CN101851962B - 一种提升建筑框架人为事故抗连续倒塌能力的方法 - Google Patents

一种提升建筑框架人为事故抗连续倒塌能力的方法 Download PDF

Info

Publication number
CN101851962B
CN101851962B CN2010101866817A CN201010186681A CN101851962B CN 101851962 B CN101851962 B CN 101851962B CN 2010101866817 A CN2010101866817 A CN 2010101866817A CN 201010186681 A CN201010186681 A CN 201010186681A CN 101851962 B CN101851962 B CN 101851962B
Authority
CN
China
Prior art keywords
collapse
design
framework
load
progressive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010101866817A
Other languages
English (en)
Other versions
CN101851962A (zh
Inventor
杨玛莎
方德平
肖伟
张南峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XIAMEN HORDOR ARCHITECTURE & ENGINEERING DESIGN GROUP CO., LTD.
Original Assignee
XIAMEN HORDOR ENGINEERING DESIGN GROUP Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XIAMEN HORDOR ENGINEERING DESIGN GROUP Co Ltd filed Critical XIAMEN HORDOR ENGINEERING DESIGN GROUP Co Ltd
Priority to CN2010101866817A priority Critical patent/CN101851962B/zh
Publication of CN101851962A publication Critical patent/CN101851962A/zh
Application granted granted Critical
Publication of CN101851962B publication Critical patent/CN101851962B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

框架结构抗连续倒塌的设计方法,涉及建筑结构设计方法。提供一种简便易行、可靠性高的框架结构抗连续倒塌的设计方法,包括地震作用抗连续倒塌的设计方法和人为事故抗连续倒塌的设计方法。采用有限单元法,根据框架结构倒塌的特点,考虑材料非线性和大位移情况下几何非线性的影响,对平面框架进行静力非线性倒塌的分析计算;进行前述两类连续倒塌的抗倒塌分析,提出与中国设计规范背景相适宜、具有工程应用可操作性的抗连续倒塌设计方法,包括地震作用抗连续倒塌的设计方法和人为事故抗连续倒塌的设计方法。

Description

一种提升建筑框架人为事故抗连续倒塌能力的方法
技术领域
本发明涉及建筑结构设计方法,尤其是涉及人为事故框架结构抗连续倒塌的设计方法。
背景技术
结构的连续倒塌系指意外荷载造成结构的局部破坏,并引发连锁反应导致破坏向结构的其它部分扩散,最终使结构主体丧失承载力,造成结构的大范围坍塌,一般来说,如果结构的最终破坏状态与初始破坏不成比例,即可称之为连续倒塌,究其原因可以归结为两类:第一类是由于地震作用,引起的连续倒塌。第二类是由于撞击、爆炸等偶然荷载超载,人为事故造成的连续倒塌。目前,建筑结构连续倒塌的现象时有发生,在国内外的设计规范中虽然作了相关的抗倒塌要求,但是仅为指导性的、概念性的要求,而没有具体直接实施的设计方法。因此仅采用常规的建筑结构设计方法,无法实现抗连续倒塌的性能设计。
公开号为CN101260691的发明专利申请公开一种抗倒塌柱顶部分滑移钢筋混凝土框架结构,该框架结构的一个或多个节点的下方为柱顶滑移柱,位于所述节点上方的上柱的下端和梁固结形成节点区,柱顶滑移柱的上端与节点区之间留有水平缝,所述水平缝设置有滑移填充材料,所述柱顶滑移柱的下端与相邻节点固结在一起。在滑移材料摩擦系数很小的情况下,柱顶滑移柱将主要承受上部结构传来的轴力,而很少承受弯矩和剪力。
公告号为CN1558981的发明专利提供一种柱-梁式建筑框架结构,其中柱与梁通过柱环相互连接以分散和分担所有的横向载荷,所述柱环在柱和梁之间的连接节点处环绕着柱。各柱环包括内部部件和外部部件,所述部件在框架施工期间装配并由重力咬合在一起,并且还为横向载荷提供一定的瞬时阻力矩。拉力螺栓及螺母组件将内、外柱环部件锁定在一起,并且当上述组件安装到位,柱环(围绕在梁周围)可将梁力矩荷载作为多位置角向分布的压力荷载传递至柱的不同侧面区域。
发明内容
本发明的目的是提供一种简便易行、可靠性高的框架结构抗连续倒塌的设计方法,包括地震作用框架结构抗连续倒塌的设计方法和人为事故框架结构抗连续倒塌的设计方法。
本发明采用有限单元法,根据框架结构倒塌的特点,考虑材料非线性和大位移情况下几何非线性的影响,对平面框架进行静力非线性倒塌的分析计算;进行前述两类连续倒塌的抗倒塌分析,提出与中国设计规范背景相适宜、具有工程应用可操作性的抗连续倒塌设计方法。
地震作用的连续倒塌,属水平方向的倒塌分析。采用基于性能抗震设计方法,运用静力非线性有限元倒塌分析方法,分析框架结构大震作用下的破坏机理,判断结构是否会发生连续倒塌。若结构发生连续倒塌,则通过中震性能设计方法,根据不用的性能目标确定主要受力构件(框架梁及框架柱)按中震弹性或中震不屈服设计,寻求经济合理的抗倒塌加强措施。
地震作用框架结构抗连续倒塌的设计方法,包括以下步骤:
1)先进行常规设计,得到框架初始模型;
2)运用静力非线性有限元倒塌分析方法对步骤1)所得的框架初始模型进行框架大震抗倒塌设计分析计算,材料强度取标准值;
3)根据步骤2)的计算结果,判定框架初始模型是否满足“小震不坏、中震可修、大震不倒”的设防目标;
4)对不能满足设防目标的框架采用基于性能抗震设计方法,选用适宜的结构抗震性能目标进行性能设计;
5)重复步骤3),直至框架满足“大震不倒”的设防目标;
6)结束计算;
7)根据步骤5)满足“大震不倒”的计算结构进行框架的构件设计,完成设计。
在步骤2)中,所述对初始模型进行大震作用倒塌机理分析计算,是运用静力非线性有限元倒塌分析,包括以下计算步骤:
(1)收集并建立数据计算参数信息,当考虑地震荷载时,需设定集中质量个数、集中质量大小、结点号、增量数、组合系数、特征周期和地震影响系数最大值,通过计算得出所有的计算数据;所述计算参数信息包括:总信息;结点信息;杆件信息;截面信息(如矩形、型钢矩形、圆形截面、圆形钢管截面等);约束信息;荷载信息(用增量法计算,含增量数,还有组合系数);
(2)如果考虑地震荷载,计算自振周期与地震侧向力分布,得出结构的基本周期,水平地震力及作用的结点号;
(3)先确定加载次序,第1次加恒荷载,第2次加活荷载,第3次加地震荷载,第4次加风荷载,再确定加载分级,对于每次加载可以人为确定加载级数;
(4)对于每一次加载,依上一次加载计算循环所得的杆件的塑性铰分布,按杆件有限元方法,计算加载所产生的结点位移和杆端内力,同时累加到总的结点位移和杆端内力中,对于第1次加载时,无塑性铰,轴力为零;记录荷载与给定方向位移间的关系曲线,给定方向位移的刚度/初始刚度小于给定值,通常为初始的刚度的1%或1‰,停止计算,认为结构倒塌;
(5)根据步骤(4)中的杆端内力,计算塑性铰,在步骤(4)中的轴力N作用下,杆件的极限弯矩Mu;若在步骤(4)中的杆端弯矩M大于极限弯矩Mu,则在该杆端设置一个塑性铰,杆端弯矩M在以后的加载中保持不变;根据在步骤(4)中的轴力N和本步骤中所得的塑性铰分布,得出考虑剪切变形和                                                
Figure 363182DEST_PATH_IMAGE001
效应的单元刚度矩阵,以供下一加载计算所用;
(6)重复步骤(4)和(5),直至加完全部荷载,或达到步骤(4)中结构倒塌的条件;
(7)输出给定方向的位移-荷载的关系曲线、塑性铰出现次序图、结构的弯矩图、剪力图、轴力图、单元编号和结点编号,计算结束。
在步骤4)中,所述性能设计,可针对框架具体的薄弱环节考虑框架整体中震不屈服、框架柱中震不屈服、框架整体中震弹性或框架柱中震弹性等不同的性能目标,对提高性能的框架设计进行计算,得出框架的构件的配筋结果,然后进行大震作用倒塌机理分析。
人为事故的连续倒塌,采用竖向的倒塌分析。采用拆除构件方法,模拟结构的初始破坏,运用静力非线性有限元倒塌分析计算拆除后的剩余结构倒塌破坏机理分析, 判断结构是否会发生连续倒塌。
人为事故框架结构抗连续倒塌的设计方法包括以下步骤:
1)先进行常规设计,得到框架初始模型;
2)采用拆除构件法沿建筑外围护对结构的长边中柱、短边中柱及角柱(墙)均分别逐一地拆除,作为框架倒塌性能分析的初始模型,运用静力非线性有限元倒塌分析方法对初始模型进行分析计算,材料强度取标准值;
3)根据计算结果判定框架初始模型是否满足结构储备,若冗余因子 R≥1,则结构满足抗连续倒塌能力;若冗余因子R<1,则结构会发生连续倒塌,结构需要进行抗倒塌加强设计;所述冗余因子 R为R=Li/Ld,式中Li为对应于结构倒塌状态的极限承载能倒塌荷载,Ld为设计恒载标准值;
4)对冗余因子R<1的结构,通过转变受力途径法在拆柱的相邻层或结构顶层设转换梁(加强梁)托住或吊住剩余结构的荷载,按单跨铰接或固接设计加强梁的加强配筋方案,对于提高性能的框架设计进行计算,得出框架的构件的配筋结果,然后进行倒塌机理分析计算;
5)重复步骤3),直至框架满足储备冗余因子 R≥1,结束计算;
6)根据步骤5)的计算结构进行框架的构件设计,完成设计。
在步骤2)中,所述对初始模型进行分析计算,是运用静力非线性有限元倒塌分析计算,包括以下计算步骤:
(1)收集并建立数据计算参数信息,当考虑地震荷载时,需设定集中质量个数、集中质量大小、结点号、增量数、组合系数、特征周期和地震影响系数最大值,通过计算得出所有的计算数据;所述计算参数信息包括:总信息;结点信息;杆件信息;截面信息(如矩形、型钢矩形、圆形截面、圆形钢管截面等);约束信息;荷载信息(用增量法计算,含增量数,还有组合系数);
(2)如果考虑地震荷载,计算自振周期与地震侧向力分布,得出结构的基本周期,水平地震力及作用的结点号;
(3)先确定加载次序,第1次加恒荷载,第2次加活荷载,第3次加地震荷载,第4次加风荷载;再确定加载分级,对于每次加载可以人为确定加载级数;
(4)对于每一级加载,依上一级加载计算循环所得的杆件的塑性铰分布,按杆件有限元方法,计算加载所产生的结点位移和杆端内力,同时累加到总的结点位移和杆端内力中,对于第1次加载时,无塑性铰,轴力为零;记录荷载与给定方向位移间的关系曲线,给定方向位移的刚度/初始刚度小于给定值,通常为初始的刚度的1%或1‰,停止计算,认为结构倒塌;
(5)根据步骤(4)中的杆端内力,计算塑性铰,在步骤(4)中的轴力N作用下,杆件的极限弯矩Mu;如果在步骤(4)中的杆端弯矩M大于极限弯矩Mu,则在该杆端设置一个塑性铰,杆端弯矩M在以后的加载中保持不变;根据在步骤(4)中的轴力N和本步骤中所得的塑性铰分布,得出考虑剪切变形和
Figure 205236DEST_PATH_IMAGE001
效应的单元刚度矩阵,以供下一加载计算所用;
(6)重复步骤(4)和(5),直至加完全部荷载,或达到步骤(4)中结构倒塌的条件;
(7)输出结构是否倒塌,结构的总结点位移和杆端内力,给定方向位移—荷载(kN)的关系,塑性铰出现次序;
(8)输出给定方向的位移-荷载的关系曲线、塑性铰出现次序图、结构的弯矩图、剪力图、轴力图、单元编号和结点编号,计算结束。
与现有设计方法比较,本发明的突出优点在于:
1)可自动生成荷载-位移曲线,给出塑性铰的生成顺序图。用于地震作用倒塌分析,可以直观分析小震、中震、大震全过程框架的屈服机理,便于中震及大震阶段的定量分析,使目前的抗震措施的可靠性得予计算评价;用于偶然荷载倒塌分析,可以验证抗倒塌措施的有效性,能分别计算人为事故结构倒塌及水平地震作用的结构倒塌,实现水平及竖向荷载的多向量倒塌计算分析。另外,可将对初始模型进行分析计算的各步骤事先编制为计算软件,通过计算软件能快速提高设计效率。
2)可利用目前常用设计软件SATEW先进行常规设计,所得到的结果数据可用于进行框架结构抗倒塌性能分析。这样便于工程技术人员的掌握应用及推广,从而使抗倒塌设计从概念及科研阶段向设计应用阶段推进。
3)本发明设计方法简便易行,准确性和可靠性较高。
附图说明
   图1为本发明实施例1及实施例2的初始模型框架简图。图1中长度单位为mm。
   图2为本发明实施例1及实施例2的初始模型框架配筋包络图,钢筋面积单位为cm2
   图3为本发明实施例1运用步骤2)得出的框架给定方向的位移-荷载的关系曲线图。横坐标为位移(mm),纵坐标为荷载(KN)。图3中A点:表示分级施加水平地震荷载至相当于地震影响系数amax=0.12即小震阶段,框架顶点对应的水平位移值及水平荷载值。结构呈弹性;B点:表示分级施加水平地震荷载至相当于地震影响系数amax=0.34即中震阶段,框架顶点对应的水平位移值及水平荷载值,结构呈塑性;C点:表示分级施加水平地震荷载至相当于地震影响系数amax=0.36即中震阶段,框架顶点对应的水平位移值及水平荷载值,结构倒塌。
图4为本发明实施例1运用步骤2)得出的框架塑性铰顺序图。图4中数值表示塑性铰顺序号。
图5为本发明实施例1基于表1中抗倒塌设计方案1运用步骤2)得出的框架塑性铰顺序图,图5中数值表示塑性铰顺序号。
图6为本发明实施例1基于表1中抗倒塌设计方案2运用步骤2)得出的框架塑性铰顺序图,图6中数值表示塑性铰顺序号。 
图7为本发明实施例1基于表1中抗倒塌设计方案3运用步骤2)得出的框架塑性铰顺序图,图7中数值表示塑性铰顺序号。
图8为本发明实施例2运用步骤2)得出的给定方向的位移-荷载的关系曲线图。横坐标为位移(mm),纵坐标为荷载(KN)。图8中A点:表示分级施加竖向荷载至30级,相当于0.3DL(恒载)时,结构倒塌破坏。
图9为本发明实施例2运用步骤2)得出的框架塑性铰顺序图。图9中数值表示塑性铰顺序号。
图10为本发明实施例2按加强方案所进行的加强梁的计算简图。图10中各图的长度单位为mm,荷载单位为KN,KN/M,其中a为两端铰接加强梁简图;b为两端固接加强梁简图;c为底层加强梁荷载简图;d为顶层加强梁荷载简图。
具体实施方式
实施例1(抗地震作用连续倒塌的设计)
实施例1为对某学校建筑进行框架设计,该校所在地区的抗震设防烈度为七度,设计基本地震加速度0.15g,设计地震分组为第 1 组,建筑抗震设防类别为乙类,建筑结构安全等级为二级。下面是具体设计步骤:
1)进行常规结构计算分析,得到框架简图(如图1所示)及配筋包络图(如图2所示)。
2)运用静力非线性有限元倒塌分析方法对框架初始模型进行大震倒塌分析,荷载组合考虑“1.0恒载 + 0.50 活载工况 +  1.0水平地震”,材料强度取标准值,考虑大震时结构刚度削弱,周期延长系数取1.35。计算结果体现如图3及图4所示。
3)根据步骤2)计算结果结构判定框架初始模型是否满足“小震不坏、中震可修、大震不倒”的设防目标。从图3原结构顶点水平位移-荷载曲线图可见,原结构在相当于水平地震影响系数最大值amax=0.12小震(加载增量数n=40)时,结构基本呈弹性;图4“原结构塑性铰出现顺序图”也体现了,当加载加载增量数n=65时,在杆件22节点10出现第一个塑性铰,结构抗震性能达到“小震不坏”的设防水准。原结构在相当于水平地震影响系数最大值amax= 0.34中震(加载增量数n=88)时,柱端塑性铰仅占节点总数1.4%,框架结构呈现理想的梁铰破坏机制,不存在明显的结构薄弱层。梁损坏率为40%,柱损坏率约为11.4%,框架主要受力构件损坏率大于50%,不能实现中震结构抗震性能水准第4水准的要求,即结构宏观损坏程度中度损坏,仅需采取安全措施经过修理、适当加固后可继续使用的性能要求。因此原结构抗震性能不满足“中震可修”的设防水准。原结构水平地震作用逐步加大,当水平地震影响系数最大值达到amax=0.36时,结构受力构件塑性铰数量有22个增加到33个,当加载增量数= 99时,出现底层边柱柱脚塑性铰(铰32及铰33),结构成为不稳定的机构而倒塌。因此原结构抗震性能远不满足“大震不倒”的设防水准。
4)对不能满足设防目标的结构,采用基于性能抗震设计方法选用适宜的结构抗震性能目标,进行性能设计。为了使框架结构能达到中震可修、大震不倒的设防目标,拟采取基于性能的中震设计方法进行结构加强,第一种按照中震弹性设计,第二种是按照中震不屈服设计。分别设计了3种分析方案实现中震性能设计的计算分析。综合归纳各方案分别按步骤2)进行三个方案的倒塌计算。
表1  抗倒塌设计方案
Figure 662762DEST_PATH_IMAGE002
表1中β为相对于小震的放大系数。
5)运用步骤2)进行倒塌分析计算,结果见图5~7,结果分析见结构性能目标评价表(表2)。
由表2可见,方案1:满足小震不坏、中震可修,但是不满足大震不倒;方案2及方案3:满足小震不坏、中震可修、大震不倒。
6)结束计算。
7)取步骤5)满足“大震不倒”的结果进行框架设计,即完成抗倒塌设计。
表2
Figure 477134DEST_PATH_IMAGE003
实施例2(抗人为事故连续倒塌的设计)
实施例2为对某学校加固设计,所在地区的抗震设防烈度为七度,设计基本地震加速度0.15g,设计地震分组为第 1 组,建筑抗震设防类别为乙类,建筑结构安全等级为二级。其框架简图如图1。
1)进行常规结构计算分析,得到框架简图(如图1所示)及配筋包络图(如图2所示)。
2)拆除边柱的得到倒塌分析初始模型,运用静力非线性有限元倒塌分析方法对框架拆除边柱倒塌分析初始模型进行分析计算。荷载组合考虑1.0恒载+0.5活载,荷载分项系数均取1.0,活载组合系数取0.5,材料强度取标准值。得出计算结果图8所示的结构顶点水平位移-荷载曲线,及如图9所示的结构塑性铰顺序图。
3)根据步骤2)倒塌分析计算结果,判定框架拆除边柱倒塌分析初始模型是否满足结构储备冗余因子 R≥1的要求,判断框架的抗倒塌能力。
计算结果显示拆除中柱的剩余结构在竖向荷载分级加载到相当0.3DL(恒载)时,结构倒塌破坏,图9塑性铰发展规律基本沿顶层往下方向开展直至加载至最后加载增量数=  30时抽柱位置全部倒塌,结构储备冗余因子R=0.30<1,结构因不能承受结构自重发生连续倒塌。
4)对R<1的结构,通过转变受力途径法在拆柱的相邻层或结构顶层设转换梁(加强梁)托住或吊住剩余结构的荷载,按单跨铰接或固接设计加强梁的加强配筋方案。
在失效中柱上方的底层(或顶层)框架梁合并为一跨,按铰接或固接设计加强梁的加强配筋方案,加强梁的计算简图如图10所示,按两端铰接单跨梁计算时,两端支座断面构造配筋取跨中配筋的1/3。
加强方案1:在底层设转换梁(或加强梁)
① 按两端铰接的单跨梁计算其跨中截面配筋;
② 按两端固接的单跨梁计算其跨及两端截面配筋。
方案2:在顶层设转换梁(或加强梁)
①按两端铰接的单跨梁计算其跨中截面配筋;
②按两端固接的单跨梁计算其跨及两端截面配筋。
方案3:在顶层底层同时设转换梁(或加强梁)
①均按两端铰接的单跨梁计算其跨中截面配筋;
②均按两端固接的单跨梁计算其跨及两端截面配筋;
③顶层按两端铰接的、底层按两端固接的单跨梁其跨及两端截面配筋;
④顶层按两端固接的、底层按两端铰接的单跨梁其跨及两端截面配筋。
框架结构倒塌性能评价结果见表3。
5)表3计算结果取R≥1的合理方案进行框架结构构件设计,完成抗倒塌设计。
表3
Figure 860449DEST_PATH_IMAGE004

Claims (1)

1.一种提升建筑框架人为事故抗连续倒塌能力的方法,其特征在于包括以下步骤:
1)先进行常规设计,得到框架初始模型;
2)采用拆除构件法沿建筑外围护对结构的长边中柱、短边中柱及角柱或墙均分别逐一拆除,作为框架倒塌性能分析的初始模型,运用静力非线性有限元倒塌分析方法对初始模型进行分析计算,材料强度取标准值;
3)根据计算结果判定框架初始模型是否满足结构储备,若冗余因子 R≥1,则结构满足抗连续倒塌能力;若冗余因子R<1,则结构会发生连续倒塌,结构需要进行抗倒塌加强设计;所述冗余因子 R为R=Li/Ld,式中Li为对应于结构倒塌状态的极限承载能倒塌荷载,Ld为设计恒载标准值;
4)对冗余因子R<1的结构,通过转变受力途径法在拆柱的相邻层或结构顶层设转换梁或加强梁托住或吊住剩余结构的荷载,按单跨铰接或固接设计加强梁的加强配筋方案,对于提高性能的框架设计进行计算,得出框架的构件的配筋结果,然后进行倒塌机理分析计算;
5)重复步骤3),直至框架满足储备冗余因子 R≥1,结束计算;
6)根据步骤5)的计算结构进行框架的构件设计,完成设计。
CN2010101866817A 2010-05-26 2010-05-26 一种提升建筑框架人为事故抗连续倒塌能力的方法 Expired - Fee Related CN101851962B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101866817A CN101851962B (zh) 2010-05-26 2010-05-26 一种提升建筑框架人为事故抗连续倒塌能力的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101866817A CN101851962B (zh) 2010-05-26 2010-05-26 一种提升建筑框架人为事故抗连续倒塌能力的方法

Publications (2)

Publication Number Publication Date
CN101851962A CN101851962A (zh) 2010-10-06
CN101851962B true CN101851962B (zh) 2012-07-04

Family

ID=42803630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101866817A Expired - Fee Related CN101851962B (zh) 2010-05-26 2010-05-26 一种提升建筑框架人为事故抗连续倒塌能力的方法

Country Status (1)

Country Link
CN (1) CN101851962B (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102787676B (zh) * 2011-05-20 2014-07-16 青岛理工大学 工程结构多目标性能化抗震设计方法
CN102385663B (zh) * 2011-08-22 2014-05-07 天津大学 一种高层钢框架结构的地震倒塌分析方法
CN103161234B (zh) * 2011-12-15 2015-05-20 青岛理工大学 工程结构多级设防烈度下的性能化抗震设计方法
CN102587492B (zh) * 2012-03-19 2014-03-26 江苏省电力设计院 格构式框架结构初步设计的简化方法
CN102930086B (zh) * 2012-10-18 2015-02-25 东南大学 基于抽柱法的带断裂钢框架连续倒塌分析方法
JP6404231B2 (ja) * 2012-12-19 2018-10-10 パトコ リミテッド ライアビリティ カンパニーPatco, Llc 標準構造部材を使用する方法及びシステム
CN103924663B (zh) * 2014-03-21 2016-04-13 北京工业大学 一种提高rc框架结构抗连续倒塌能力的设计方法
CN104112054A (zh) * 2014-08-04 2014-10-22 中船第九设计研究院工程有限公司 一种既有构建筑物抗倒塌能力的数值评估方法
CN104213635B (zh) * 2014-08-27 2015-12-09 广东省建筑设计研究院 建筑体系张弦结构中预应力索失效下的防连续倒塌设计方法
CN105912800B (zh) * 2016-04-27 2018-12-18 重庆大学 低层建筑全装配式框架的设计方法
CN106284642B (zh) * 2016-09-13 2018-05-08 同济大学 运用颗粒阻尼技术提升结构抗倒塌能力的优化设计方法
CN106407548B (zh) * 2016-09-13 2019-06-11 同济大学 一种钢筋混凝土剪力墙结构抗倒塌优化设计方法
CN107423465B (zh) * 2017-04-07 2020-07-07 福州大学 一种地震作用下多层rc框架结构倒塌分析方法
CN108509688B (zh) * 2018-03-08 2021-09-10 中船第九设计研究院工程有限公司 基于p-m承载力曲线的结构件重要性系数计算方法
CN110485612B (zh) * 2018-05-21 2021-12-21 深圳市建筑设计研究总院有限公司 一种楼屋盖结构的固定方法及实现该固定方法的装置
CN109299540A (zh) * 2018-09-25 2019-02-01 重庆大学 基于刚体准则的平面框架结构静力非线性分析方法
CN112541249A (zh) * 2019-09-23 2021-03-23 深圳市建筑设计研究总院有限公司 一种多层框架结构的逐层组装逐层预内力及其计算方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005316645A (ja) * 2004-04-28 2005-11-10 Hironori Nagai 建築構造物の構造設計方法、そのプログラム、及びそのプログラムを格納した記録媒体

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005316645A (ja) * 2004-04-28 2005-11-10 Hironori Nagai 建築構造物の構造設計方法、そのプログラム、及びそのプログラムを格納した記録媒体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
梁益,陆新征,李易,叶列平,江见鲸.楼板对结构抗连续倒塌能力的影响.《四川建筑科学研究》.2010,第36卷(第2期),5-10. *
陆新征,李 易,叶列平,马一飞,梁 益.钢筋混凝土框架结构抗连续倒塌设计方法的研究.《工程力学》.2008,第25卷150-157. *

Also Published As

Publication number Publication date
CN101851962A (zh) 2010-10-06

Similar Documents

Publication Publication Date Title
CN101851962B (zh) 一种提升建筑框架人为事故抗连续倒塌能力的方法
Tian et al. Seismic behavior of K-shaped eccentrically braced frames with high-strength steel: Shaking table testing and FEM analysis
Poursadrollah et al. Preliminary study on the seismic performance of hybrid steel structures with truss lightweight girders and plug-and-play connections
Vayas et al. Innovative dissipative (INERD) pin connections for seismic resistant braced frames
Iwata Applications-design of buckling restrained braces in Japan
Rahman et al. Effect of column base strength on steel portal frames in fire
CN106499240B (zh) 具有多级屈曲强度和定位金属橡胶耗能环的套筒式防屈曲支撑
Baetu et al. Nonlinear finite element analysis of reinforced concrete slit walls with ANSYS (I)
CN106709199A (zh) 基于层间位移的抗震鲁棒性方法
Chen et al. New replaceable coupling beams for shear wall structures
Naeim et al. Performance based seismic engineering
Rahai et al. Performance evaluation and strengthening of concrete structures with composite bracing members
Ding et al. Seismic performance of high-strength short concrete column with high-strength stirrups constraints
Elghazouli et al. Seismic design solutions for connections to tubular members
Gholipour et al. The use of outrigger system in steel plate shear wall structures
Haeri et al. Evaluating the fragility curve in steel–concrete structure undergoing seismic progressive collapse by Finite Element Method
He et al. Research on static properties and stability of high-rise tubular 3D parking structure with hoop stories
Cheng et al. Optimum structural design for simultaneous multicomponent static and dynamic inputs
Kumar et al. Seismic performance of bundled tube structures in seismic zone iv & zone v of India
Băetu et al. NONLINEAR FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE SLIT WALLS WITH ANSYS (I)
D’Aniello et al. Seismic behaviour of dual steel concentric braced frames
Lee et al. Performance based seismic design of a 75 story buckling restrained slender steel plate shear wall tower
CN203113846U (zh) 一种火力发电厂混凝土结构主厂房结构
Natarajan et al. A Review on Analysis and Design of Shear Walls in High Rise Irregular Building
Hedayat et al. Assessment of an existing RC building before and after strengthening using nonlinear static procedure and incremental dynamic analysis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP03 Change of name, title or address

Address after: Two road yasumine Huli District of Xiamen city in Fujian province 361000 52, 309 to 313 units

Patentee after: XIAMEN HORDOR ARCHITECTURE & ENGINEERING DESIGN GROUP CO., LTD.

Address before: 361004 Fujian Province, Siming District of Xiamen City Lake Road Xinle building on the third floor to the seven floor

Patentee before: Xiamen Hordor Engineering Design Group Co., Ltd.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120704

Termination date: 20180526