
Original Assignee
西安理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安理工大学 filed Critical 西安理工大学
Priority to CN 201010301298 priority Critical patent/CN101880917B/en
Publication of CN101880917A publication Critical patent/CN101880917A/en
Application granted granted Critical
Publication of CN101880917B publication Critical patent/CN101880917B/en

Links

Abstract

The invention discloses a method for preparing nano ceramic fibers, which is implemented by the following steps: 1, preparing 3 to 15 volume percent of 10 to 30 nanometer ceramic nanoparticles, 5 to 30 volume percent of spinnable high polymer, 0.5 to 5 volume percent of dispersant and the balance of solvent, wherein the total volume of the raw materials is 100 volume percent; 2, adding the spinnable high polymer into the solvent, heating the mixture in a water bath with magnetic stirring to obtain solution of spinnable high polymer; 3, adding the ceramic nanoparticles and the dispersant into the solution of spinnable high polymer obtained by the step 2, keeping the temperature of the mixture constant in a water bath, performing dispersion and ultrasonic dispersion, and performing swellingat a constant temperature to obtain ceramic nanoparticle/spinnable high polymer/solvent spinning solution; 4, controlling the electrostatic spinning process parameters of the spinning solution obtained by the step 3 to obtain nano fibers; and 5, sintering the nano fibers at 400 to 1,200 DEG C to obtain nano ceramic fibers.

Description

一种制备纳米陶瓷纤维的方法 A process for preparing nano ceramic fibers method

技术领域 FIELD

[0001] 本发明属于纳米陶瓷材料制造技术领域,涉及一种制备纳米陶瓷纤维的方法。 [0001] The method of the present invention belongs to the field of nano-technology ceramic material, it relates to a process for preparing nano ceramic fibers. 背景技术 Background technique

[0002] 纳米陶瓷纤维是一类具有多种用途的材料,广泛应用于催化、净化、气体存储、传感器和环境保护等领域。 [0002] Nano-ceramic fibers are a class of materials having a variety of uses, is widely used in catalysis, purification, gas storage, sensors and environmental protection. 主要利用纳米陶瓷纤维的多孔结构和巨大的比表面积,结合材料本身的性质,得到所需要的各种物理及化学性能。 The main use of nano porous structure of ceramic fibers and a huge surface area, binding properties of the material itself, to obtain various physical and chemical properties required. 纳米陶瓷纤维的用途不同,对其直径、结构等提出了不同的要求。 The use of different nano-ceramic fibers, their diameter, the proposed structure different requirements.

[0003] 纳米陶瓷纤维的制备方法有很多,如水热合成法、化学气相沉积法、化学气相反应法、有机聚合物前驱体转化法、模板法等,均可以制备出直径细小、长径比高的纳米陶瓷纤维。 [0003] The method of making nano-ceramic fibers are many water hydrothermal synthesis, chemical vapor deposition, a chemical vapor reaction method, conversion of the organic polymer precursor, template, etc., can be prepared in a small diameter, high aspect ratio nano-ceramic fibers. 但这些方法生产出的纤维存在直径分布不均勻、柔韧性差、制备路线长等缺点,而静电纺丝技术的出现,弥补了以上不足。 However, these methods produce a fiber diameter disadvantageous uneven distribution, poor flexibility, and long preparative route, electrospinning occurs, make up the above shortcomings. 静电纺丝加工方法,具有设备简单、成本低廉、容易操作以及高效等优点,引起了各国科研工作者的广泛关注。 Electrospinning processing methods, with simple equipment, low cost, easy operation and high efficiency, etc., caused widespread concern in national research workers. 静电纺丝技术的核心是使带电荷的高分子溶液或熔体在静电场中流动变形,然后经过溶剂蒸发或熔体冷却而固化,得到纤维状物质。 The core technology is for electrospinning a polymer solution or melt flow deformation charged in the electrostatic field, and after evaporation of the solvent or cooling the melt solidified, to obtain a fibrous material.

[0004] 目前,静电纺丝制备纳米陶瓷纤维的主要方法是将可纺高聚物溶于溶剂,得到可纺高聚物溶液,然后加入陶瓷前驱体,搅拌后得到纺丝液,然后通过静电纺丝技术得到陶瓷前驱体/可纺高聚物纳米纤维,高温烧结后得到纳米陶瓷纤维。 [0004] Currently, the main method of preparing nano ceramic fibers electrostatic spinning the spinnable polymer is dissolved in a solvent to obtain spinnable polymer solution is then added to the ceramic precursor, was stirred to give a spinning solution, and then through electrostatic spinning technique to obtain a ceramic precursor / polymer nanofibers can be spun, high temperature sintered ceramic fiber obtained nanometers. 但是,这种方法的前提条件是陶瓷必须有前驱体并可以与高聚物混合,制得可纺溶液,限制了电纺纳米陶瓷纤维的种类,可制备的纳米陶瓷纤维品种较少,不能满足实际应用的需求。 However, a prerequisite of this method is that there must be a ceramic precursors and polymer may be mixed with the prepared spinning solution, limiting the types of ceramic fibers electrospun nanofiber, smaller nano-ceramic fiber varieties can be produced, can not meet the the actual needs of the application.

发明内容 SUMMARY

[0005] 本发明的目的是提供一种制备纳米陶瓷纤维的方法,解决了现有技术中存在的电纺纳米陶瓷纤维的原料配置条件严格,选料种类限制大,可制备的纳米陶瓷纤维品种较少, 不能满足实际需求的问题。 [0005] The object of the present invention is to provide a method of preparing nano ceramic fibers, arranged to solve the stringent conditions electrospun nanofiber material of ceramic fibers present in the prior art, limiting the type of material selected from the large variety of nano-ceramic fibers that can be prepared less, can not meet the actual needs of the problem.

[0006] 本发明所采用的技术方案是,一种制备纳米陶瓷纤维的方法,该方法按照以下步骤实施: [0006] The technical proposal of the present invention, a method of nano-ceramic fiber prepared according to the method of the following steps:

[0007] 步骤1 :按体积百分比,取粒径为10nm-300nm的陶瓷纳米颗粒3% -15%,可纺高聚物5%-30%,分散剂0.5%-5%,其余为溶剂,总体积为100% ; [0007] Step 1: by volume percent, a particle size of 10nm-300nm taken ceramic nanoparticles 3% to 15%, can be spun polymer 5% -30%, 0.5% to 5% dispersant, the remainder being solvent, The total volume was 100%;

[0008] 步骤2 :将步骤1中取得的可纺高聚物加入到溶剂中,在水浴中加热并磁力搅拌, 制得粘度均勻的可纺高聚物溶液; [0008] Step 2: In Step 1 to obtain the spinnable polymer is added to the solvent in a water bath and heated with magnetic stirring to prepare a uniform viscosity of the polymer solution may be spun;

[0009] 步骤3 :将步骤1中取得的陶瓷纳米颗粒和分散剂同时加入到步骤2中得到的可纺高聚物溶液中,在水浴中保持恒温,然后对溶液进行分散,需要持续搅拌0. 5-lh,然后对混合溶液进行超声波分散0. 5-lh,并在50-75°C恒温溶胀0. 5-lh,形成成分均勻的陶瓷纳米颗粒/可纺高聚物/溶剂纺丝液; [0009] Step 3: The ceramic nanoparticles and a dispersant in step 1 was added to the obtained simultaneously obtained in Step 2 spinnable polymer solution, maintaining a constant temperature water bath, and then the solution was dispersed, with stirring continued need 0 . 5-lh, and then the mixed solution was subjected to ultrasonic dispersion 0. 5-lh, and the swelling temperature at 50-75 ° C 0. 5-lh, the ceramic composition to form a uniform nanoparticle / spinnable polymer / solvent spun liquid;

[0010] 步骤4 :将步骤3中得到的纺丝液倒入注射器,采用削平的注射针头作为喷射细 [0010] Step 4: The spinning solution obtained in the step 3 is poured into the syringe, using the injection needle as fine flattened

3流的毛细管,静电纺丝过程中电压为10-40kV,收集距离为10-30cm,纺丝液推进速度为0. 5-2. 5mL/h,环境温度为10_50°C,环境湿度为50% -75%,经过静电纺丝技术制备成陶瓷纳米颗粒/可纺高聚物纳米纤维; Flow capillary 3, the electrostatic spinning process voltage 10-40kV, the collection distance is 10-30cm, advance speed spinning solution was 0. 5-2. 5mL / h, ambient temperature 10_50 ° C, humidity of 50 % to 75%, through electrostatic spinning technique for preparing a ceramic nanoparticle / polymer nanofibers can be spun;

[0011] 步骤5 :将步骤4中得到的纳米纤维经过400°C -1200°c烧结,得到纳米陶瓷纤维。 [0011] Step 5: In step 4 the obtained nanofiber through 400 ° C -1200 ° c sintering, a nano-ceramic fibers.

[0012] 本发明的有益效果是制备的纳米陶瓷纤维种类繁多,可制备出大多数陶瓷材料的纳米纤维,得到的纤维直径分布平均,长径比高,柔韧性好,制备工艺简单,产品成功率高, 可广泛应用于过滤材料、传感器材料、纤维增强体、催化剂、药物释放载体、燃料电池、太阳能敏化电池、人工骨替代材料等领域。 [0012] Advantageous effects of the present invention is a nano-ceramic fibers made of a wide range of fiber diameters can be prepared most ceramic nanofiber material, distribution of the obtained average, high aspect ratio, good flexibility, simple preparation process, the success of the product rate, the filter material can be widely used, sensor material, fiber reinforcement, catalysts, drug delivery carrier, the field of fuel cells, sensitized solar cell, bone substitutes and the like.

具体实施方式 Detailed ways

[0013] 下面结合具体实施方式对本发明进行详细说明。 [0013] The present invention will be described in detail with reference to specific embodiments.

[0014] 本发明的纳米陶瓷纤维的制备方法,按照以下步骤实施: [0014] Preparation of nano-ceramic fiber of the present invention, the following step of:

[0015] 步骤1 :按体积百分比,取粒径为IOnnHBOOnm的陶瓷纳米颗粒3% -15%,可纺高聚物5% -30%,分散剂0.5% _5%,其余为溶剂,总体积为100%。 [0015] Step 1: by volume percent, a particle size of IOnnHBOOnm taken ceramic nanoparticles 3% to 15%, can be spun polymer 5% -30%, 0.5% dispersant _5%, the remainder being solvent, the total volume of 100%.

[0016] 陶瓷纳米颗粒选取:二氧化钛、氧化锌、氧化镁、氧化钙、二氧化锆、五氧化二钒、氧化铁、氧化钴、氧化镍、氧化铝、二氧化锰、氧化硼、二氧化锡、氧化铅、氧化砷、氧化铬、氧化镉、碳化硅、氮化硅、氮化硼、无机碳化物、无机氮化物中的一种。 [0016] Select ceramic nanoparticles: titanium dioxide, zinc oxide, magnesium oxide, calcium oxide, zirconium dioxide, vanadium pentoxide, iron oxide, cobalt oxide, nickel oxide, aluminum oxide, manganese dioxide, boron oxide, tin dioxide , lead oxide, arsenic oxide, chromium oxide, cadmium oxide, silicon carbide, silicon nitride, boron nitride, inorganic carbide, inorganic nitride of one.

[0017] 可纺高聚物选取:聚乙烯吡咯烷酮、聚乙二醇、聚乙烯醇缩丁醛、聚丙烯酸钠、聚甲基丙烯酸甲酯、聚乙烯醇、纤维素、聚碳酸酯、间亚苯基间苯二酰胺、弹性多肽、重组蛋白、聚酰亚胺、聚乳酸、聚苯并咪唑中的一种。 [0017] spinnable polymer selected: polyvinyl pyrrolidone, polyethylene glycol, polyvinyl butyral, sodium polyacrylate, polymethyl methacrylate, polyvinyl alcohol, cellulose, polycarbonate, m- phenylene isophthalamide, elastic polypeptide, a recombinant protein, polyimide, polylactic acid, polybenzimidazoles of one.

[0018] 分散剂选取:脂肪酸、十六烷基三甲基溴化铵、硅酸盐、铝酸钠、柠檬酸铵、铝酸酯、 聚乙二醇(4000)、十二氨基硫酸钠、乙酸乙烯酯、丙酸乙烯酯、聚甲基丙烯酸铵、己二酸、硬脂酸、聚乙烯亚胺、丙烯酸铵、丙烯酸、甲酯、树脂酸、聚醚、六偏磷酸钠、氯化钠、硝酸钾、柠檬酸钠、水合氧化硅、水溶性有机硅中的一种。 [0018] The dispersant selected: a fatty acid, cetyltrimethylammonium bromide, silicate, sodium aluminate, ammonium citrate, aluminum, polyethylene glycol (4000), dodecyl sulfate amino, vinyl acetate, vinyl propionate, ammonium polymethacrylic acid, adipic acid, stearic acid, polyethylene imine, ammonium acrylate, acrylic acid, methyl ester, a resin acid, a polyether, sodium hexametaphosphate, sodium chloride , potassium nitrate, sodium citrate, hydrated silicon oxide, a water-soluble silicones.

[0019] 溶剂选取:水、乙醇、丙酮、氯仿、异丙醇、甲醇、甲苯、四氢呋喃、苯、苄醇1,4_ 二噁烷、丙醇、二氯甲烷、四氯化碳、环己烷、环乙酮、苯酚、吡啶、三氯乙烷、乙酸、六氟异丙醇、六氟丙酮、乙腈、N-甲基吗啉-N-氧化物、1,3_ 二氧戊环、甲基乙基酮、N-甲基吡咯烷酮中的一种。 [0019] Solvent selection: water, ethanol, acetone, chloroform, isopropanol, methanol, toluene, tetrahydrofuran, benzene, benzyl alcohol 1,4_ dioxane, propanol, methylene chloride, carbon tetrachloride, cyclohexane , cyclohexanone, phenol, pyridine, trichloroethane, acetic acid, hexafluoroisopropanol, hexafluoro acetone, acetonitrile, N- methyl morpholine oxide -N-, 1,3_ dioxolane, methyl ethyl ketone, N- methyl pyrrolidone one.

[0020] 步骤2 :将步骤1中取得的可纺高聚物加入到溶剂中,在水浴中加热并磁力搅拌, 制得粘度均勻的可纺高聚物溶液。 [0020] Step 2: Step 1 to obtain the spinnable polymer is added to the solvent in a water bath and heated with magnetic stirring to prepare a uniform viscosity of the polymer solution can be spun.

[0021] 步骤3 :将步骤1中取得的陶瓷纳米颗粒和分散剂同时加入到步骤2中得到的可纺高聚物溶液中,在一定温度的水浴中保持恒温,然后对溶液进行分散,为防止局部过热和加快陶瓷纳米颗粒分散,需要持续搅拌0. 5-lh,然后对混合溶液进行超声波分散0. 5-lh, 并在50-75°C恒温溶胀0. 5-lh,形成成分均勻的陶瓷纳米颗粒/可纺高聚物/溶剂纺丝液。 [0021] Step 3: The ceramic nanoparticles and a dispersant obtained in Step 1 to Step 2 was added simultaneously obtained spinnable polymer solution, maintaining a constant temperature water bath at constant temperature, and then the solution was dispersed for prevent local overheating and accelerate ceramic nanoparticle dispersion, stirring was continued need to 0. 5-lh, and then the mixed solution was subjected to ultrasonic dispersion 0. 5-lh, and the swelling temperature at 50-75 ° C 0. 5-lh, a uniform composition is formed ceramic nanoparticles / spinnable polymer / solvent spinning solution.

[0022] 步骤4 :将步骤3中得到的纺丝液倒入注射器,采用削平的注射针头作为喷射细流的毛细管,静电纺丝过程中电压为10-40kV,收集距离为10-30cm,纺丝液推进速度为0. 5-2. 5mL/h,环境温度为10_50°C,环境湿度为50% -75%,经过静电纺丝技术制备成陶瓷纳米颗粒/可纺高聚物纳米纤维。 [0022] Step 4: Step 3 The spinning solution was poured into a syringe, needle flattened using a capillary as a fine jet flow, the voltage of the electrostatic spinning process 10-40kV, the collection distance is 10-30cm, spinning advancing speed of the wire was 0. 5-2. 5mL / h, ambient temperature 10_50 ° C, humidity of 50% to 75%, through electrostatic spinning technique for preparing a ceramic nanoparticle / nanofiber spinnable polymer.

[0023] 步骤5 :将步骤4中得到的纳米纤维经过400-1200°C烧结,得到纳米陶瓷纤维。 [0023] Step 5: In step 4 the nanofiber obtained after sintering 400-1200 ° C, to obtain nano-ceramic fibers.

4[0024] 本发明制备纳米陶瓷纤维的原理在于: 4 [0024] Preparation of the principles of the present invention nano-ceramic fibers comprising:

[0025] 首先,陶瓷纳米颗粒与可纺高聚物的比例对最终能否得到纳米陶瓷纤维起决定性作用。 [0025] First, the ratio of ceramic nanoparticles and spinning the final polymer nano ceramic fiber obtained can play a decisive role. 如果陶瓷纳米颗粒的比例小,则无法得到连续的陶瓷纳米纤维;如果比例大,则在静电纺丝过程中无法制备出纳米纤维。 If the proportion of ceramic nanoparticles is small, it can not be obtained continuous ceramic nanofibers; if the ratio is large, can not prepare a nanofiber electrospinning process.

[0026] 其次,本发明相比于现有的电纺纳米陶瓷纤维制备技术,在纺丝液的制备过程中将陶瓷纳米颗粒加入到可纺高聚物溶液中,不需要陶瓷前驱体,得到的纳米陶瓷纤维可以是无前驱体的陶瓷材料和前驱体不能与高聚物制成可纺溶液的陶瓷材料,增加了电纺纳米陶瓷纤维的制备种类。 [0026] Next, the present invention as compared to conventional ceramic fiber electrospun nanofiber preparation technology, the ceramic nanoparticles during the preparation of the spinning solution was added to the spinnable polymer solution, does not require a ceramic precursor, to give nano-ceramic fibers and ceramic material may be a precursor and no precursor can be made spinnable polymer solution ceramic materials, increased the types of prepared ceramic fiber electrospun nanofiber.

[0027] 再次,分散剂的加入可以使陶瓷纳米颗粒之间存在排斥力,改变颗粒表面功能基团,增强固体对溶剂的润湿性,解决了纳米颗粒团聚、分散不均等问题,使得到的纺丝液在纺丝过程中陶瓷纳米颗粒不会沉淀,能保持纺丝液的成分均勻。 [0027] Again, the dispersant may be present repulsion between the ceramic nano-particles, varying the particle surface functional groups, to enhance the wettability of the solid to the solvent, the agglomeration of the nanoparticles solution, problems such as uneven dispersion, so that the resulting dope ceramic nanoparticles do not precipitate in the spinning process, the spinning solution can maintain a uniform composition. 通过超声波对含有陶瓷纳米颗粒的混合溶液分散,可以使陶瓷纳米颗粒均勻地分布在混合溶液中,得到成分均勻的纺丝液。 By ultrasonic mixed solution containing dispersed ceramic nanoparticles, ceramic nanoparticles can be uniformly distributed in the mixed solution, to obtain a homogeneous composition of a spinning solution. 恒温溶胀过程可以将陶瓷纳米纤维与可纺高聚物更好的结合在一起,有利于后续的制备。 Swelling process temperature ceramic nanofiber can be better combined with the polymers may be spun together to facilitate follow-up preparation.

[0028] 最后,采用静电纺丝技术得到陶瓷纳米颗粒/可纺高聚物纳米纤维,并经过烧结得到纳米陶瓷纤维。 [0028] Finally, by electrospinning a ceramic nanoparticle / nanofiber spinnable polymer, and sintered to obtain a ceramic nano-fibers.

[0029] 实施例1 [0029] Example 1

[0030] 按体积百分比,取粒径为IOnm的Si3N4纳米颗粒3%,聚乙烯醇(PVA)为10%,十六烷基三甲基溴化铵0. 5%和86. 5%的去离子水,总体积为100%。 [0030] The percentage by volume, taking the particle diameter of IOnm Si3N4 nanoparticles 3% polyvinylalcohol (PVA) of 10% hexadecyltrimethylammonium bromide and 0.5% to 86.5% of deionized water, the total volume is 100%. 将聚乙烯醇(PVA)加入到去离子水中,在85°C水浴中加热并磁力搅拌,制得具有一定粘度的PVA溶液;将Si3N4纳米颗粒和十六烷基三甲基溴化铵加入到PVA溶液中,在水浴中保持85°C恒温,然后对溶液进行分散,持续搅拌lh,然后对混合溶液进行超声波分散0. 5h,并在50°C恒温溶胀0.证,形成成分均勻的Si3N4/PVA纺丝液。 Polyvinyl alcohol (PVA) was added to the deionized water, heated at 85 ° C water bath and magnetic stirring, to prepare a PVA solution having a certain viscosity; the Si3N4 nanoparticles and cetyl trimethyl ammonium bromide were added to PVA solution, maintaining the temperature 85 ° C in a water bath, and then the solution was dispersed, stirring was continued for LH, and the mixed solution was subjected to ultrasonic dispersion 0. 5H, and 50 ° C and constant swelling 0. syndrome, Si3N4 to form a homogeneous composition / PVA spinning solution. 将纺丝液倒入注射器,采用削平的注射针头作为喷射细流的毛细管,静电纺丝过程中电压为10kV,收集距离为10cm,纺丝液推进速度为0. 5mL/h,环境温度为10°C,环境湿度为50%,经过静电纺丝技术制备成Si3N4/PVA复合纳米纤维;最后经过400°C烧结,得到纳米Si3N4纤维。 The spinning solution was poured into a syringe, using a flattened capillary injection needles as thin stream, during electrospinning voltage is 10kV, the collection distance is 10cm, the advancing speed of the spinning solution 0. 5mL / h, ambient temperature 10 ° C, humidity of 50%, prepared Si3N4 / PVA composite nanofibers through the electrospinning technique; 400 ° C after sintering and finally, to give Si3N4 nano fibers.

[0031] 相同组分及实验条件下,本发明方法与现有方法得到的纳米纤维主要技术参数见表1实施例1。 [0031] Under the same experimental conditions and components, the method of the present invention and the conventional method to give nanofiber main technical parameters are shown in Table 1 in Example 1.

[0032] 实施例2 [0032] Example 2

[0033] 按体积百分比,取粒径为300nm的NiO纳米颗粒6 %,聚乙烯醇缩丁醛(PVB)为5%,柠檬酸铵5%和84%的去离子水,总体积为100%。 [0033] The percentage by volume, taking the particle diameter of 300nm nanoparticles 6% NiO, polyvinyl butyral (PVB) is 5%, 5% ammonium citrate and 84% deionized water, the total volume to 100% . 将聚乙烯醇缩丁醛(PVB)加入到乙醇中,在75°C水浴中加热并磁力搅拌,制得具有一定粘度的PVB溶液;将NiO纳米颗粒和柠檬酸铵加入到PVB溶液中,在水浴中保持50°C恒温,然后对溶液进行分散,持续搅拌lh,然后对混合溶液进行超声波分散0. 5h,并在75°C恒温溶胀0. 5h,形成成分均勻的NiO/PVB纺丝液。 The polyvinyl butyral (PVB) was added to the ethanol and heated at 75 ° C water bath and magnetic stirring, to prepare a solution having a certain viscosity PVB; of NiO nanoparticles and ammonium citrate solution were added to the PVB, the holding a water bath temperature 50 ° C, and then the solution was dispersed, stirring was continued for LH, and the mixed solution was subjected to ultrasonic dispersion for 0. 5h, and temperature 75 ° C swelling 0. 5h, to form a homogeneous composition NiO / PVB dope . 将纺丝液倒入注射器,采用削平的注射针头作为喷射细流的毛细管,静电纺丝过程中电压为40kV,收集距离为30cm,纺丝液推进速度为2. 5mL/h,环境温度为50°C,环境湿度为75%,经过静电纺丝技术制备成NiO/PVB复合纳米纤维;最后经过500°C烧结,得到纳米NiO 纤维。 The spinning solution was poured into a syringe, using a flattened capillary injection needles as thin stream, during electrospinning voltage of 40kV, the collection distance of 30cm, the advancing speed of the spinning solution 2. 5mL / h, ambient temperature of 50 ° C, 75% humidity, after electrospinning prepared NiO / PVB composite nanofibers; 500 ° C after sintering and finally, to obtain NiO nano fibers.

[0034] 相同组分及实验条件下,本发明方法与现有方法得到的纳米纤维主要技术参数见表1实施例2。 [0034] Under the same experimental conditions and components, the method of the present invention and the conventional method to give nanofiber main technical parameters are shown in Table 1. Example 2.

[0035] 实施例3 [0035] Example 3

[0036] 按体积百分比,取粒径为200nm的B4N纳米颗粒15%,聚乙烯吡咯烷酮(PVP)为20%,聚醚3%和62%的乙醇,总体积为100%。 [0036] The percentage by volume, taking the particle diameter of 200nm nanoparticles B4N 15% polyvinyl pyrrolidone (PVP) is 20%, 3% and 62% of the polyether alcohol, the total volume is 100%. 将聚乙烯吡咯烷酮(PVP)加入到异丙醇中, 在70°C水浴中加热并磁力搅拌,制得具有一定粘度的PVP溶液;将B4N纳米颗粒和聚醚加入到PVP溶液中,在水浴中保持60°C恒温,然后对溶液进行分散,为防止局部过热和加快B4N 纳米颗粒分散,需要持续搅拌0.证,然后对混合溶液进行超声波分散lh,并在60°C恒温溶胀lh,形成成分均勻的B4N/PVP纺丝液。 The polyvinyl pyrrolidone (PVP) was added to isopropanol, was heated at 70 ° C water bath and magnetic stirring, to prepare a solution of PVP having a certain viscosity; B4N nanoparticles and the polyether were added to the PVP solution in a water bath holding temperature 60 ° C, and then the solution was dispersed to prevent localized overheating and accelerate B4N nanoparticle dispersion, stirring was continued for 0.5 certificate required, and then the mixed solution was subjected to ultrasonic dispersion for LH, and temperature 60 ° C swelling LH, forming components uniform B4N / PVP dope. 将纺丝液倒入注射器,采用削平的注射针头作为喷射细流的毛细管,静电纺丝过程中电压为30kV,收集距离为20cm,纺丝液推进速度为2mL/ h,环境温度为40°C,环境湿度为65%,经过静电纺丝技术制备成B4N/PVP复合纳米纤维;最后经过600°C烧结,得到纳米B4N纤维。 The spinning solution was poured into a syringe using a needle as the ejection flattened trickle capillaries during electrospinning voltage is 30kV, the collection distance is 20cm, the advancing speed of the spinning solution 2mL / h, ambient temperature of 40 ° C for , 65% humidity, after electrospinning prepared B4N / PVP composite nanofibers; 600 ° C after sintering finally give B4N nano fibers.

[0037] 相同组分及实验条件下,本发明方法与现有方法得到的纳米纤维主要技术参数见表1实施例3。 [0037] Under the same experimental conditions and components, the method of the present invention and the conventional method to give nanofiber main technical parameters are shown in Table 1. Example 3.

[0038] 实施例4 [0038] Example 4

[0039] 按体积百分比,取粒径为150nm的CuO纳米颗粒8%,聚甲基丙烯酸甲酯(PMMA)为10%,丙酸乙烯酯2%和80%的异丙醇,总体积为100%。 [0039] The percentage by volume, a particle size of CuO nanoparticles taken 150nm 8% polymethyl methacrylate (PMMA) was 10%, 80% and 2% isopropanol vinyl propionate, a total volume of 100 %. 将聚甲基丙烯酸甲酯(PMMA)加入到异丙醇中,在水浴中加热并磁力搅拌,制得具有一定粘度的PMMA溶液;将CuO纳米颗粒和丙酸乙烯酯加入到PMMA溶液中,在水浴中保持90°C恒温,然后对溶液进行分散,持续搅拌lh,然后对混合溶液进行超声波分散lh,并在50°C恒温溶胀lh,形成成分均勻的CuO/PMMA 纺丝液。 The polymethyl methacrylate (PMMA) was added to the isopropanol was heated in a water bath and magnetic stirring, to prepare a solution having a certain viscosity PMMA; CuO nanoparticles and the vinyl propionate is added to the PMMA solution, 90 ° C water bath holding a constant temperature, and then the solution was dispersed, stirring was continued for LH, and the mixed solution was subjected to ultrasonic dispersion LH, and 50 ° C and constant swelling LH, to form a homogeneous composition CuO / PMMA dope. 将纺丝液倒入注射器,采用削平的注射针头作为喷射细流的毛细管,静电纺丝过程中电压为25kV,收集距离为25cm,纺丝液推进速度为1. 5mL/h,环境温度为25°C,环境湿度为55%,经过静电纺丝技术制备成CuO/PMMA复合纳米纤维;经过800°C烧结,得到纳米CuO 纤维。 The spinning solution was poured into a syringe, using a flattened capillary injection needles as thin stream, during electrospinning voltage is 25kV, the collection distance is 25cm, the advancing speed of the spinning solution 1. 5mL / h, ambient temperature is 25 ° C, 55% humidity, after electrospinning prepared CuO / PMMA composite nanofibers; 800 ° C after sintering, a CuO nano fibers.

[0040] 相同组分及实验条件下,本发明方法与现有方法得到的纳米纤维主要技术参数见表1实施例4。 [0040] Under the same experimental conditions and components, the method of the present invention and the conventional method to give nanofiber main technical parameters are shown in Table 1. Example 4.

[0041] 实施例5 [0041] Example 5

[0042] 按体积百分比,取粒径为250nm的SnA纳米颗粒5%,聚丙烯酸钠(PAAS)为15%, 聚甲基丙烯酸铵和79%的去离子水,总体积为100%。 [0042] The percentage by volume, taking a particle size of 250nm nanoparticles SnA 5% of sodium polyacrylate (the PAAS) 15% ammonium polymethacrylate and 79% deionized water, the total volume is 100%. 将聚丙烯酸钠(PAAS)加入到去离子水中,在水浴中加热并磁力搅拌,制得具有一定粘度的PAAS溶液。 The sodium polyacrylate (PAAS) was added to the deionized water, heated in a water bath and magnetic stirring, to prepare a solution having a certain viscosity PAAS. 将Sr^2纳米颗粒和聚甲基丙烯酸铵加入到PAAS溶液中,在水浴中保持90°C恒温,然后对溶液进行分散,持续搅拌0. 5h,然后对混合溶液进行超声波分散0. 5h,并在75°C恒温溶胀0. 5h,形成成分均勻的Sn02/PAAS纺丝液。 The nanoparticles Sr ^ 2 and ammonium polymethacrylate PAAS solution was added to maintain a constant temperature 90 ° C in a water bath, and then the solution was dispersed, stirring was continued for 0. 5h, and then the mixed solution was subjected to ultrasonic dispersion for 0. 5h, and temperature 75 ° C swelling 0. 5h, to form a homogeneous composition Sn02 / PAAS dope. 将纺丝液倒入注射器,采用削平的注射针头作为喷射细流的毛细管,静电纺丝过程中电压为15kV,收集距离为15cm,纺丝液推进速度为lmL/h,环境温度为15°C, 环境湿度为70%,经过静电纺丝技术制备成Sn02/PAAS复合纳米纤维;经过KKKTC烧结,得到纳米SM2纤维。 The spinning solution was poured into a syringe using a needle as the ejection flattened trickle capillaries during electrospinning voltage was 15kV, the collection distance is 15cm, the advancing speed of the spinning solution lmL / h, ambient temperature 15 ° C , humidity of 70%, prepared as Sn02 / PAAS composite nanofibers through the electrospinning technique; KKKTC after sintering, a nano fiber SM2.

[0043] 相同组分及实验条件下,本发明方法与现有方法得到的纳米纤维主要技术参数见表1实施例5。 [0043] Under the same experimental conditions and components, the method of the present invention and the conventional method to give nanofiber main technical parameters are shown in Table 1. Example 5.

[0044] 实施例6 [0044] Example 6

[0045] 按体积百分比,取粒径为180nm的SiC纳米颗粒10%,聚乙二醇(PEG)为30%,聚乙烯亚胺4%和56%的吡啶,总体积为100%。 [0045] The percentage by volume, particle diameter of SiC nanoparticles taken 180nm 10% polyethylene glycol (PEG) 30%, 4% polyethylene imine and 56% of pyridine, 100% of the total volume. 将聚乙二醇(PEG)加入到吡啶中,在85°C水浴中加热并磁力搅拌,制得具有一定粘度的PEG溶液;将SiC纳米颗粒和聚乙烯亚胺加入到PEG溶液中,在水浴中保持85°C恒温,然后对溶液进行分散,持续搅拌0.证,然后对混合溶液进行超声波分散lh,并在60°C恒温溶胀lh,形成成分均勻的SiC/PEG纺丝液。 The polyethylene glycol (PEG) was added to pyridine, was heated at 85 ° C water bath and magnetic stirring, to prepare a solution having a certain viscosity of the PEG; the SiC nanoparticles and polyethyleneimine was added to the PEG solution, in a water bath maintained constant 85 ° C, and then the solution was dispersed, stirring was continued for 0.5 certificate, and then subjected to ultrasonic dispersion LH mixed solution, at 60 ° C and constant swelling LH, to form a homogeneous composition SiC / PEG dope. 将纺丝液倒入注射器,采用削平的注射针头作为喷射细流的毛细管,静电纺丝过程中电压为35kV,收集距离为25cm,纺丝液推进速度为0. 8mL/h,环境温度为45°C,环境湿度为72%,经过静电纺丝技术制备成SiC/PEG复合纳米纤维;最后经过1100°C烧结,得到纳米SiC纤维。 The spinning solution was poured into a syringe, using a flattened capillary injection needles as thin stream, during electrospinning voltage is 35kV, the collection distance is 25cm, the advancing speed of the spinning solution 0. 8mL / h, ambient temperature of 45 ° C, humidity of 72%, prepared via electrospinning SiC / PEG composite nanofibers; Finally, after sintering 1100 ° C to obtain nano SiC fibers.

[0046] 相同组分及实验条件下,本发明方法与现有方法得到的纳米纤维主要技术参数见表1实施例6。 [0046] Under the same experimental conditions and components, the method of the present invention and the conventional method to give nanofiber main technical parameters are shown in Table 1. Example 6.

[0047] 实施例7 [0047] Example 7

[0048] 按体积百分比,取粒径为IOOnm的Al2O3纳米颗粒15%,聚碳酸酯(PC)为10%,铝酸酯2. 5%和甲苯为72.5%,总体积为100%。 [0048] The percentage by volume, taken Al2O3 particle diameter of 15% IOOnm nanoparticles, polycarbonate (PC) was 10%, 2.5% aluminum acetate and toluene of 72.5% and a total volume of 100%. 将聚碳酸酯(PC)加入到甲苯中,在水浴中加热并磁力搅拌,制得具有一定粘度的PC溶液;将Al2O3纳米颗粒和铝酸酯加入到PC溶液中,在水浴中保持85°C恒温,然后对溶液进行分散,持续搅拌lh,然后对混合溶液进行超声波分散0. 5h,并在65°C恒温溶胀0. 5h,形成成分均勻的A1203/PC纺丝液。 The polycarbonate (PC) were added to toluene and heated in a water bath and magnetic stirring, to obtain a PC solution having a certain viscosity; and Al2O3 nanoparticles and aluminum acetate solution was added to the PC, to maintain 85 ° C in a water bath temperature, then the solution was dispersed, stirring was continued for LH, and the mixed solution was subjected to ultrasonic dispersion for 0. 5h, and temperature 65 ° C swelling 0. 5h, to form a homogeneous composition A1203 / PC dope. 将纺丝液倒入注射器,采用削平的注射针头作为喷射细流的毛细管,静电纺丝过程中电压为40kV,收集距离为10cm,纺丝液推进速度为2. 5mL/h,环境温度为10°C,环境湿度为50%,经过静电纺丝技术制备成A1203/PC复合纳米纤维;最后将复合纳米纤维经过1200°C烧结,得到纳米Al2O3纤维。 The spinning solution was poured into a syringe, using a flattened capillary injection needles as thin stream, during electrospinning voltage of 40kV, the collection distance is 10cm, the advancing speed of the spinning solution 2. 5mL / h, ambient temperature 10 ° C, humidity of 50%, prepared A1203 / PC composite nanofibers through electrostatic spinning technology; Finally composite fibers 1200 ° C after sintering, a nano-Al2O3 fibers.

[0049] 相同组分及实验条件下,本发明方法与现有方法得到的纳米纤维主要技术参数见表1实施例7。 [0049] Under the same experimental conditions and components, the method of the present invention and the conventional method to give nanofiber main technical parameters are shown in Table 1. Example 7.

[0050] 实施例8 [0050] Example 8

[0051] 按体积百分比,取粒径为50nm的TW2纳米颗粒8%,聚乙烯吡咯烷酮(PVP) 10%, 六偏磷酸钠2%,乙醇80%,总体积为100%。 [0051] The percentage by volume, taking the particle diameter of 50nm nanoparticles TW2 8%, polyvinylpyrrolidone (PVP) 10%, 2% sodium hexametaphosphate, 80% ethanol, 100% of the total volume. 将聚乙烯吡咯烷酮(PVP)加入到溶剂中,在水浴中保持恒温60°C,持续搅拌0. 5h,制得PVP/乙醇溶液;将TiO2纳米颗粒和六偏磷酸钠加入到PVP/乙醇溶液中,在水浴中保持50°C恒温,然后对溶液进行分散,为防止局部过热和加快TiO2纳米颗粒分散,需要持续搅拌lh,然后对混合溶液进行超声波分散lh,并55°C 恒温溶胀0. 5h,形成成分均勻的Ti02/PVP/乙醇纺丝液;将Ti02/PVP/乙醇纺丝液倒入注射器,采用削平的注射针头作为喷射细流的毛细管,静电纺丝过程中电压为40kV,收集距离为10cm,纺丝液推进速度为2. 5mL/h,环境温度为10°C,环境湿度为75%,经过静电纺丝技术制备成Ti02/PV纳米纤维,经过1000°C烧结,最终得到TW2纳米纤维。 The polyvinyl pyrrolidone (PVP) was added to the solvent kept at constant temperature 60 ° C in a water bath, stirring was continued for 0. 5h, to obtain PVP / ethanol solution; TiO2 nanoparticles and the sodium hexametaphosphate was added to the PVP / ethanol solution held at 50 ° C constant temperature water bath, and then the solution was dispersed to prevent localized overheating and accelerate the TiO2 nanoparticle dispersion, stirring was continued need LH, the mixed solution was then subjected to ultrasonic dispersion for LH, and temperature 55 ° C swelling 0. 5h uniform formed component Ti02 / PVP / ethanol spinning solution; the Ti02 / PVP / ethanol spin liquid into the syringe, the injection needle using a capillary flattened spraying a thin stream, during electrospinning voltage of 40kV, collection distance is 10cm, the advancing speed of the spinning solution 2. 5mL / h, ambient temperature of 10 ° C, humidity of 75%, to prepare a Ti02 / PV nanofibres through electrostatic spinning technology, after 1000 ° C firing, the finally obtained TW2 Nanofibers.

[0052] 相同组分及实验条件下,本发明方法与现有方法得到的纳米纤维主要技术参数见表1实施例8。 [0052] Under the same experimental conditions and components, the method of the present invention and the conventional method to give nanofiber main technical parameters are shown in Table 1. Example 8.

[0053] 表1各个实施例本发明制备与现有方法得到的纳米纤维特征比较表 [0053] Table 1, various embodiments of the present invention is characterized in Comparative nanofiber sheet prepared with conventional methods

[0054] [0054]

7 7

Figure CN101880917BD00081

[0055] 本发明方法可制备的纳米陶瓷纤维种类显著增多,可制备出大多数陶瓷材料的纳米纤维,得到的纤维直径分布平均,长径比高,柔韧性好,所涉及的实验制备工艺简单,产品成功率高,可广泛应用于过滤材料、传感器材料、纤维增强体、催化剂、药物释放载体、燃料电池、太阳能敏化电池、人工骨替代材料等领域。 [0055] Nano-ceramic fiber types can be prepared by the method of the present invention is significantly increased, the fiber diameter of the ceramic material can be prepared most nanofibers obtained average distribution, high aspect ratio, good flexibility, simple experiment involved preparation process , success rate of products can be widely used filter materials, sensor materials, fiber reinforcement, catalysts, drug delivery carrier, the field of fuel cells, sensitized solar cell, bone substitutes and the like.

Claims (5)

1. 一种制备纳米陶瓷纤维的方法,其特征在于,该方法按照以下步骤实施:步骤1 :按体积百分比,取粒径为10nm-300nm的陶瓷纳米颗粒3% -15%,可纺高聚物5%-30%,分散剂0.5%-5%,其余为溶剂,总体积为100% ;步骤2 :将步骤1中取得的可纺高聚物加入到所述溶剂中,在水浴中加热并磁力搅拌, 制得粘度均勻的可纺高聚物溶液;步骤3 :将步骤1中取得的陶瓷纳米颗粒和分散剂同时加入到步骤2中得到的可纺高聚物溶液中,在水浴中保持恒温,然后对溶液进行分散,需要持续搅拌0. 5-lh,然后对混合溶液进行超声波分散0. 5-lh,并在50-75°C恒温溶胀0. 5-lh,形成成分均勻的陶瓷纳米颗粒/可纺高聚物/溶剂纺丝液;步骤4:将步骤3中得到的纺丝液倒入注射器,采用削平的注射针头作为喷射细流的毛细管,静电纺丝过程中电压为10-40kV,收集距离为10-30cm,纺丝液推进速度为0 1. A method of preparing nano-ceramic fibers, characterized in that the method according to the following steps: Step 1: by volume percent, a particle size of 10nm-300nm taken ceramic nanoparticles 3% to 15%, a high spinning poly was 5% -30%, 0.5% to 5% dispersant, the remainder being solvent, the total volume of 100%; step 2: acquired in step 1 is added to the polymer spinning solution was heated in a water bath and magnetic stirring, to prepare a uniform viscosity of the polymer solution may be spun; step 3: the ceramic nanoparticles and a dispersant in step 1 was added to the obtained simultaneously obtained in step 2 spinnable polymer solution, in a water bath maintain constant temperature, and then the solution was dispersed, with stirring continued need to 0. 5-lh, and then the mixed solution was subjected to ultrasonic dispersion 0. 5-lh, and the swelling temperature at 50-75 ° C 0. 5-lh, uniform composition is formed ceramic nanoparticles / spinnable polymer / solvent spinning solution; step 4: step 3 the spinning solution was poured into a syringe, needle flattened using a capillary as a fine jet flow, voltage electrostatic spinning process 10-40kV, collecting a distance of 10-30cm, advancing speed of the spinning solution 0 . 5-2. 5mL/h,环境温度为10_50°C,环境湿度为50% -75%,经过静电纺丝技术制备成陶瓷纳米颗粒/可纺高聚物纳米纤维;步骤5 :将步骤4中得到的纳米纤维经过400°C -1200°C烧结,得到纳米陶瓷纤维。 .. 5-2 5mL / h, ambient temperature 10_50 ° C, humidity of 50% to 75%, through electrostatic spinning technique for preparing a ceramic nanoparticle / nanofiber spinnable polymer; Step 5: Step 4 nanofibers obtained after 400 ° C -1200 ° C sintering, a nano-ceramic fibers.
2.根据权利要求1所述的方法,其特征在于,所述的陶瓷纳米颗粒选取:二氧化钛、氧化锌、氧化镁、氧化钙、二氧化锆、五氧化二钒、氧化铁、氧化钴、氧化镍、氧化铝、二氧化锰、 氧化硼、二氧化锡、氧化铅、氧化砷、氧化铬、氧化镉、碳化硅、氮化硅、氮化硼、无机碳化物或无机氮化物中的一种。 2. The method according to claim 1, wherein the ceramic nanoparticles are selected: titanium dioxide, zinc oxide, magnesium oxide, calcium oxide, zirconium dioxide, vanadium pentoxide, iron oxide, cobalt oxide, nickel, aluminum, manganese dioxide, boron oxide, tin oxide, lead oxide, arsenic oxide, chromium oxide, cadmium oxide, silicon carbide, silicon nitride, boron nitride, an inorganic carbide or inorganic nitride .
3.根据权利要求1所述的方法,其特征在于,所述的可纺高聚物选取:聚乙烯吡咯烷酮、聚乙二醇、聚乙烯醇缩丁醛、聚丙烯酸钠、聚甲基丙烯酸甲酯、聚乙烯醇、纤维素、聚碳酸酯、间亚苯基间苯二酰胺、弹性多肽、重组蛋白、聚酰亚胺、聚乳酸或聚苯并咪唑中的一种。 3. The method according to claim 1, wherein said spinnable polymer selected: polyvinyl pyrrolidone, polyethylene glycol, polyvinyl butyral, sodium polyacrylate, polymethyl methacrylate esters, polyvinyl alcohol, cellulose, polycarbonate, m-phenylene isophthalamide, elastic polypeptide, a recombinant protein, polyimide, polybenzimidazole or acid of one.
4.根据权利要求1所述的方法,其特征在于,所述的分散剂选取:脂肪酸、十六烷基三甲基溴化铵、硅酸盐、铝酸钠、柠檬酸铵、铝酸酯、聚乙二醇、十二氨基硫酸钠、乙酸乙烯酯、 丙酸乙烯酯、聚甲基丙烯酸铵、己二酸、硬脂酸、聚乙烯亚胺、丙烯酸铵、丙烯酸、甲酯、树脂酸、聚醚、六偏磷酸钠、氯化钠、硝酸钾、柠檬酸钠、水合氧化硅或水溶性有机硅中的一种。 4. The method according to claim 1, wherein said dispersant is selected: a fatty acid, cetyltrimethylammonium bromide, silicate, sodium aluminate, ammonium citrate, aluminum acetate , polyethylene glycols, dodecyl sulfate amino, vinyl acetate, vinyl propionate, ammonium polymethacrylic acid, adipic acid, stearic acid, polyethylene imine, ammonium acrylate, acrylic acid, methyl acrylate, resin acids , polyethers, sodium hexametaphosphate, sodium chloride, potassium nitrate, sodium citrate, or a water-soluble hydrated silica in a silicone.
5.根据权利要求1所述的方法,其特征在于,所述的溶剂选取:水、乙醇、丙酮、氯仿、 异丙醇、甲醇、甲苯、四氢呋喃、苯、苄醇1,4_ 二噁烷、丙醇、二氯甲烷、四氯化碳、环己烷、环乙酮、苯酚、吡啶、三氯乙烷、乙酸、六氟异丙醇、六氟丙酮、乙腈、N-甲基吗啉-N-氧化物、1, 3-二氧戊环、甲基乙基酮或N-甲基吡咯烷酮中的一种。 5. The method according to claim 1, wherein said solvent is selected: water, ethanol, acetone, chloroform, isopropanol, methanol, toluene, tetrahydrofuran, benzene, benzyl alcohol 1,4_ dioxane, propanol, methylene chloride, carbon tetrachloride, cyclohexane, cyclohexanone, phenol, pyridine, trichloroethane, acetic acid, hexafluoroisopropanol, hexafluoro acetone, acetonitrile, N- methyl morpholine - N- oxide, 1, 3-dioxolane, methyl ethyl ketone or a N- methylpyrrolidone.
CN 201010301298 2010-02-05 2010-02-05 Method for preparing nano ceramic fibers CN101880917B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010301298 CN101880917B (en) 2010-02-05 2010-02-05 Method for preparing nano ceramic fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010301298 CN101880917B (en) 2010-02-05 2010-02-05 Method for preparing nano ceramic fibers

Publications (2)

Publication Number Publication Date
CN101880917A CN101880917A (en) 2010-11-10
CN101880917B true CN101880917B (en) 2011-11-16

Family

ID=43053051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010301298 CN101880917B (en) 2010-02-05 2010-02-05 Method for preparing nano ceramic fibers

Country Status (1)

Country Link
CN (1) CN101880917B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102775148A (en) * 2012-07-12 2012-11-14 东华大学 Preparation method of magnesium diboride ceramic fiber precursor electrostatic spinning solution

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102000577B (en) * 2010-11-11 2013-10-23 江苏大学 Magnetic nanocomposite fiber and preparation method and application thereof
CN102400248B (en) * 2011-08-29 2013-09-04 长春理工大学 Method for preparing parallel polycrystalline nano fiber bundle of stannic oxide and nickel oxide
CN102515716A (en) * 2011-12-08 2012-06-27 东华大学 Preparation method of NiO/gamma-Al2O3 composite ceramic nanofiber
CN102776706A (en) * 2012-07-10 2012-11-14 东华大学 Method for preparing polyetherimide amphipathic composite nano-scale fiber membrane
CN102787390A (en) * 2012-08-16 2012-11-21 东华大学 Method for preparing PEI (Polyetherimide)/PMMA (Polymethyl Methacrylate) composite nano microballoon spheres by high-voltage electrostatic spray
CN103215748A (en) * 2013-04-01 2013-07-24 复旦大学 Functional fiber felt covered by transition metal oxide nanomaterials and preparation method thereof
CN103451850B (en) * 2013-08-16 2015-12-09 西安理工大学 The preparation method of lotus positive electroceramics micro nanometer fiber film
CN103590132B (en) * 2013-11-25 2016-03-02 扬州大学 A kind of preparation method of loose structure Electrospun nano-fibers
CN103789875B (en) * 2014-01-23 2015-09-30 黑龙江大学 A kind of preparation method of crystalline phase controllable oxidization zirconium 1-dimention nano fiber
CN104153038B (en) * 2014-05-04 2016-05-04 常州大学 A kind of preparation method of vanadium oxide doped nanowire electrostatic spinning
CN104264235B (en) * 2014-09-09 2016-05-18 天津工业大学 A kind of manufacture method of micro-nano Sodium Polyacrylate fibrofelt
CN104328530A (en) * 2014-10-08 2015-02-04 上海应用技术学院 Biodegradable antibacterial composite fibers and preparation method thereof
CN104532404B (en) * 2014-12-18 2016-09-28 长春理工大学 Vanadium nitride nanofiber and preparation method thereof
CN104496469B (en) * 2014-12-18 2017-02-22 西安理工大学 Method for preparing dense micro/nano ceramic fiber by virtue of coaxial electrospinning technology
CN104532405B (en) * 2014-12-18 2016-08-31 长春理工大学 Vanadium nitride porous hollow nano fiber and preparation method thereof
CN105803560A (en) * 2014-12-30 2016-07-27 上海水星家用纺织品股份有限公司 Electrostatic spinning porous light catalytic fiber preparation method and use
CN106346777B (en) * 2015-07-13 2018-08-10 中南大学 A method of improving polymer-ceramic bone holder sintering character
CN104988604B (en) * 2015-07-31 2018-01-30 安徽恒硕纺织品有限公司 A kind of preparation method of zirconium carbide micro nanometer fiber
CN105133050B (en) * 2015-09-24 2018-01-02 江西美赛材料有限公司 A kind of electrostatic spinning technique prepares the method for zirconia nanopowder fiber and its obtained product
CN105401240B (en) * 2015-12-15 2019-04-16 上海纳米技术及应用国家工程研究中心有限公司 It is a kind of that catalytic waste gas is had based on electrostatic spinning technique and adsorbs the dual-purpose nanofiber preparation method of dust particle
CN105823799B (en) * 2016-03-22 2018-11-30 泰州市龙泽环境科技有限公司 A kind of Semiconductor gas sensors basis material and preparation method thereof
CN105797213A (en) * 2016-03-30 2016-07-27 北京大学口腔医院 Electroactivity nano fiber support material and preparation method thereof
CN105821495B (en) * 2016-04-13 2019-05-24 浙江理工大学 A kind of method of electrostatic spinning preparation polymer matrix/collapsed structure clay composite nano fiber
CN106087251A (en) * 2016-08-23 2016-11-09 苏州大学 A kind of preparation method of porous microsphere sound-absorbing material
CN106435827B (en) * 2016-09-21 2019-02-26 上海东北亚新纺织科技有限公司 A kind of ceramics/resin/graphite alkene quantum dot composite fibre and preparation method thereof
CN106637467B (en) * 2016-11-09 2018-11-09 上海全宇生物科技遂平有限公司 A kind of boracic nano zine oxide/polyvinyl alcohol composite fiber and preparation method thereof
CN106620894A (en) * 2016-11-28 2017-05-10 西藏淇华生物科技有限公司 In-vivo implant material capable of magnetic resonance imaging as well as preparation method and application thereof
CN106835502B (en) * 2017-01-19 2019-05-03 湖南力途世纪商贸有限公司 A kind of nanofiber mats and preparation method thereof
CN107893263A (en) * 2017-11-23 2018-04-10 中南大学 It is a kind of be applied to prepare the continuous poriferous alumina-based ceramic of high homogeneous it is ultra-fine/spin finish aid of nanofiber
CN109930226A (en) * 2019-04-08 2019-06-25 四川大学 A kind of high thermal conductivity viscose rayon composite material and preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102775148A (en) * 2012-07-12 2012-11-14 东华大学 Preparation method of magnesium diboride ceramic fiber precursor electrostatic spinning solution

Also Published As

Publication number Publication date
CN101880917A (en) 2010-11-10

Similar Documents

Publication Publication Date Title
Supaphol et al. On the electrospinning of poly (vinyl alcohol) nanofiber mats: a revisit
Fang et al. DNA fibers by electrospinning
Thenmozhi et al. Electrospun nanofibers: new generation materials for advanced applications
Kim et al. Preparation of submicron‐scale, electrospun cellulose fibers via direct dissolution
Li et al. Use of electrospinning to directly fabricate hollow nanofibers with functionalized inner and outer surfaces
Katta et al. Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector
McCann et al. Highly porous fibers by electrospinning into a cryogenic liquid
Pirzada et al. Hybrid silica–PVA nanofibers via sol–gel electrospinning
Subbiah et al. Electrospinning of nanofibers
KR20110072805A (en) Nanofiber and preparation method thereof
Khajavi et al. Electrospinning as a versatile method for fabricating coreshell, hollow and porous nanofibers
CN101139742B (en) Fibre structure of carbon nano tube/nano oxide nano composite material and preparation method and use thereof
Zhang et al. ZnO hollow nanofibers: fabrication from facile single capillary electrospinning and applications in gas sensors
Luo et al. Electrospinning versus fibre production methods: from specifics to technological convergence
Bazilevsky et al. Co-electrospinning of core− shell fibers using a single-nozzle technique
Larsen et al. A method for making inorganic and hybrid (organic/inorganic) fibers and vesicles with diameters in the submicrometer and micrometer range via sol− gel chemistry and electrically forced liquid jets
Zhang et al. Centrifugal spinning: an alternative approach to fabricate nanofibers at high speed and low cost
Nayak et al. Recent advances in nanofibre fabrication techniques
Wang et al. Electrospinning of polyacrylonitrile solutions at elevated temperatures
CN102242464B (en) Polymer-ceramic compound nanometer fibrous membrane as well as preparation method and application thereof
Chronakis Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—a review
Agarwal et al. Electrospinning of manmade and biopolymer nanofibers—progress in techniques, materials, and applications
Loscertales et al. Electrically forced coaxial nanojets for one-step hollow nanofiber design
US20060226580A1 (en) Electrospinning of fine hollow fibers
Lu et al. Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right