CN101841043B - 一种燃料电池用Ru基/Pt肤膜纳米薄膜电极制备方法 - Google Patents

一种燃料电池用Ru基/Pt肤膜纳米薄膜电极制备方法 Download PDF

Info

Publication number
CN101841043B
CN101841043B CN2010101004514A CN201010100451A CN101841043B CN 101841043 B CN101841043 B CN 101841043B CN 2010101004514 A CN2010101004514 A CN 2010101004514A CN 201010100451 A CN201010100451 A CN 201010100451A CN 101841043 B CN101841043 B CN 101841043B
Authority
CN
China
Prior art keywords
film
electrode
nano
skin
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010101004514A
Other languages
English (en)
Other versions
CN101841043A (zh
Inventor
李巧霞
徐群杰
周小金
李金光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Electric Power
State Grid Shanghai Electric Power Co Ltd
Original Assignee
Shanghai University of Electric Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Electric Power filed Critical Shanghai University of Electric Power
Priority to CN2010101004514A priority Critical patent/CN101841043B/zh
Publication of CN101841043A publication Critical patent/CN101841043A/zh
Application granted granted Critical
Publication of CN101841043B publication Critical patent/CN101841043B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Abstract

本发明公开了一种燃料电池用Ru基/Pt肤膜纳米薄膜电极制备方法。即在半圆硅柱反射底面化学镀金,采用两步湿法在金基底上电沉积5~6纳米厚的Ru膜;然后在Ru膜纳米电极上采用欠电位沉积Cu自发置换法覆盖Pt层,重复上述沉积/置换步骤1~4次,即可得到燃料电池用的Ru基/Pt肤纳米薄膜电极。本发明方法制备的Ru基/Pt肤膜纳米薄膜电极的具有超薄的Pt含量及Pt载量可控的特点,另外,自发置换法制备的Ru基/Pt肤纳米薄膜电极,具有催化活性,可应用于现场ATR-SEIRAS研究,获得了明显的吸附物种的比表面红外光谱信号,显示了Pt-Ru催化剂的协同效应。

Description

一种燃料电池用Ru基/Pt肤膜纳米薄膜电极制备方法
技术领域
本发明属薄膜电极制备技术领域,具体涉及一种具有超低Pt含量且对CO和CH3OH有较高的催化活性的Ru基/Pt肤膜纳米薄膜电极的制备方法。该薄膜电极可用于衰减全反射表面增强红外光谱(ATR-SEIRAS)现场研究电催化过程。
背景技术
面向燃料电池催化剂的表面电化学一直是电催化研究的主要内容,其相关研究也从较早的单晶电极为主,逐步向纳米结构的薄膜电极过渡,其驱动力是最终设计研制高活性、低Pt载量的阳极和阴极催化剂[1]。而催化反应是一个表面反应,催化剂体相的大部分催化剂没有被充分利用,造成催化剂的浪费。所以尽管Pt-Ru合金催化剂已经明显改善了催化剂的性能,提高催化剂抗CO中毒的能力,但仍然不能充分提高Pt的利用率,来降低催化剂的成本。基于这个原因,表面修饰的催化剂被提出,例如亚单层Ru修饰的Pt电极(Pt基/Ru)和亚单层Pt修饰的Ru电极(Ru基/Pt)[3],其对CO或甲醇都具有很好的催化活性。其中Ru是较为便宜的金属,表面修饰的Ru基/Pt电极不但充分利用PtRu二元金属的优越性,而且由于Pt只存在于表面,大大提高了Pt的有效利用率,从而降低催化剂的成本。因此探索上述纳米结构薄膜表面的制备、表面增强红外效应及其在电催化研究中的应用,对指导新型高效催化材料的研发具有十分现实意义。
金属的欠电位沉积(Underpotential Deposition)是在异种金属上沉积单原子层的有效方法。根据金属Cu的欠电位沉积现象,在贵金属Au,Ru或Pt上形成Cu单原子层作为模版,然后浸入贵金属Pt的溶液中,利用金属氧化还原平衡电位的差异,通过一次或多次循环过程自发置换溶液中的贵金属物种Pt,即在基底表面上覆盖单层到多层的贵金属原子(简称为自发置换法),这样制备的催化层具有超薄、厚度可控的特点,为研制超低铂含量的催化剂和研究基底金属电子效应影响肤层金属催化特性提供了可能。下图为自发置换法的实验方法原理示意图见图1。
另一方面,表面增强红外光谱(SEIRAS)是一种研究电极界面分子结构信息的重要分析工具。配以衰减全反射(ATR)模式的表面增强红外吸收光谱(ATR-SEIRAS)具有表面信号强、表面选律简单,可避免传统外反射红外吸收光谱(IRAS)面临的问题,如表面信号不够强、电场分布不均匀、传质补充滞后、溶液背景的干扰等。电化学ATR-SEIRAS可方便检测所制备的PtRu膜电极对CO及CH3OH电催化氧化特性。本发明将在红外窗口半圆柱Si反射面上,采用Cai小组提出的两步全湿镀膜法,即先化学镀一Au导电膜,再电沉积Ru膜,然后利用自发置换法制备不同Pt层厚度的Ru基/Pt肤膜,并用于电化学ATR-AEIRAS研究。
发明内容
本发明的目的是为了克服现有Pt-Ru二元催化材料Pt含量高以及无法直接应用于现场ATR-SEIRAS测量的问题,而提供一种可在ATR红外窗口Si基底制备超低Pt含量且具有SEIRA效应的Ru基/Pt肤膜纳米薄膜。
本发明的技术原理
根据自发置换法的原理,以欠电位沉积的Cu单原子层作为模板,通过一次或多次沉积-置换循环,可以在Ru纳米颗粒上覆盖亚单层到数单层的Pt外壳,从而降低催化剂中二元催化剂中Pt的含量,同时兼具Pt-Ru合金催化剂的优点,可以直接应用于现场ATR-SEIRAS研究电催化吸附与反应。
本发明的技术方案
一种燃料电池用Ru基/Pt肤膜纳米薄膜电极制备方法,包括如下制备步骤:
(1)、在半圆硅柱反射底面化学镀金;
(2)、采用两步湿法在金基底上电沉积5~6纳米厚的Ru膜;
(3)、在Ru膜纳米电极上采用欠电位沉积Cu自发置换法覆盖Pt层,即在Ru膜电极上于0.001~0.01M CuSO4+0.1M H2SO4溶液中以0.025V饱和甘汞电极(SCE)欠电位沉积Cu 50~300s,随后迅速加入到0.001~0.01M K2PtCl4+0.1M H2SO4溶液中置换Pt,静置5~15min,重复上述沉积/置换步骤1~4次,即可得到燃料电池用的Ru基/Pt肤纳米薄膜电极。
将上述制备的Ru基/Pt肤纳米薄膜电极组装到光谱电解池上,进行电化学及红外光谱实验。
本发明的有益效果
采用欠电位沉积-自发置换法所制备的Ru基/Pt肤纳米薄膜电极,具有超薄的Pt含量及Pt载量可控的特点,是一种模板制备法。另外,自发置换法制备的Ru基/Pt肤纳米薄膜电极,具有催化活性,可应用于现场ATR-SEIRAS研究,获得了明显的吸附物种的比表面红外光谱信号,显示了Pt-Ru催化剂的协同效应。
附图说明
图1、自发置换法的实验方法原理示意图;
图2、经过不同循环次数的Ru基/Pt肤纳米薄膜电极与纯Ru电极在0.1MHClO4中的循环伏安曲线比较;
图3、自发置换法循环1次的Ru基/Pt肤纳米薄膜电极在饱和CO的0.1M HClO4中的现场红外光谱图;
图4、自发置换法循环2次的Ru基/Pt肤纳米薄膜电极在饱和CO的0.1M HClO4中的现场红外光谱图;
图5、自发置换法循环3次的Ru基/Pt肤纳米薄膜电极在饱和CO的0.1M HClO4中的现场红外光谱图;
图6、自发置换法循环3次的Ru基/Pt肤纳米薄膜电极在不同CH3OH浓度的0.1M HClO4中的循环伏安曲线
具体实施方式
下面结合附图和具体实例对本发明Ru基/Pt肤纳米薄膜电极进一步说明。
实施例1
一种Ru基/Pt肤纳米薄膜工作电极的制备
首先,在半圆硅柱反射底面化学镀金;采用两步湿法可在金基底上电沉积5-6纳米厚的Ru膜;然后在Ru电极上采用自发置换法覆盖Pt层,即在Ru膜电极上于0.005M CuSO4+0.1M H2SO4溶液中以0.025V饱和甘汞电极欠电位沉积Cu 180s,随后迅速加入到0.005M K2PtCl4+0.1MH2SO4溶液中置换Pt,静置10min,以使置换反应完全。
经过不同的欠电位沉积Cu-置换循环可以获得不同Pt载量的PtRu二元纳米薄膜电极。
不同Pt载量的PtRu二元纳米薄膜电极电化学及红外实验:
即在0.1M HCLO4中,控-0.2V电位,通CO 30min(或注入0.5~1.0M CH3OH),扫循环伏安图;
采用多步(或动)电位模式实时测量ATR-SEIRAS光谱。
实验结果如下:
图2是经过不同循环次数的Ru基/Pt肤纳米薄膜电极与纯Ru电极在0.1M HClO4中的循环伏安曲线比较。
从图2中可以看出,随着循环次数增加,其循环伏安曲线上双电层电流明显减小,且位于Ru电极上-0.07V的电流峰逐渐负移,直到在经过三次循环的PtRu-3电极上表现为与Pt相似的H析脱附区的特征。
图3,图4及图5分别为自发置换法循环1,2和3次的Ru基/Pt肤纳米薄膜电极在饱和CO的0.1M HClO4中的现场红外光谱图,参比光谱采于-0.1V 0.1M HClO4空白溶液中。
从图3中可以看到当循环置换发生一次时,只能观察到2025cm-1附近的线式CO的红外吸收峰,和桥式振动峰1804cm-1。根据文献报道,可以将此峰归属为CO在Ru电极表面的吸收峰。表明经过一次循环,Pt沉积的量非常少,CO在其上的吸附强度没有达到检测限。
在图4中可以看出位于2053和2026cm-1两个重叠峰,其强度相差不大。可推知分别归属于CO在Pt位和Ru位的线式振动峰,表明随着随着循环次数的增加,Pt沉积的量逐渐增加。
而在图5中可以看出位于2065cm-1波数的CO线式振动峰,并带有一较弱的肩峰2014cm-1,其归属与前面类似。Pt上CO吸收峰波数的蓝移,从2052到2065cm-1,表明在PtRu-3电极表面已经有较大量的Pt存在。
图6为自发置换法循环3次制备的电极在不同CH3OH浓度的0.1MHClO4中的循环伏安曲线(50mV s-1)。
从图6中可以看到,加入甲醇后,甲醇氧化电流明显增大,表明所制的PtRu膜对甲醇有催化作用。
以上所述内容仅为本发明构思下的基本说明,而依据本发明的技术方案所作的任何等效变换,均应属于本发明的保护范围。

Claims (2)

1.一种燃料电池用Ru基/Pt肤膜纳米薄膜电极制备方法,其特征在于包括如下制备步骤:
(1)、在半圆柱硅反射底面化学镀金;
(2)、采用两步湿法在金基底上电沉积5~6纳米厚的Ru膜;
(3)、在Ru膜纳米电极上采用欠电位沉积Cu自发置换法覆盖Pt层,即在Ru膜电极上于0.001~0.01M CuSO4+0.1M H2SO4溶液中以0.025V饱和甘汞电极欠电位沉积Cu 50~300s进行沉积Cu,随后迅速加入到0.001~0.01M K2PtCl4+0.1M H2SO4溶液中置换Pt,静置5~15min,重复上述沉积/置换步骤1~4次,即可得到燃料电池用的Ru基/Pt肤纳米薄膜电极。
2.一种如权利要求1所述的一种燃料电池用Ru基/Pt肤膜纳米薄膜电极制备方法,其特征在于步骤(3)中采用欠电位沉积Cu自发置换法覆盖Pt层,优选即在Ru膜电极上于0.005M CuSO4+0.1M H2SO4溶液中以0.025V饱和甘汞电极欠电位沉积Cu 200s,随后迅速加入到0.005M K2PtCl4+0.1M H2SO4溶液中置换Pt,静置15min,重复上述沉积/置换步骤3次。
CN2010101004514A 2010-01-25 2010-01-25 一种燃料电池用Ru基/Pt肤膜纳米薄膜电极制备方法 Active CN101841043B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101004514A CN101841043B (zh) 2010-01-25 2010-01-25 一种燃料电池用Ru基/Pt肤膜纳米薄膜电极制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101004514A CN101841043B (zh) 2010-01-25 2010-01-25 一种燃料电池用Ru基/Pt肤膜纳米薄膜电极制备方法

Publications (2)

Publication Number Publication Date
CN101841043A CN101841043A (zh) 2010-09-22
CN101841043B true CN101841043B (zh) 2012-05-23

Family

ID=42744271

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101004514A Active CN101841043B (zh) 2010-01-25 2010-01-25 一种燃料电池用Ru基/Pt肤膜纳米薄膜电极制备方法

Country Status (1)

Country Link
CN (1) CN101841043B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103556197B (zh) * 2013-10-31 2016-04-06 陕西师范大学 柔性卷曲导电衬底上制备单原子层厚度金属薄膜的方法
CN105413679B (zh) * 2015-11-05 2017-08-15 湖南工业大学 一种石墨烯‑二维贵金属原子簇复合材料的制备方法
CN107287596A (zh) * 2017-06-16 2017-10-24 安徽师范大学 一种Au@Pt核壳结构纳米电极、制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1819004A1 (en) * 2004-11-25 2007-08-15 Ricoh Company, Ltd. Electrode catalyst, method for preparation thereof, direct alcohol fuel cell
CN101038969A (zh) * 2007-04-19 2007-09-19 复旦大学 具有高催化活性的钌核铂壳纳米薄膜的制备方法
CN101359744A (zh) * 2008-09-08 2009-02-04 重庆大学 一种间接电沉积制备碳载超低铂催化电极的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1819004A1 (en) * 2004-11-25 2007-08-15 Ricoh Company, Ltd. Electrode catalyst, method for preparation thereof, direct alcohol fuel cell
CN101038969A (zh) * 2007-04-19 2007-09-19 复旦大学 具有高催化活性的钌核铂壳纳米薄膜的制备方法
CN101359744A (zh) * 2008-09-08 2009-02-04 重庆大学 一种间接电沉积制备碳载超低铂催化电极的方法

Also Published As

Publication number Publication date
CN101841043A (zh) 2010-09-22

Similar Documents

Publication Publication Date Title
Chen et al. Lewis acid site-promoted single-atomic Cu catalyzes electrochemical CO2 methanation
Zhang et al. Potential-dynamic surface chemistry controls the electrocatalytic processes of ethanol oxidation on gold surfaces
Li et al. Pt monolayer coating on complex network substrate with high catalytic activity for the hydrogen evolution reaction
Green et al. Determination of the platinum and ruthenium surface areas in platinum− ruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts
Conway et al. Relation of energies and coverages of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’for cathodic H2 evolution kinetics
Colmenares et al. Ethanol oxidation on novel, carbon supported Pt alloy catalysts—Model studies under defined diffusion conditions
Dang et al. High-performance, ultralow platinum membrane electrode assembly fabricated by in situ deposition of a Pt shell layer on carbon-supported Pd nanoparticles in the catalyst layer using a facile pulse electrodeposition approach
Qiu et al. Catalyst deposition on photoanodes: the roles of intrinsic catalytic activity, catalyst electrical conductivity, and semiconductor morphology
Scott et al. Kinetics of CO poisoning in simulated reformate and effect of Ru island morphology on PtRu fuel cell catalysts as determined by operando X-ray absorption near edge spectroscopy
Cherevko et al. Pt and Pd decorated Au nanowires: Extremely high activity of ethanol oxidation in alkaline media
CN107863538B (zh) 一种用于乙醇催化的电极及其应用
CN101841043B (zh) 一种燃料电池用Ru基/Pt肤膜纳米薄膜电极制备方法
Drnec et al. Electrooxidation of Pt (111) in acid solution
Valizadeh et al. Role of Pt and PtO2 in the oxygen-evolution reaction in the presence of iron under alkaline conditions
Eguiluz et al. Synthesis, characterization, and electrocatalytic activity toward methanol oxidation of carbon-supported Pt x−(RuO2− M) 1− x composite ternary catalysts (M= CeO2, MoO3, or PbO x)
Velázquez-Palenzuela et al. Carbon monoxide, methanol and ethanol electro-oxidation on Ru-decorated carbon-supported Pt nanoparticles prepared by spontaneous deposition
Kim et al. Trace-level cobalt dopants enhance CO2 electroreduction and ethylene formation on copper
Huang et al. Designed nanostructured Pt film for electrocatalytic activities by underpotential deposition combined chemical replacement techniques
Wei et al. Electrochemical attenuated total reflection surface-enhanced infrared absorption spectroscopy insights into CO adsorption and oxidation on iridium surface
Wang et al. Cubic cuprous oxide-based nanocomposites for photocatalytic hydrogen generation
Wang et al. Fast and efficient electrocatalytic oxidation of glucose triggered by Cu2O-CuO nanoparticles supported on carbon nanotubes
Chen et al. Development of functionalized CoOx-NiFe LDH bi-layers to improve the photoelectrochemical water oxidation property of n-Si photoanode
Wang et al. Facile fabrication of Pt, Pd and Pt− Pd alloy films on Si with tunable infrared internal reflection absorption and synergetic electrocatalysis
Bai et al. Density functional theory–guided electrochemical determination of nitrite in foods based on 2D metal-organic frameworks
Zhang et al. Oxidation-induced polymerization of InP surface and implications for optoelectronic applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: STATE GRID SHANGHAI ELECTRIC POWER COMPANY

Effective date: 20141217

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20141217

Address after: 200090 Pingliang Road, Shanghai, No. 2103, No.

Patentee after: Shanghai University of Electric Power

Patentee after: State Grid Shanghai Municipal Electric Power Company

Address before: 200090 Pingliang Road, Shanghai, No. 2103, No.

Patentee before: Shanghai University of Electric Power