CN101831711A - 一种水溶性ZnSe量子点的微波制备方法 - Google Patents

一种水溶性ZnSe量子点的微波制备方法 Download PDF

Info

Publication number
CN101831711A
CN101831711A CN200910047236A CN200910047236A CN101831711A CN 101831711 A CN101831711 A CN 101831711A CN 200910047236 A CN200910047236 A CN 200910047236A CN 200910047236 A CN200910047236 A CN 200910047236A CN 101831711 A CN101831711 A CN 101831711A
Authority
CN
China
Prior art keywords
solution
zinc
znse
preparation
water soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910047236A
Other languages
English (en)
Inventor
汪联辉
何耀
赛丽曼
陆昊婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU CHANGSANJIAO SYSTEM BIOLOGY CROSS SYSTEM SCIENCE INSTITUTE Co Ltd
Original Assignee
SUZHOU CHANGSANJIAO SYSTEM BIOLOGY CROSS SYSTEM SCIENCE INSTITUTE Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZHOU CHANGSANJIAO SYSTEM BIOLOGY CROSS SYSTEM SCIENCE INSTITUTE Co Ltd filed Critical SUZHOU CHANGSANJIAO SYSTEM BIOLOGY CROSS SYSTEM SCIENCE INSTITUTE Co Ltd
Priority to CN200910047236A priority Critical patent/CN101831711A/zh
Publication of CN101831711A publication Critical patent/CN101831711A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种水溶性ZnSe量子点的微波制备方法,所述的方法包括步骤:(1)将硒氢化钠(NaHSe)溶液和作为锌源的溶液混合得到ZnSe前体溶液;和(2)将ZnSe前体溶液进行微波加热,得到水溶性ZnSe量子点,所述的微波加热条件为:微波功率50W-300W,加热时间1分钟-30分钟,加热温度70-120℃;所述的作为锌源的溶液选自锌盐、氧化锌、或氢氧化锌。所得产物荧光量子产率高,稳定性好,具有良好水溶性,可以广泛用于生物检测和分析的荧光标记物。

Description

一种水溶性ZnSe量子点的微波制备方法
技术领域
本发明属于纳米材料及生物分析检测技术领域,具体涉及一种水溶性ZnSe量子点的微波制备方法。
背景技术
量子点,是一类由II-VI族或III-V族元素组成的半径小于或接近激子波尔半径的半导体纳米晶粒。半导体纳米晶具有量子尺寸效应,其光学性质随粒子尺寸变化而改变,同时其发光效率与体相材料相比也有很大的提高。1998年Alivisatos和Nie等分别首次报道了利用半导体纳米晶替代有机荧光染料作为生物分子标记物,成功地标记了铁转移蛋白和免疫球蛋白等(Alivisatos,A.P.;et,Science 1998,281,2013-2016;Nie,S.M.;et,Science 1998,281,2016-2018),预示了纳米晶在生物标记检测中的巨大应用潜力。传统生物荧光染料常用的有嗅乙锭、诺丹明等,只能进行单色标记,且其稳定性差,灵敏度也受限制;而荧光半导体纳米材料作为荧光标记物与生物荧光染料相比,具有荧光谱线窄、发光效率高、发光颜色可调、可进行多色标记,并且光稳定性好等一系列优点。
实际应用中需要的半导体纳米晶必须具有好的发光性能(发光效率高,荧光光谱半峰宽窄,稳定性好),要将半导体纳米晶应用于生物标记,还要求其具有良好的生物相容性。因此,制备发光性能优良的水溶性量子点成为近年来的研究热点。通过科学家的不断努力,目前已经可以通过传统水热法、高温水热法以及微波辐射法在水相中直接制备得到性能优良的量子点(Rogach,A.L.;et.J.Phys.Chem.B 2002,106,7177-7185;Bai,Y.;et.Adv.Mater 2003,15,1712-1715;Wang,L.H.;et.Adv.Mater 2008,20,3416-3421),但类型主要集中在发光颜色从绿色到红色(即最大发光波长从500纳米到620纳米)的水溶性量子点(如:CdTe量子点,CdTe/CdS量子点,CdTe/CdS/ZnS量子点),至于发光颜色为蓝光的水溶性量子点则很少有报道。这在很大程度上限制了量子点的进一步广泛应用。ZnSe也是一种典型的II-VI族半导体,而且其宽带间隙(band gap)较大,因此ZnSe量子点在紫外激发下可以发射较纯的蓝光。而在以往的报道中(Shavel,A.;et.J.Phys.Chem.B 2004,108,5905-5908),ZnSe NCs的制备相比CdTe NCs更困难,荧光量子效率较低。
因此,本领域迫切需要提供一种水溶性ZnSe量子点的制备方法,通过这种制备方法得到的ZnSe量子点的荧光量子效率高。
发明内容
本发明旨在提供一种水溶性ZnSe量子点及其制备方法和用途。
在本发明的第一方面,提供了一种水溶性ZnSe量子点的制备方法,所述的方法包括步骤:
(1)将硒氢化钠(NaHSe)溶液和作为锌源的溶液混合得到ZnSe前体溶液;和
(2)将ZnSe前体溶液进行微波加热,得到水溶性ZnSe量子点,所述的微波加热条件为:微波功率50W-300W,加热时间1分钟-30分钟,加热温度70-120℃;
所述的作为锌源的溶液选自锌盐、氧化锌、或氢氧化锌。
在另一优选例中,所述微波功率为50W-180W。
在另一优选例中,所述的作为锌源的溶液中还含有谷胱甘肽(GSH)。
在另一优选例中,在ZnSe前体溶液中下列物质的摩尔比是Zn2+∶HSe-∶GSH=1∶(1.0-3.0)∶(0.2-0.5)。
在另一优选例中,所述的锌盐选自氯化锌、碘化锌、溴化锌、硝酸锌、高氯酸锌、氯酸锌、碘酸锌、硫酸锌、或碳酸锌。
在另一优选例中,作为锌源的溶液pH8-12。
在另一优选例中,所述的方法包括步骤:
(a)将摩尔比为15-20∶1的硼氢化钠NaBH4和硒粉在水中混合,得到NaHSe溶液;
(b)将NaHSe溶液、作为锌源的溶液和GSH溶液混合,得到ZnSe前体溶液;和
(c)将ZnSe前体溶液进行微波加热,得到水溶性ZnSe量子点,所述的微波加热条件为:微波功率50W-300W,加热时间1分钟-30分钟,加热温度70-120℃。
在另一优选例中,所述的方法包括步骤:
(a)将摩尔比为15∶1至20∶1的硼氢化钠NaBH4和硒粉Se置于水中,在室温下静置反应24-60小时,得到NaHSe溶液;
(b)将浓度为0.01-0.1mol/L锌盐或锌的氧化物、氢氧化物和谷胱甘肽GSH溶液混合,调节溶液的pH8-12,注入NaHSe溶液,得到ZnSe前体溶液,氮气保护下存放;和
(c)将ZnSe前体溶液进行微波加热,得到不同发光波长的水溶性ZnSe量子点,其中微波加热条件为:微波功率50W-300W,加热时间1分钟-30分钟,加热温度70-120摄氏度。
在本发明的第二方面,提供了一种由如上所述的制备方法得到的水溶性ZnSe量子点,所述的水溶性ZnSe量子点荧光量子产率6-15%,半峰宽21-30nm。
在本发明的第三方面,提供了一种如上所述的水溶性ZnSe量子点在生物分析化学和/或分子生物学中的应用。
据此,本发明提供了一种水溶性ZnSe量子点的制备方法,通过这种制备方法得到的ZnSe量子点的荧光量子效率高。
附图说明
图1是用本发明制备得到的ZnSe量子点的紫外-荧光(UV-PL)光谱。
图2是用本发明制备得到的ZnSe量子点的X射线衍射(XRD)谱图。
具体实施方式
发明人经过广泛而深入的研究,发现将ZnSe前体溶液进行微波加热,所得到水溶性ZnSe量子点,荧光量子产率高、半峰宽窄,而且稳定性好。具体地,微波加热条件为:微波功率50W-300W,加热时间1分钟-30分钟,加热温度70-120℃。
本发明提供了一种操作安全、简便的水溶性ZnSe量子点微波制备方法。
本发明提供的水溶性ZnSe量子点微波制备方法,具体步骤如下:
1、配制作为硒源的硒氢化钠NaHSe溶液:将摩尔比为15∶1至20∶1的硼氢化钠NaBH4和硒粉Se置于水中,在室温下静置反应24-60小时,得到NaHSe溶液;2、配制作为锌源的浓度为0.01-0.1mol/L锌盐或锌的氧化物、氢氧化物和谷胱甘肽GSH溶液,调节溶液的pH值至8-12,注入NaHSe溶液,得到ZnSe前体溶液,氮气保护下存放;3、将ZnSe前体溶液进行微波加热,得到不同发光波长的水溶性ZnSe量子点,其中微波加热条件为:微波功率50W-300W,加热时间1分钟-30分钟,加热温度70-120摄氏度,得到高荧光量子效率水溶性ZnSe量子点。
本发明中所述的锌盐或锌的氧化物、氢氧化物包括:氯化锌、碘化锌、溴化锌、硝酸锌、氧化锌、高氯酸锌、氯酸锌、碘酸锌、硫酸锌、氢氧化锌或碳酸锌。
本发明完全在水相中进行,操作安全、简便,毒性小,原料安全易得。所得的水溶性ZnSe量子点荧光量子产率高(6%-15%),较佳地为8%-15%,更佳地为12-15%;半峰宽窄(21-30nm),较佳地为21-25nm。
本发明制备得到的量子点稳定性好,将量子点置于4oC和避光保存环境下的稳定时间为30-90天,较佳地为60-90天;而且本发明制备方法得到的量子点具有良好的水溶性,可以作为荧光标记物广泛用于生物检测和分析。
本发明提到的上述特征,或实施例提到的特征可以任意组合。本案说明书所揭示的所有特征可与任何组合物形式并用,说明书中所揭示的各个特征,可以任何可提供相同、均等或相似目的的替代性特征取代。因此除有特别说明,所揭示的特征仅为均等或相似特征的一般性例子。
本发明的主要优点在于:
1、制备方法在水相中进行,操作简便;
2、制备所需时间短(最短时间只需3分钟);
3、制备得到的产品荧光量子产率高、半峰宽窄。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。除非另外说明,否则所有的百分数、比率、比例、或份数按重量计。
本发明中的重量体积百分比中的单位是本领域技术人员所熟知的,例如是指在100毫升的溶液中溶质的重量。
除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。文中所述的较佳实施方法与材料仅作示范之用。
本发明实施例中的数据来自以下方法:
1.荧光量子产率测定方法
采用目前国际公认的相对荧光量子产率测定方法,具体为:选用最大发射波长与所制备量子点最大发射波长接近的荧光染料,在保证量子点和荧光染料吸光度一致的前提下,在相同的激发波长下得到两者的荧光光谱,根据两者荧光发射峰的峰面积并参照相关公式计算得到。可参见文献:Y.He,H.T.Lu,L.M.Sai,Y.Y.Su,M.Hu,Q.L.Fan,W.Huang,L.H.Wang,Adv.Mater.2008,20,3416-3421.
2.半峰宽测定方法
测定方法具体为:截取量子点的荧光光谱发射峰峰高1/2的两点,此两点的横坐标即为该量子点的荧光光谱发射峰半峰宽。
实施例1
制备水溶性ZnSe量子点I
(1)NaHSe制备
将23.9毫克NaBH4与23.6毫克Se粉混合,溶解于3毫升超纯水,然后将溶液避光,保存在室温中,瓶口用一根针管与外界相通,释放反应中产生的H2。约30小时后,黑色的Se粉消失,瓶底出现白色的Na2B4O7沉淀,上层清液为NaHSe溶液,将澄清溶液分离出来,用于制备ZnSe纳米晶。
(2)ZnSe前体溶液制备
将17.2毫克ZnCl2溶于100毫升水,加入8.6微升谷胱甘肽,用0.5摩尔/升的NaOH溶液调节pH=11,将ZnCl2与GSH混合溶液在剧烈搅拌下用N2气脱氧30分钟,再注入2毫升NaHSe溶液,作为ZnSe前体溶液。
(3)微波辐射制备ZnSe量子点
取ZnSe前体溶液20毫升,注入微波仪的25毫升反应管中进行反应。反应条件如下:
微波功率:70瓦;反应温度:90摄氏度;反应时间:25分钟。
即可得到所述的水溶性ZnSe量子点I,荧光量子产率8%,半峰宽21nm。
实施例2
制备水溶性ZnSe量子点II
(1)NaHSe制备
将17.5毫克NaBH4与20.1毫克Se粉混合,溶解于3毫升超纯水,然后将溶液避光,保存在室温中,瓶口用一根针管与外界相通,释放反应中产生的H2。约48小时后,黑色的Se粉消失,瓶底出现白色的Na2B4O7沉淀,上层清液为NaHSe溶液,将澄清溶液分离出来,用于制备ZnSe纳米晶。
(2)ZnSe前体溶液制备
将35.5毫克ZnCl2溶于100毫升水,加入18.7微升谷胱甘肽,用0.5摩尔/升的NaOH溶液调节pH=8,将ZnCl2与GSH混合溶液在剧烈搅拌下用N2气脱氧30分钟,再注入3毫升NaHSe溶液,作为ZnSe前体溶液。
(3)微波辐射制备ZnSe量子点
取ZnSe前体溶液20毫升,注入微波仪的25毫升反应管中进行反应。反应条件如下:
微波功率:100瓦;反应温度:120摄氏度;反应时间:5分钟。
即可得到所述的水溶性ZnSe量子点II,荧光量子产率10%,半峰宽23nm。
实施例3
制备水溶性ZnSe量子点III
(1)NaHSe制备
将10.8毫克NaBH4与12.5毫克Se粉混合,溶解于3毫升超纯水,然后将溶液避光,保存在室温中,瓶口用一根针管与外界相通,释放反应中产生的H2。约30小时后,黑色的Se粉消失,瓶底出现白色的Na2B4O7沉淀,上层清液为NaHSe溶液,将澄清溶液分离出来,用于制备ZnSe纳米晶。
(2)ZnSe前体溶液制备
将32.0毫克ZnCl2溶于100毫升水,加入15.6微升谷胱甘肽,用0.5摩尔/升的NaOH溶液调节pH=10,将ZnCl2与GSH混合溶液在剧烈搅拌下用N2气脱氧30分钟,再注入2毫升NaHSe溶液,作为ZnSe前体溶液。
(3)微波辐射制备ZnSe量子点
取ZnSe前体溶液20毫升,注入微波仪的25毫升反应管中进行反应。反应条件如下:
微波功率:50瓦;反应温度:70摄氏度;反应时间:25分钟。
即可得到所述的水溶性ZnSe量子点III,荧光量子产率9%,半峰宽25nm。
实施例4
制备水溶性ZnSe量子点IV
(1)NaHSe制备
将6.5毫克NaBH4与7.3毫克Se粉混合,溶解于3毫升超纯水,然后将溶液避光,保存在室温中,瓶口用一根针管与外界相通,释放反应中产生的H2。约30小时后,黑色的Se粉消失,瓶底出现白色的Na2B4O7沉淀,上层清液为NaHSe溶液,将澄清溶液分离出来,用于制备ZnSe纳米晶。
(2)ZnSe前体溶液制备
将13.2毫克ZnCl2溶于100毫升水,加入6.0微升谷胱甘肽,用0.5摩尔/升的NaOH溶液调节pH=12,将ZnCl2与GSH混合溶液在剧烈搅拌下用N2气脱氧30分钟,再注入2毫升NaHSe溶液,作为ZnSe前体溶液。
(3)微波辐射制备ZnSe量子点
取ZnSe前体溶液20毫升,注入微波仪的25毫升反应管中进行反应。反应条件如下:
微波功率:120瓦;反应温度:100摄氏度;反应时间:15分钟。
即可得到所述的水溶性ZnSe量子点IV,荧光量子产率12%,半峰宽23nm。
实施例5
制备水溶性ZnSe量子点V
(1)NaHSe制备
将25.8毫克NaBH4与22.1毫克Se粉混合,溶解于3毫升超纯水,然后将溶液避光,保存在室温中,瓶口用一根针管与外界相通,释放反应中产生的H2。约48小时后,黑色的Se粉消失,瓶底出现白色的Na2B4O7沉淀,上层清液为NaHSe溶液,将澄清溶液分离出来,用于制备ZnSe纳米晶。
(2)ZnSe前体溶液制备
将32.1毫克ZnCl2溶于100毫升水,加入17.3微升谷胱甘肽,用0.5摩尔/升的NaOH溶液调节pH=9,将ZnCl2与GSH混合溶液在剧烈搅拌下用N2气脱氧30分钟,再注入2.5毫升NaHSe溶液,作为ZnSe前体溶液。
(3)微波辐射制备ZnSe量子点
取ZnSe前体溶液20毫升,注入微波仪的25毫升反应管中进行反应。反应条件如下:
微波功率:150瓦;反应温度:110摄氏度;反应时间:10分钟。
即可得到所述的水溶性ZnSe量子点V,荧光量子产率6%,半峰宽21nm。
实施例6
制备水溶性ZnSe量子点VI
(1)NaHSe制备
将12.5毫克NaBH4与11.8毫克Se粉混合,溶解于3毫升超纯水,然后将溶液避光,保存在室温中,瓶口用一根针管与外界相通,释放反应中产生的H2。约30小时后,黑色的Se粉消失,瓶底出现白色的Na2B4O7沉淀,上层清液为NaHSe溶液,将澄清溶液分离出来,用于制备ZnSe纳米晶。
(2)ZnSe前体溶液制备
将26.2毫克ZnCl2溶于100毫升水,加入15.8微升谷胱甘肽,用0.5摩尔/升的NaOH溶液调节pH=11,将ZnCl2与GSH混合溶液在剧烈搅拌下用N2气脱氧30分钟,再注入2.0毫升NaHSe溶液,作为ZnSe前体溶液。
(3)微波辐射制备ZnSe量子点
取ZnSe前体溶液20毫升,注入微波仪的25毫升反应管中进行反应。反应条件如下:
微波功率:110瓦;反应温度:100摄氏度;反应时间:8分钟。
即可得到所述的水溶性ZnSe量子点VI,荧光量子产率15%,半峰宽21nm。
以上所述仅为本发明的较佳实施例而已,并非用以限定本发明的实质技术内容范围,本发明的实质技术内容是广义地定义于申请的权利要求范围中,任何他人完成的技术实体或方法,若是与申请的权利要求范围所定义的完全相同,也或是一种等效的变更,均将被视为涵盖于该权利要求范围之中。

Claims (10)

1.一种水溶性ZnSe量子点的制备方法,其特征在于,所述的方法包括步骤:
(1)将硒氢化钠(NaHSe)溶液和作为锌源的溶液混合得到ZnSe前体溶液;和
(2)将ZnSe前体溶液进行微波加热,得到水溶性ZnSe量子点,所述的微波加热条件为:微波功率50W-300W,加热时间1分钟-30分钟,加热温度70-120℃;
所述的作为锌源的溶液选自锌盐、氧化锌、或氢氧化锌。
2.如权利要求1所述的制备方法,其特征在于,所述微波功率为50W-180W。
3.如权利要求1所述的制备方法,其特征在于,所述的作为锌源的溶液中还含有谷胱甘肽(GSH)。
4.如权利要求3所述的制备方法,其特征在于,在ZnSe前体溶液中下列物质的摩尔比是Zn2+∶HSe-∶GSH=1∶(1.0-3.0)∶(0.2-0.5)。
5.如权利要求1所述的制备方法,其特征在于,所述的锌盐选自氯化锌、碘化锌、溴化锌、硝酸锌、高氯酸锌、氯酸锌、碘酸锌、硫酸锌、或碳酸锌。
6.如权利要求1所述的制备方法,其特征在于,作为锌源的溶液pH8-12。
7.如权利要求1所述的制备方法,其特征在于,所述的方法包括步骤:
(a)将摩尔比为15-20∶1的硼氢化钠NaBH4和硒粉在水中混合,得到NaHSe溶液;
(b)将NaHSe溶液、作为锌源的溶液和GSH溶液混合,得到ZnSe前体溶液;和
(c)将ZnSe前体溶液进行微波加热,得到水溶性ZnSe量子点,所述的微波加热条件为:微波功率50W-300W,加热时间1分钟-30分钟,加热温度70-120℃。
8.如权利要求7所述的制备方法,其特征在于,所述的方法包括步骤:
(a)将摩尔比为15∶1至20∶1的硼氢化钠NaBH4和硒粉Se置于水中,在室温下静置反应24-60小时,得到NaHSe溶液;
(b)将浓度为0.01-0.1mol/L锌盐或锌的氧化物、氢氧化物和谷胱甘肽GSH溶液混合,调节溶液的pH8-12,注入NaHSe溶液,得到ZnSe前体溶液,氮气保护下存放;和
(c)将ZnSe前体溶液进行微波加热,得到不同发光波长的水溶性ZnSe量子点,其中微波加热条件为:微波功率50W-300W,加热时间1分钟-30分钟,加热温度70-120摄氏度。
9.一种水溶性ZnSe量子点,它由如权利要求1-8任一所述的制备方法得到,其特征在于,所述的水溶性ZnSe量子点荧光量子产率6-15%,半峰宽21-30nm。
10.一种如权利要求9所述的水溶性ZnSe量子点在生物分析化学和/或分子生物学中的应用。
CN200910047236A 2009-03-09 2009-03-09 一种水溶性ZnSe量子点的微波制备方法 Pending CN101831711A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910047236A CN101831711A (zh) 2009-03-09 2009-03-09 一种水溶性ZnSe量子点的微波制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910047236A CN101831711A (zh) 2009-03-09 2009-03-09 一种水溶性ZnSe量子点的微波制备方法

Publications (1)

Publication Number Publication Date
CN101831711A true CN101831711A (zh) 2010-09-15

Family

ID=42715921

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910047236A Pending CN101831711A (zh) 2009-03-09 2009-03-09 一种水溶性ZnSe量子点的微波制备方法

Country Status (1)

Country Link
CN (1) CN101831711A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102127446A (zh) * 2011-01-13 2011-07-20 武汉大学 一种ZnSe/ZnS核壳结构量子点的水相制备方法
CN102295932A (zh) * 2011-07-05 2011-12-28 武汉大学 ZnSe量子点标记牛血清蛋白荧光探针的制备方法
CN104403670A (zh) * 2014-11-03 2015-03-11 南京化工职业技术学院 一种镉、镱共掺杂硫化锌量子点的制备方法
CN104531141A (zh) * 2014-12-16 2015-04-22 南京化工职业技术学院 一种铈、铒共掺杂ZnS量子点的微波水相制备方法
CN108751738A (zh) * 2018-06-01 2018-11-06 合肥学院 一种Bi2S3/TiO2复合材料纳米棒阵列及制备方法
CN109096667A (zh) * 2018-08-17 2018-12-28 苏州星烁纳米科技有限公司 量子点膜及含有量子点膜的结构
CN113583677A (zh) * 2017-10-12 2021-11-02 Ns材料株式会社 量子点及其制造方法、使用量子点的波长转换构件、照明构件、背光装置以及显示装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102127446A (zh) * 2011-01-13 2011-07-20 武汉大学 一种ZnSe/ZnS核壳结构量子点的水相制备方法
CN102127446B (zh) * 2011-01-13 2013-03-20 武汉大学 一种ZnSe/ZnS核壳结构量子点的水相制备方法
CN102295932A (zh) * 2011-07-05 2011-12-28 武汉大学 ZnSe量子点标记牛血清蛋白荧光探针的制备方法
CN104403670A (zh) * 2014-11-03 2015-03-11 南京化工职业技术学院 一种镉、镱共掺杂硫化锌量子点的制备方法
CN104531141A (zh) * 2014-12-16 2015-04-22 南京化工职业技术学院 一种铈、铒共掺杂ZnS量子点的微波水相制备方法
CN113583677A (zh) * 2017-10-12 2021-11-02 Ns材料株式会社 量子点及其制造方法、使用量子点的波长转换构件、照明构件、背光装置以及显示装置
CN108751738A (zh) * 2018-06-01 2018-11-06 合肥学院 一种Bi2S3/TiO2复合材料纳米棒阵列及制备方法
CN109096667A (zh) * 2018-08-17 2018-12-28 苏州星烁纳米科技有限公司 量子点膜及含有量子点膜的结构
CN109096667B (zh) * 2018-08-17 2021-04-30 苏州星烁纳米科技有限公司 量子点膜及含有量子点膜的结构

Similar Documents

Publication Publication Date Title
Li et al. Self‐trapped exciton to dopant energy transfer in rare earth doped lead‐free double perovskite
CN101831711A (zh) 一种水溶性ZnSe量子点的微波制备方法
Li et al. Cyan-emitting Ba3Y2B6O15: Ce3+, Tb3+ phosphor: a potential color converter for near-UV-excited white LEDs
Lu et al. Synthesis and luminescence properties of Eu3+-activated NaLa (MoO4)(WO4) phosphor
Dixit et al. Realization of neutral white light emission in CaMoO4: 4Dy3+ phosphor via Sm3+ co-doping
Li et al. One-step synthesis of Sc2W3O12: Eu3+ phosphors with tunable luminescence for WLED
Chu et al. Hydrothermal synthesis of Bi4Ge3O12: Eu3+ phosphors with high thermal stability and enhanced photoluminescence property
Hebbar et al. ZnGa2-xEuxO4 nanoparticles: 10 minutes microwave synthesis, thermal tuning of Eu3+ site distribution and photophysical properties
Liao et al. Co‐precipitation synthesis and luminescence properties of K2TiF6: Mn4+ red phosphors for warm white light‐emitting diodes
CN109705845B (zh) 一种低污染的高效率钙钛矿量子点及其制备方法
Litterscheid et al. Solid solution between lithium-rich yttrium and europium molybdate as new efficient red-emitting phosphors
Hua et al. Design of a novel WLED structure based on the non-rare-earth Ca2Y (Nb, Sb) O6: Mn4+ materials
CN100383216C (zh) 一种ZnSe/ZnS核/壳型量子点的制备方法
Zhao et al. Efficient dual-mode emissions of high-concentration erbium ions doped lead-free halide double perovskite single crystals
Llanos et al. Synthesis and luminescent properties of two different Y2WO6: Eu3+ phosphor phases
Zhang et al. Investigation on lead-free Mn-doped Cs2NaInCl6 double perovskite phosphors and their optical properties
Rajkumar et al. A highly intense double perovskite BaSrYZrO5. 5: Eu3+ phosphor for latent fingerprint and security ink applications
Yang et al. A universal hydrochloric acid-assistant powder-to-powder strategy for quick and mass preparation of lead-free perovskite microcrystals
He et al. One-pot synthesis of color-tunable copper doped zinc sulfide quantum dots for solid-state lighting devices
Wang et al. Luminescence properties, crystal field and nephelauxetic effect on (NH4) 2NaMF6: Mn4+ (M= Al, Ga and In) red phosphors for warm white light-emitting diodes
Wu et al. Synthesis and luminescent properties of a novel orange-red Ba3Y (BO3) 3: Sm3+ phosphors for white LEDs
Duan et al. Broadband Cr3+-sensitized upconversion luminescence of LiScSi2O6: Cr3+/Er3+
Li et al. Novel far-red emitting phosphor Mn4+-activated BaLaLiWO6 with excellent performance for indoor plant cultivation of light-emitting diodes
Huang et al. One-step low-temperature solid-state synthesis of lead-free cesium copper halide Cs3Cu2Br5 phosphors with bright blue emissions
Zhang et al. Novel bismuth silicate based upconversion phosphors: Facile synthesis, structure, luminescence properties, and applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20100915