CN101847248A - Method for evaluating service function of wetland ecosystem - Google Patents
Method for evaluating service function of wetland ecosystem Download PDFInfo
- Publication number
- CN101847248A CN101847248A CN201010156728A CN201010156728A CN101847248A CN 101847248 A CN101847248 A CN 101847248A CN 201010156728 A CN201010156728 A CN 201010156728A CN 201010156728 A CN201010156728 A CN 201010156728A CN 101847248 A CN101847248 A CN 101847248A
- Authority
- CN
- China
- Prior art keywords
- wetland
- function
- evaluating
- service function
- evaluation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000011156 evaluation Methods 0.000 claims abstract description 45
- 239000011159 matrix material Substances 0.000 claims abstract description 9
- 238000004458 analytical method Methods 0.000 claims abstract description 3
- 238000012544 monitoring process Methods 0.000 abstract description 2
- 238000012163 sequencing technique Methods 0.000 abstract 2
- 238000011835 investigation Methods 0.000 abstract 1
- 230000008901 benefit Effects 0.000 description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000011160 research Methods 0.000 description 6
- 230000007613 environmental effect Effects 0.000 description 5
- 239000003513 alkali Substances 0.000 description 3
- 230000003628 erosive effect Effects 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 230000000593 degrading effect Effects 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 238000013077 scoring method Methods 0.000 description 2
- 238000004162 soil erosion Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000006424 Flood reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000009916 joint effect Effects 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000012502 risk assessment Methods 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种服务功能评价的方法。The invention relates to a method for evaluating service functions.
背景技术Background technique
湿地作为地球之肾,具有补给水源、均化洪水、调节气候、降解污染物、提供动植物栖息地、提供资源和休闲观光场所等生态环境与社会服务功能,是人类共同的财富,与森林、海洋并称为地球上三大生态系统。As the kidney of the earth, wetlands have ecological environment and social service functions such as supplying water sources, equalizing floods, regulating climate, degrading pollutants, providing animal and plant habitats, providing resources and leisure and sightseeing places, and are the common wealth of mankind. The ocean is one of the three major ecosystems on Earth.
我国湿地总面积为3848.55万hm2,居亚洲第一位,世界第四位。但由于人们对湿地生态功能认识水平的局限和对经济效益的单纯追求,长期以来在围垦、基建占用、环境污染、过度捕猎、泥沙淤积、不合理水利工程建设等诸多因素的共同作用下,湿地资源遭受了严重的破坏,使湿地正以极快的速度在消失、破坏和退化,湿地资源保护所面临的任务非常艰巨。因此开展湿地生态系统服务功能评价研究,使人们充分认识湿地的重要性,对保护湿地资源,维持区域生态安全具有重要的意义。The total area of wetland in China is 38.4855 million hm 2 , ranking first in Asia and fourth in the world. However, due to the limitation of people's understanding of wetland ecological functions and the simple pursuit of economic benefits, for a long time under the joint action of many factors such as reclamation, infrastructure occupation, environmental pollution, overhunting, sedimentation, unreasonable water conservancy construction, etc., Wetland resources have been seriously damaged, and wetlands are disappearing, destroying and degrading at an extremely fast speed. Wetland resources protection is facing a very difficult task. Therefore, it is of great significance to carry out research on the evaluation of wetland ecosystem service functions to make people fully understand the importance of wetlands, and to protect wetland resources and maintain regional ecological security.
在湿地生态系统功能评价中,Kent等于1990年开发了一种宏观层次上的湿地生态系统功能快速评价技术(WRAP),其目的是评估那些广为人知的湿地功能,它能在野外快速运用。Brinson等人所确立的水文地貌学(HGM)方法具有一定的应用价值,它基于生态学原则和使用参考湿地系统,对湿地系统给以评价。我国近几年也开展了湿地生态系统功能评价,包括湿地生物多样性评价(严承高,2000),湿地生态质量评价(许健民,2001),湿地生态系统累计影响评价(邵成,2001)以及区域生态风险评价(许学工,2001)等几个方面。他们都利用湿地生态系统的生物多样性、稀缺性、代表性、稀有性、自然性、脆弱性等指标。湿地功能评价的指标一般都选择生态指标,而生态指标往往又是以生物指标为主,而湿地植物和动物指标大都是随着湿地水文状况的季节和年际变化而变化的。In the evaluation of wetland ecosystem function, Kent et al. developed a macro-level wetland ecosystem function rapid assessment technique (WRAP) in 1990, the purpose of which is to evaluate those well-known wetland functions, which can be quickly applied in the field. The hydrogeomorphological (HGM) method established by Brinson et al. has certain application value. It evaluates wetland systems based on ecological principles and using reference wetland systems. In recent years, my country has also carried out wetland ecosystem function evaluation, including wetland biodiversity evaluation (Yan Chenggao, 2000), wetland ecological quality evaluation (Xu Jianmin, 2001), wetland ecosystem cumulative impact evaluation (Shao Cheng, 2001) and regional ecological evaluation. Risk assessment (Xu Xuegong, 2001) and several other aspects. They all use indicators of biodiversity, scarcity, representativeness, rarity, naturalness, vulnerability, etc. of wetland ecosystems. Wetland function evaluation indicators generally choose ecological indicators, and ecological indicators are often based on biological indicators, while wetland plant and animal indicators mostly change with the seasonal and interannual changes of wetland hydrological conditions.
湿地生态系统综合服务功能研究一直是湿地研究的一个重要的前瞻领域和优先领域,但是现有的这些评价方法所得到的功能指数不能合并成一个湿地总体功能分数,而无法确定湿地整体功能,但现在还没有找到评价湿地整体功能的令人满意的方法。The research on the comprehensive service function of wetland ecosystem has always been an important prospective field and priority field of wetland research, but the function indexes obtained by these existing evaluation methods cannot be combined into a wetland overall function score, and the overall wetland function cannot be determined, but Satisfactory methods for evaluating the overall function of wetlands have not yet been found.
发明内容Contents of the invention
本发明的目的是为了解决现有的湿地评价方法所得到的功能指数不能合并成一个湿地总体功能分数,而无法确定湿地整体功能的问题,而提供了一种湿地生态系统服务功能评价的方法。The purpose of the present invention is to provide a wetland ecosystem service function evaluation method to solve the problem that the function indexes obtained by the existing wetland evaluation method cannot be combined into a wetland overall function score, and the overall function of the wetland cannot be determined.
本发明一种湿地生态系统服务功能评价的方法按照以下方法进行:采用层次分析的方法,建立层次结构模型,构造出判断矩阵,再结合专家打分法,进行层次单排序和总排序,最后通过一致性检验后即实现了湿地生态系统服务功能评价。A method for evaluating wetland ecosystem service functions in the present invention is carried out according to the following method: adopt the method of hierarchical analysis, establish a hierarchical structure model, construct a judgment matrix, and then combine the expert scoring method to perform single-level sorting and total sorting, and finally pass the unanimous After the performance test, the evaluation of wetland ecosystem service function is realized.
本发明中的建立层次结构由总目标层(A层)、综合评价层(B层)和项目评价层(C层)组成。The establishment hierarchical structure in the present invention is composed of the general target layer (A layer), the comprehensive evaluation layer (B layer) and the item evaluation layer (C layer).
总目标层(A层)是对湿地生态系统功能进行评价;综合评价层(B层)是把湿地的生态系统服务功能分成几个大的方面,用这几大方面功能的非线形相加来反映总目标的功能大小,主要包括湿地环境效益、湿地生态保护效益、湿地资源效益、科学文化效益以及遗产、存在价值。The overall target layer (layer A) is to evaluate the wetland ecosystem function; the comprehensive evaluation layer (layer B) is to divide the ecosystem service function of the wetland into several major aspects, and use the nonlinear summation of the functions of these major aspects to It reflects the function size of the overall goal, mainly including wetland environmental benefits, wetland ecological protection benefits, wetland resource benefits, scientific and cultural benefits, heritage, and existence value.
项目评价层是对综合评价层下分支出来的诸多项目进行评价,主要包括:1、湿地环境效益:均化洪水、补水、调节气候、抗盐碱、抗自然力侵蚀(沙化以及土壤侵蚀)、污染物、营养物的固定与移出;2、湿地生态保护效益:生物的多样性、代表性、生态系统的稳定性、生态系统的完整性;3、湿地资源效益:生物资源、水资源、矿产资源、潜在土地资源;4、科学文化效益:科研及教育用地、休闲旅游、文化价值;5、遗产、存在价值:遗产价值、存在价值。The project evaluation layer is to evaluate many projects branched out from the comprehensive evaluation layer, mainly including: 1. Wetland environmental benefits: equalizing flood, replenishing water, regulating climate, resisting salinity and alkali, resisting natural erosion (desertification and soil erosion), pollution 2. Benefits of wetland ecological protection: biodiversity, representativeness, stability and integrity of ecosystems; 3. Benefits of wetland resources: biological resources, water resources, mineral resources . Potential land resources; 4. Scientific and cultural benefits: land for scientific research and education, leisure tourism, cultural value; 5. Heritage, value of existence: heritage value, value of existence.
本发明的方法以对湿地整体评价为目标,筛选湿地功能评价的指标,构建湿地综合评价的指标体系,对湿地生态系统服务功能进行了评价,从而确定了湿地整体功能,本发明的方法对我国湿地监测及正在进行的湿地调查具有一定的指导意义。The method of the present invention takes the overall evaluation of the wetland as the goal, screens the index of wetland function evaluation, constructs the index system of wetland comprehensive evaluation, and evaluates the service function of the wetland ecosystem, thereby determining the overall function of the wetland. The method of the present invention is beneficial to my country Wetland monitoring and ongoing wetland survey have certain guiding significance.
具体实施方式Detailed ways
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意组合。The technical solution of the present invention is not limited to the specific embodiments listed below, but also includes any combination of the specific embodiments.
具体实施方式一:本实施方式一种湿地生态系统服务功能评价的方法按照以下方法进行:采用层次分析的方法,建立层次结构模型,构造出判断矩阵,再结合专家打分法,进行层次单排序和总排序,最后通过一致性检验后即实现了湿地生态系统服务功能评价。Specific implementation mode 1: In this implementation mode, a method for evaluating wetland ecosystem service functions is carried out according to the following method: using the method of analytic hierarchy process, establishing a hierarchical structure model, constructing a judgment matrix, and then combining with the expert scoring method, performing single-level sorting and After the overall sorting, and finally passing the consistency test, the wetland ecosystem service function evaluation is realized.
本实施方式确定湿地功能评价的指标筛选原则为科学性、全面性、典型性、可操作性和独立性。In this embodiment, the selection principles for determining wetland function evaluation indicators are scientific, comprehensive, typical, operable and independent.
本实施方式建立层次结构由总目标层(A层)、综合评价层(B层)和项目评价层(C层)组成。The hierarchical structure established in this embodiment is composed of the general target layer (A layer), the comprehensive evaluation layer (B layer) and the project evaluation layer (C layer).
总目标层(A层)是对湿地生态系统功能进行评价;综合评价层(B层)是把湿地的生态系统服务功能分成几个大的方面,用这几大方面功能的非线形相加来反映总目标的功能大小,主要包括湿地环境效益、湿地生态保护效益、湿地资源效益、科学文化效益以及遗产、存在价值。The overall target layer (layer A) is to evaluate the wetland ecosystem function; the comprehensive evaluation layer (layer B) is to divide the ecosystem service function of the wetland into several major aspects, and use the nonlinear summation of the functions of these major aspects to It reflects the function size of the overall goal, mainly including wetland environmental benefits, wetland ecological protection benefits, wetland resource benefits, scientific and cultural benefits, heritage, and existence value.
项目评价层是对综合评价层下分支出来的诸多项目进行评价,主要包括:1、湿地环境效益:均化洪水、补水、调节气候、抗盐碱、抗自然力侵蚀(沙化以及土壤侵蚀)、污染物、营养物的固定与移出;2、湿地生态保护效益:生物的多样性、代表性、生态系统的稳定性、生态系统的完整性;3、湿地资源效益:生物资源、水资源、矿产资源、潜在土地资源;4、科学文化效益:科研及教育用地、休闲旅游、文化价值;5、遗产、存在价值:遗产价值、存在价值。The project evaluation layer is to evaluate many projects branched out from the comprehensive evaluation layer, mainly including: 1. Wetland environmental benefits: equalizing flood, replenishing water, regulating climate, resisting salinity and alkali, resisting natural erosion (desertification and soil erosion), pollution 2. Benefits of wetland ecological protection: biodiversity, representativeness, stability and integrity of ecosystems; 3. Benefits of wetland resources: biological resources, water resources, mineral resources . Potential land resources; 4. Scientific and cultural benefits: land for scientific research and education, leisure tourism, cultural value; 5. Heritage, value of existence: heritage value, value of existence.
判断矩阵是层次分析的出发点,而构造判断矩阵是层次分析的关键性一步。Judgment matrix is the starting point of AHP, and constructing judgment matrix is a key step of AHP.
依据专家评议法,经过在matlab6.1软件反复调整,构造判断矩阵如表1所示。According to the expert review method, after repeated adjustments in the matlab6.1 software, the judgment matrix is constructed as shown in Table 1.
表1湿地生态价值评价判断矩阵Table 1 Judgment matrix of wetland ecological value evaluation
表1的矩阵中b12=1/2,表示湿地生态保护效益相对其它效益是最重要的,b13=3,表示湿地资源在各效益中视为重要与不重要之间,而b15=7,表示存在遗产价值相对其它效益是最不重要。通过检验,以上的几个矩阵的CR均小于0.10,因此具有满意的一致性。In the matrix of Table 1, b 12 =1/2 means that the benefits of wetland ecological protection are the most important relative to other benefits; b 13 =3 means that wetland resources are considered to be between important and unimportant in each benefit; and b 15 =7 , indicating that the existence of heritage value is the least important relative to other benefits. Through inspection, the CRs of the above matrices are all less than 0.10, so they have satisfactory consistency.
在确定总排序指标的权重之前,也同样要进行指标的一致性检验。其检验方法为:根据公式 进行计算,若计算结果CR=0.0078<0.10,既可以确定为具有一致性;其中Bk为B层K准则的权值,Cik为层次C指标对层次B,K准则的单排序一致性指标,RIk为层次C指标对层次B,K准则的平均一致性指标。Before determining the weight of the total ranking index, the consistency test of the index should also be carried out. The test method is: according to the formula Carry out the calculation, if the calculation result CR=0.0078<0.10, it can be determined to be consistent; where Bk is the weight value of the K criterion of the B layer, Cik is the single ranking consistency index of the level C index to the level B, K criterion, RIk is the average consistency index of level C index to level B, K criterion.
表2为综合评价层(B层)生态系统服务功能评价层因子及排序,表3为项目评价层(C层)项目评价层因子权重及排序。Table 2 shows the comprehensive evaluation layer (B layer) ecosystem service function evaluation layer factors and rankings, and Table 3 shows the project evaluation layer (C layer) project evaluation layer factor weights and rankings.
表2Table 2
表3 table 3
通过表2和表3可以看出,在湿地效益评价中,湿地生态保护效益>湿地环境效益>湿地资源效益>科学文化效益>存在、遗传价值。从项目评价层中可以看出,重要物种栖息地、生态系统完整性、补水、均化洪水、生物资源等在决定湿地效益方面起着重要作用;生物多样性、代表性、科研及教育用地、湿地水文资源、调节气候、存在价值、潜在土地价值以及休闲旅游等起着稍微重要的作用;最后是抗自然力侵蚀、矿产资源、遗传价值、抗盐碱以及文化价值等。It can be seen from Table 2 and Table 3 that in the evaluation of wetland benefits, wetland ecological protection benefits > wetland environmental benefits > wetland resource benefits > scientific and cultural benefits > existence and genetic value. It can be seen from the project evaluation layer that habitats for important species, ecosystem integrity, water replenishment, flood equalization, and biological resources play an important role in determining wetland benefits; biodiversity, representativeness, land for scientific research and education, Wetland hydrological resources, climate regulation, existence value, potential land value, and leisure tourism play a slightly more important role; the last is resistance to natural erosion, mineral resources, genetic value, salt-alkali resistance, and cultural value.
根据本实施方式的方法对吉林省莫莫格湿地生态系统服务功能进行评价。首先把100分按权重赋予整个湿地生态系统服务功能评价指标体系,重新构造湿地评价指标体系。然后判断湿地所具有的各项功能程度。根据重要程度不同,系数可取0.1、0.3、0.5、0.7、0.9,必要时也可取0.2、0.4、0.6、0.8、1.0。计算湿地综合效益时用系数乘以系数对应的评价因素的分值各分值相加即是该湿地的综合评估值,其中关于C层的项目评价层因子权重及排序如表4所示。According to the method of this embodiment, the ecosystem service function of Momoge Wetland in Jilin Province is evaluated. Firstly, assign 100 points to the whole wetland ecosystem service function evaluation index system according to the weight, and reconstruct the wetland evaluation index system. Then judge the degree of each function of the wetland. Depending on the degree of importance, the coefficients can be 0.1, 0.3, 0.5, 0.7, 0.9, or 0.2, 0.4, 0.6, 0.8, 1.0 if necessary. When calculating the comprehensive benefits of wetlands, multiply the coefficients by the scores of the evaluation factors corresponding to the coefficients and add up the scores to get the comprehensive evaluation value of the wetland. The weights and ordering of the project evaluation layer factors for the C layer are shown in Table 4.
表4Table 4
参照自然保护区综合评价指数分级标准,湿地的综合指数可以分为3个等级:综合评价指数总分>70为一级重要湿地,50-70为二级重要湿地,小于50分为三级重要湿地。从表4中可以看出莫莫格湿地效益综合评价得分为69.18,因此为二级重要湿地。 Referring to the grading standard of the comprehensive evaluation index of nature reserves, the comprehensive index of wetlands can be divided into three grades: the total score of the comprehensive evaluation index > 70 is the first-level important wetland, 50-70 is the second-level important wetland, and less than 50 is the third-level important wetlands. It can be seen from Table 4 that the comprehensive evaluation score of Momoge wetland benefit is 69.18, so it is a secondary important wetland. the
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010156728A CN101847248A (en) | 2010-04-27 | 2010-04-27 | Method for evaluating service function of wetland ecosystem |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010156728A CN101847248A (en) | 2010-04-27 | 2010-04-27 | Method for evaluating service function of wetland ecosystem |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101847248A true CN101847248A (en) | 2010-09-29 |
Family
ID=42771860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010156728A Pending CN101847248A (en) | 2010-04-27 | 2010-04-27 | Method for evaluating service function of wetland ecosystem |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101847248A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108305204A (en) * | 2018-02-12 | 2018-07-20 | 中国科学院东北地理与农业生态研究所 | Wetland Biodiversity effectiveness regional correlation appraisal procedure based on basis of reference |
CN108335053A (en) * | 2018-03-08 | 2018-07-27 | 中国人民解放军61489部队 | A kind of application study type military research Task application evaluation method |
CN110414825A (en) * | 2019-07-23 | 2019-11-05 | 华北水利水电大学 | A water cultural heritage evaluation method |
CN112508415A (en) * | 2020-12-10 | 2021-03-16 | 中国科学院东北地理与农业生态研究所 | Construction method of wetland hydrological communication degree comprehensive evaluation index system |
CN114037273A (en) * | 2021-11-09 | 2022-02-11 | 中国水产科学研究院黄海水产研究所 | Method for evaluating ecological suitability of maintenance type marine ranch |
-
2010
- 2010-04-27 CN CN201010156728A patent/CN101847248A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108305204A (en) * | 2018-02-12 | 2018-07-20 | 中国科学院东北地理与农业生态研究所 | Wetland Biodiversity effectiveness regional correlation appraisal procedure based on basis of reference |
CN108305204B (en) * | 2018-02-12 | 2021-06-18 | 中国科学院东北地理与农业生态研究所 | A regional comparative assessment method for wetland biodiversity conservation effectiveness based on reference benchmarks |
CN108335053A (en) * | 2018-03-08 | 2018-07-27 | 中国人民解放军61489部队 | A kind of application study type military research Task application evaluation method |
CN110414825A (en) * | 2019-07-23 | 2019-11-05 | 华北水利水电大学 | A water cultural heritage evaluation method |
CN112508415A (en) * | 2020-12-10 | 2021-03-16 | 中国科学院东北地理与农业生态研究所 | Construction method of wetland hydrological communication degree comprehensive evaluation index system |
CN114037273A (en) * | 2021-11-09 | 2022-02-11 | 中国水产科学研究院黄海水产研究所 | Method for evaluating ecological suitability of maintenance type marine ranch |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | The spatial and temporal evolution of coordinated ecological and socioeconomic development in the provinces along the Silk Road Economic Belt in China | |
Elliott | The seasonal sensitivity of cyanobacteria and other phytoplankton to changes in flushing rate and water temperature | |
Li et al. | Effects of cascading hydropower dams on the composition, biomass and biological integrity of phytoplankton assemblages in the middle Lancang-Mekong River | |
Rafindadi et al. | The relationship between air pollution, fossil fuel energy consumption, and water resources in the panel of selected Asia-Pacific countries | |
Gao et al. | Landscape ecological security assessment based on projection pursuit in Pearl River Delta | |
Martínez–Solano et al. | Extreme population subdivision throughout a continuous range: phylogeography of Batrachoseps attenuatus (Caudata: Plethodontidae) in western North America | |
CN110851768A (en) | A multi-level fuzzy evaluation method for dammed lakes | |
Shidong et al. | The moderating role of human capital and renewable energy in promoting economic development in G10 economies: Evidence from CUP-FM and CUP-BC methods | |
CN101847248A (en) | Method for evaluating service function of wetland ecosystem | |
Yazdandoost et al. | A new integrated portfolio based water-energy-environment Nexus in wetland catchments | |
Zhang et al. | Identification of priority areas for ecological restoration based on ecological security and landscape elements | |
Pan et al. | Long-term sky islands generate highly divergent lineages of a narrowly distributed stream salamander (Pachyhynobius shangchengensis) in mid-latitude mountains of East Asia | |
Jian-Hua et al. | Fuzzy synthetic evaluation of wetland soil quality degradation: A case study on the Sanjiang Plain, Northeast China | |
Ouyang et al. | Wetland restoration suitability evaluation at the watershed scale-a case study in upstream of the Yongdinghe River | |
Ya-shan et al. | Ecological environmental quality evaluation of Yellow River basin | |
Zhang et al. | Assessing the conjugacy of the marine economy-ecology-society composite system: China’s Case | |
Du et al. | Operating mechanism and set pair analysis model of a sustainable water resources system | |
Zhang et al. | Assessment and Empirical Research on the Suitability of Eco-Tourism Development in Nature Reserves of China: A Multi-Type Comparative Perspective | |
CN112330081A (en) | Watershed treatment effect evaluation method based on water ecological environment function partition unit | |
Ren et al. | Health evaluation of a lake wetland ecosystem based on the TOPSIS method | |
Chen et al. | The cumulative effects of dam project on river ecosystem based on multi-scale ecological network analysis | |
Wang et al. | Study on the Characteristics of Ecological Network and Critical Areas of Ecological Restoration in Hebei-Tianjin Coastal Wetlands | |
CN117668492A (en) | Evaluation method for influence of dam removal of power station on habitat quality based on fish protection | |
Tong et al. | Trend analysis and modeling of nutrient concentrations in a preliminary eutrophic lake in China | |
Pan et al. | Exploring the historical evolution of tourism-environment interaction in protected area: A case study of Mt. Bogda |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20100929 |