CN101830432B - Method and device based on coal gasification for preparing hydrogen and separating CO2 - Google Patents

Method and device based on coal gasification for preparing hydrogen and separating CO2 Download PDF

Info

Publication number
CN101830432B
CN101830432B CN2010101725221A CN201010172522A CN101830432B CN 101830432 B CN101830432 B CN 101830432B CN 2010101725221 A CN2010101725221 A CN 2010101725221A CN 201010172522 A CN201010172522 A CN 201010172522A CN 101830432 B CN101830432 B CN 101830432B
Authority
CN
China
Prior art keywords
cao
reaction chamber
riser tube
gasification
links
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010101725221A
Other languages
Chinese (zh)
Other versions
CN101830432A (en
Inventor
向文国
陈时熠
薛志鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN2010101725221A priority Critical patent/CN101830432B/en
Publication of CN101830432A publication Critical patent/CN101830432A/en
Application granted granted Critical
Publication of CN101830432B publication Critical patent/CN101830432B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Industrial Gases (AREA)

Abstract

The invention discloses a method and a device based on coal gasification for preparing hydrogen and separating CO2. Coal and water vapor enter a gasification reaction chamber for gasification to obtain H2, CO and CO2. CO is converted to CO2 through a transformation reaction, and CO2 is absorbed by CaO to generate CaCO3. H2 and remnant CO2 enter a gasification bed rising pipe, and CaCO3 and remnant coke enter a calcium oxide regeneration reaction chamber. Pure oxide is introduced to the calcium oxide regeneration reaction chamber, the coke is burned with the oxide, CaCO3 is decomposed to CO2 and CaO, CO2 is separated with the CaO by a separator and is collected, and CaO enters the bottom of the gasification bed rising pipe to be raised by the H2 and the remnant CO2, and the CO2 is absorbed. Parts of the H2 and the CaO return to the bottom of the gasification bed rising pipe through a recirculating pipe. The other part of the H2 and the CaO are separated by the separator to obtain purified H2, and the separated CaO returns to the gasification reaction chamber for cyclic utilization.

Description

A kind of based on coal gasification for preparing hydrogen and separation of C O 2Method and device thereof
Technical field
The present invention relates to the method and apparatus of gasification, particularly relate to a kind of coal and steam gasification of utilizing and produce hydrogen and separation of C O 2Method and apparatus.
Background technology
One of sustainable development strategies of energy utilization is to realize the high efficiency of energy clean utilization.Hydrogen is as clean energy, and in the conversion process of energy, following product is water, can really realize zero release of pollutant, and directly combustion power generation, heat supply is perhaps as onboard fuel.Along with the whole world " Oil Safety ", " greenhouse gas emission Greenhouse effect " and " environment protection " problem are increasingly serious; Reduce interdependency to oil; Strengthen the capture of carbonic acid gas and seal up for safekeeping, reduce influence, in the sustainable energy system in future environment; Hydrogen is expected to become the important energy carrier; Receive the extensive attention of various countries, but regrettably the hydrogen of occurring in nature is to exist with the chemical combination attitude mostly, must obtains by the conversion of carbon containing primary energy source such as other primary energy source such as Sweet natural gas, coal, biomass as secondhand energy.It is the country of main energy sources with coal that China is one, and under the prerequisite of this fundamental realities of the country, in following half a century, in the selection of the energy, coal will still played the part of important role.But coal can give off a large amount of CO in the process that Hydrogen Energy transforms 2, the Greenhouse effect that cause thus produce serious negative impact to ecotope, are the CO that discharges in the hydrogen production process on basis simultaneously with the coal 2Quantity quite huge, hydrogen will disappear as the advantage of clean energy.Therefore, in the coal hydrogen production process, effectively separate and capture CO 2Become and realize that coal cleans one of key of hydrogen manufacturing on a large scale.
Summary of the invention
It is a kind of based on coal gasification for preparing hydrogen and separation of C O that the present invention provides 2Method and device thereof.The present invention effective separation of C O when utilizing coal to produce hydrogen 2, have the advantage that reduces greenhouse gas emission.
Method and technology scheme of the present invention is following:
A kind of based on coal gasification for preparing hydrogen and separation of C O 2Method.Coal dust is sent in the mixing gasifying reaction chamber through material feeder, fed water vapour in the lower end of mixing gasifying reaction chamber, coal generates coke through pyrolysis, and coke and the reaction of water vapour generating gasification generate H 2, CO and CO 2CO and water vapour generation transformationreation
Figure GSA00000117808000011
, generate H 2With CO 2, CO 2The CaO that is got into the mixing gasifying reaction chamber from the returning charge groove absorbs CO 2Be cured as CaCO 3Because CO 2Absorbed curing by CaO, the transformationreation balance moves right, and CO constantly is converted into CO through transformationreation 2, and absorbed by CaO thereupon; Remaining CO 2With H 2Leave the mixing gasifying reaction chamber, and get into the gasifier bed riser tube through the gasification reactor chamber transition section.CaCO in the mixing gasifying reaction chamber 3Get into quicklime regenerative response chamber with coke through second overflow groove, feed pure oxygen in the lower end of quicklime regenerative response chamber, coke and oxygen combustion, the heat of release make quicklime regenerative response chamber keep high temperature, CaCO 3Decompose, obtain CaO and CO 2, CaO obtains regeneration; CaO after the regeneration and CO 2Pass through the Regenerative beds riser tube to carbon dioxide separator, CO 2Separate CO with CaO 2Get rid of and capture through the carbon dioxide separator outlet; CaO gets into the gasifier bed riser tube then through tremie pipe to the first overflow groove, and with the H that gets in the gasifier bed riser tube 2And remaining CO 2Mixed lifting; In the process that promotes, remaining CO 2Absorbed CO by CaO 2Obtain solidifying, the gas of gasifier bed riser tube internal upper part is merely H 2Part H 2And CaO comes back to gasifier bed riser tube bottom, another part H through the hydrogen gas recycle pipe 2And CaO is through hydrogen gas segregator, H 2Separate with CaO, the hydrogen gas segregator outlet promptly obtains purified H 2CaO comes back to the mixing gasifying reaction chamber through tremie pipe and returning charge groove, and CaO accomplishes a circulation, and total amount remains unchanged; Coal has obtained purified hydrogen through steam gasification, and realizes CO 2Separation.
Device technique scheme of the present invention is following:
A kind ofly be used for above-mentioned coal gasification for preparing hydrogen and capture CO 2The device of method, form by gasification reaction fluidized-bed, quicklime regenerative response fluidized-bed.The gasification reaction fluidized-bed is made up of mixing gasifying reaction chamber, gasification reactor chamber transition section, gasifier bed riser tube, hydrogen gas recycle pipe, hydrogen gas segregator, tremie pipe, returning charge groove and material feeder.The lower end of gasifier bed riser tube links to each other with the mixing gasifying reaction chamber through mixing gasifying reaction chamber transition section; The upper end of gasifier bed riser tube links to each other with the upper end of the upper end of hydrogen gas segregator and hydrogen gas recycle pipe; The lower ends of the lower end of hydrogen gas recycle pipe and gasifier bed riser tube; The lower end of hydrogen gas segregator links to each other with the returning charge groove through tremie pipe, and the returning charge groove links to each other with the mixing gasifying reaction chamber, and the mixing gasifying reaction chamber links to each other with material feeder.Quicklime regenerative response fluidized-bed is made up of quicklime regenerative response chamber, regenerative response chamber transition section, Regenerative beds riser tube, carbon dioxide separator, tremie pipe, first overflow groove and second overflow groove.The lower end of Regenerative beds riser tube links to each other with quicklime regenerative response chamber through regenerative response chamber transition section; The upper end of Regenerative beds riser tube links to each other with carbon dioxide separator; The lower end of carbon dioxide separator links to each other with first overflow groove through tremie pipe, and first overflow groove links to each other with gasifier bed riser tube lower end side; The mixing gasifying reaction chamber links to each other with quicklime regenerative response chamber through second overflow groove.Coal and quicklime are through the material feeder supply; Be provided with water vapour mouth and slag-drip opening in mixing gasifying reaction chamber lower end; The bottom of first overflow groove, second overflow groove and returning charge groove is equipped with loosening air port.
Compared with prior art, the present invention has following advantage:
(1), method of the present invention and device thereof can separation of C O when using coal to produce hydrogen 2, realize CO 2Capture.At the gasification reaction fluidized-bed, the cross-sectional area of mixing gasifying reaction chamber is greater than the cross-sectional area of gasifier bed riser tube.In the mixing gasifying reaction chamber, material is in the bubbling fluidization state, and the dwindling to make in the gasifier bed riser tube of bed body cross-sectional area is in fast fluidized regime.It is advantageous that solid materials coal and CaO get into the mixing gasifying reaction chamber through material feeder and returning charge groove respectively, are in the bubbling fluidization state in the mixing gasifying reaction chamber, the solid materials residence time is long, and sufficient chemical time is arranged.Coal generates H through pyrolytic gasification 2, CO and CO 2CO and water vapour generation transformationreation
Figure GSA00000117808000031
, this reaction is a reversible, but CO 2Because existing, CaO is absorbed and is cured as CaCO 3Like this, the reacting condition balance is moved, the continuous and water vapour reaction generation CO of CO 2And be cured as CaCO thereupon 3CaO after the regeneration gets into gasifier bed riser tube lower end through first overflow groove; Because the flow velocity of gas is high in the gasifier bed riser tube; The effect of carrying secretly significantly, the CaO after most of regeneration can not directly fall into the mixing gasifying reaction chamber, but at first in the gasifier bed riser tube with H 2And remaining CO 2Fluidisation promotes.In lifting process, remaining CO 2Absorbed by CaO, through separating, the hydrogen gas segregator outlet obtains H at last 2, reached the pure H of acquisition 2Purpose.Utilize the ASPEN software simulation to calculate proof, when 670 ℃ of mixing gasifying reaction chamber temperatures, pressure is 30bar, calcium carbon mol ratio 1.5, and when water vapour and carbon mol ratio 2.5, H in the gaseous product that the mixing gasifying reaction chamber obtains 2Percentage composition can reach 91%, CO and CO 2Content less than 0.75%, remaining gas is a methane.On single testing table of small-sized fluidized bed, 750 ℃ of temperature of reaction, normal pressure, Ca/C mol ratio 1.0, burnt 1.5g, during water vapour flow 4.8L/min, H in the exit gas 2Ratio reach 64.2%, CO 2Be 28.3%, CO is 5.6%, and remaining gas is CH 4
In the mixing gasifying reaction chamber, CaCO 3Get into quicklime regenerative response chamber, coke and O with not vaporized coke after the pyrolysis through second overflow groove 2Burning, burning produces high temperature and makes CaCO 3Be decomposed into CaO and CO 2, CaO obtains regeneration; CaO and CO 2Get into the Regenerative beds riser tube, through CO 2Separator separates traps purified CO 2, CaO gets into the gasification reaction fluidized bed circulation again and uses.With the technology of traditional coal gasification for preparing hydrogen relatively, the present invention is not having to have realized H on the basis of other extra energy consumption 2Produce and CO 2Capture.
(2), the preceding section H of hydrogen gas recycle pipe bypass hydrogen gas segregator is set 2And CaO, make H 2Come back to the gasifier bed riser tube with CaO and promote, increased the flow velocity of gasifier bed riser tube on the one hand, improved the load-carrying capacity of gasifier bed riser tube; On the other hand, increased the quantity of CaO in riser tube, strengthened CO 2Receptivity.
(3), the CO of classics in traditional coal gasification course 2Capture method is the MDEA absorption method, and MDEA absorption method main drawback is the complex manufacturing of amine absorber, and is with high costs; Amine absorber is poisonous simultaneously, and it can produce harm to operator's health inevitably in production and use, and environment is caused secondary pollution; The present invention uses CaO as CO 2Absorption agent, CaO be by the natural limestone manufacturing, produces easyly, and Wingdale and CaO are all harmless, the non-secondary pollution problem, and in system and device, can recycle, the complete assembly system operation cost is cheap.
Description of drawings
Fig. 1 is for the present invention is based on coal gasification for preparing hydrogen and separation of C O 2Setting drawing.
Embodiment
Embodiment 1
A kind of based on coal gasification for preparing hydrogen and separation of C O 2Method, coal dust is added among the mixing gasifying reaction chamber 2-8 through material feeder 2-7, G feeds water vapour in the lower end of mixing gasifying reaction chamber, the temperature of mixing gasifying reaction chamber 2-8 is controlled at about 650 ℃.Coal forms coke through after the pyrolysis, and coke and the reaction of water vapour generating gasification generate H 2, CO and CO 2, CO wherein 2Absorbed generation CaCO by CaO 3, because CO 2Can be absorbed by CaO and solidify transformationreation
Figure GSA00000117808000041
Balance move right, CO constantly is converted into CO through this reaction 2, CO 2Absorbed by CaO thereupon and solidify; The gas that leaves mixing gasifying reaction chamber 2-8 is H 2And remaining CO 2, it gets into gasifier bed riser tube 2-2 through gasification reactor chamber transition section 2-5.The CaCO that generates among the mixing gasifying reaction chamber 2-8 3Get into quicklime regenerative response chamber 1-1 with coke through the second overflow groove 1-7, the second overflow groove lower end D adopts O 2As loosening wind.Lower end A feeds pure oxygen in quicklime regenerative response chamber, gets into coke and the oxygen combustion of quicklime regenerative response chamber 1-1, and the heat of release makes the interior temperature controlling of quicklime regenerative response chamber 1-1 about 950 ℃, CaCO 3Decompose, be generated as CaO and CO 2, CaO obtains regeneration.CaO and CO 2Process Regenerative beds riser tube 1-3 is to carbon dioxide separator 1-6, CO 2Separate CO with CaO 2B captures through the carbon dioxide separator outlet, and CaO is through tremie pipe 1-5 to the first overflow groove 1-4, and the first isopipe root C adopts CO 2As loosening wind, get into gasifier bed riser tube 2-2 then, and with the H that gets among the gasifier bed riser tube 2-2 2And remaining CO 2Mixed lifting; CO in the process that promotes 2Absorbed by CaO, generate CaCO 3, CO 2Obtain solidifying, be merely H at the gas of gasifier bed riser tube 2-2 internal upper part 2, a part of H 2And CaO gets back to gasifier bed riser tube 2-2 bottom, lifting again through hydrogen gas recycle pipe 2-3; Another part H 2And CaO is through hydrogen cyclonic separator 2-1, H 2Separate with CaO, hydrogen gas segregator outlet E promptly obtains purified H 2CaO comes back among the mixing gasifying reaction chamber 2-8 through tremie pipe 2-4 and returning charge groove 2-6, and returning charge trench bottom F adopts water vapour as loosening wind, and CaO accomplishes a circulation, and total amount remains unchanged; Coal obtains purified hydrogen through steam gasification, and realizes CO 2Separation; Like accompanying drawing 1
Embodiment 2
A kind ofly be used to realize that claim 1 is said based on coal gasification for preparing hydrogen and separation of C O 2Device, form by gasification reaction fluidized-bed 2, quicklime regenerative response fluidized-bed 1.Gasification reaction fluidized-bed 2 is made up of mixing gasifying reaction chamber 2-8, gasification reactor chamber transition section 2-5, gasifier bed riser tube 2-2, hydrogen gas recycle pipe 2-3, hydrogen gas segregator 2-1, tremie pipe 2-4, returning charge groove 2-6 and material feeder 2-7.The lower end of gasifier bed riser tube 2-2 links to each other with mixing gasifying reaction chamber 2-8 through mixing gasifying reaction chamber transition section 2-5; The upper end of gasifier bed riser tube 2-2 links to each other with the upper end of the upper end of hydrogen gas segregator 2-1 and hydrogen gas recycle pipe 2-3; The lower ends of the lower end of hydrogen gas recycle pipe 2-3 and gasifier bed riser tube 2-2; The lower end of hydrogen gas segregator 2-1 links to each other with returning charge groove 2-6 through tremie pipe 2-4; Returning charge groove 2-6 links to each other with mixing gasifying reaction chamber 2-8, and mixing gasifying reaction chamber 2-8 links to each other with material feeder 2-7.Quicklime regenerative response fluidized-bed 1 is made up of quicklime regenerative response chamber 1-1, regenerative response chamber transition section 1-2, Regenerative beds riser tube 1-3, carbon dioxide separator 1-6, tremie pipe 1-5, the first overflow groove 1-4 and the second overflow groove 1-7.The lower end of Regenerative beds riser tube 1-3 links to each other with quicklime regenerative response chamber 1-1 through regenerative response chamber transition section 1-2; The upper end of Regenerative beds riser tube 1-3 links to each other with carbon dioxide separator 1-6; The lower end of carbon dioxide separator 1-6 links to each other with the first overflow groove 1-4 through tremie pipe 1-5, and the first overflow groove 1-4 links to each other with gasifier bed riser tube 2-2 lower end side; Mixing gasifying reaction chamber 2-8 links to each other with quicklime regenerative response chamber 1-1 through the second overflow groove 1-7.Coal and quicklime are through material feeder 2-7 supply; Be provided with water vapour mouth G and slag-drip opening H in mixing gasifying reaction chamber 2-8 lower end; The bottom of the first overflow groove 1-4, the second overflow groove 1-7 and returning charge groove 2-6 is equipped with loosening air port; Like accompanying drawing 1.

Claims (3)

1. one kind based on coal gasification for preparing hydrogen and separation of C O 2Method, it is characterized in that: coal is added mixing gasifying reaction chamber (2-8), feed water vapour, be in the bubbling fluidized bed state in the mixing gasifying reaction chamber (2-8) in mixing gasifying reaction chamber bottom (G); Coal generates coke through pyrolysis, and coke and the reaction of water vapour generating gasification obtain H 2, CO and CO 2Gas mixture; CO converts CO into through transformationreation 2, CO 2CaO by from returning charge groove (2-6) absorbs, and is cured as CaCO 3H 2With remaining CO 2Get into gasifier bed riser tube (2-2) through gasification reactor chamber transition section (2-5); CaCO 3Leave mixing gasifying reaction chamber (2-8) with coke, get into quicklime regenerative response chamber (1-1) through second overflow groove (1-7); Feed pure oxygen, coke and oxygen combustion, CaCO in lower end, quicklime regenerative response chamber (A) 3Again be decomposed into CO 2With CaO, CO 2Arrive carbon dioxide separator (1-6), CO with CaO through Regenerative beds riser tube (1-3) 2Separate CO with CaO 2Get rid of and capture from carbon dioxide separator (1-6) upper end outlet, CaO from carbon dioxide separator (1-6) lower end through tremie pipe (1-5), first overflow groove (1-4) to gasifier bed riser tube (2-2) bottom; The cross-sectional area of gasifier bed riser tube (2-2) is less than the cross-sectional area of mixing gasifying reaction chamber (2-8), and the material in the gasifier bed riser tube (2-2) is in fast fluidized regime, and CaO is by the gas H from mixing gasifying reaction chamber (2-8) 2And remaining CO 2Promote, and absorb the remaining CO in the gas 2, the gas that leaves gasifier bed riser tube (2-2) is merely H 2Part H 2And CaO comes back to gasifier bed riser tube (2-2) bottom, another part H through hydrogen gas recycle pipe (2-3) 2And CaO is through hydrogen gas segregator (2-1), H 2Separate from hydrogen gas segregator (2-1) upper end; CaO comes back to mixing gasifying reaction chamber (2-8) through tremie pipe (2-4), returning charge groove (2-6), and CaO realizes recycle.
2. realize described coal gasification for preparing hydrogen of claim 1 and separation of C O for one kind 2The device of method, it is characterized in that, form by gasification reaction fluidized-bed (2) and quicklime regenerative response fluidized-bed (1); Gasification reaction fluidized-bed (2) is made up of mixing gasifying reaction chamber (2-8), gasification reactor chamber transition section (2-5), gasifier bed riser tube (2-2), hydrogen gas segregator (2-1), hydrogen gas recycle pipe (2-3), tremie pipe (2-4), returning charge groove (2-6) and material feeder (2-7); The lower end of gasifier bed riser tube (2-2) links to each other with mixing gasifying reaction chamber (2-8) through gasifying reactor transition section (2-5); The upper end of gasifier bed riser tube (2-2) links to each other with the upper end of hydrogen gas segregator (2-1) and the upper end of hydrogen gas recycle pipe (2-3); The lower end of hydrogen gas segregator (2-1) links to each other with returning charge groove (2-6) through tremie pipe (2-4); Returning charge groove (2-6) links to each other with mixing gasifying reaction chamber (2-8) upper end side, and the lower end side of mixing gasifying reaction chamber (2-8) links to each other with material feeder (2-7); Quicklime regenerative response fluidized-bed (1) is made up of quicklime regenerative response chamber (1-1), regenerative response chamber transition section (1-2), Regenerative beds riser tube (1-3), carbon dioxide separator (1-6), tremie pipe (1-5), first overflow groove (1-4) and second overflow groove (1-7); The lower end of Regenerative beds riser tube (1-3) links to each other with quicklime regenerative response chamber (1-1) through regenerative response chamber transition section (1-2); The upper end of Regenerative beds riser tube (1-3) links to each other with carbon dioxide separator (1-6); The lower end of carbon dioxide separator (1-6) links to each other with first chute (1-4) through tremie pipe (1-5); First overflow groove (1-4) links to each other with gasifier bed riser tube (2-2) lower end side, and mixing gasifying reaction chamber (2-8) links to each other with regenerative response chamber (1-1) through second overflow groove (1-7); Be provided with water vapour mouth (G) and slag-drip opening (H) in mixing gasifying reaction chamber (2-8) bottom of gasification reaction fluidized-bed (2); The bottom (F) of the bottom (C) of first overflow groove (1-4), the bottom (D) of second overflow groove (1-7) and returning charge groove (2-6) is respectively equipped with loosening air port.
3. device according to claim 2, the loosening wind of bottom (F) of bottom (D) and returning charge groove that it is characterized in that feeding bottom (C), second overflow groove (1-7) of first overflow groove (1-4) adopts CO respectively 2, O 2With water vapour.
CN2010101725221A 2010-05-14 2010-05-14 Method and device based on coal gasification for preparing hydrogen and separating CO2 Expired - Fee Related CN101830432B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101725221A CN101830432B (en) 2010-05-14 2010-05-14 Method and device based on coal gasification for preparing hydrogen and separating CO2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101725221A CN101830432B (en) 2010-05-14 2010-05-14 Method and device based on coal gasification for preparing hydrogen and separating CO2

Publications (2)

Publication Number Publication Date
CN101830432A CN101830432A (en) 2010-09-15
CN101830432B true CN101830432B (en) 2012-05-23

Family

ID=42714679

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101725221A Expired - Fee Related CN101830432B (en) 2010-05-14 2010-05-14 Method and device based on coal gasification for preparing hydrogen and separating CO2

Country Status (1)

Country Link
CN (1) CN101830432B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102200277B (en) * 2011-04-27 2013-01-30 东南大学 Chemical chain combustion method and device through solid fuel
CN102219183B (en) * 2011-04-27 2013-04-03 东南大学 Double-circulation chained combustion hydrogen heat coproduction and CO2 separating method and device thereof
FR2982857B1 (en) * 2011-11-21 2014-02-14 Gdf Suez PROCESS FOR PRODUCING BIOMETHANE
CN102977927A (en) * 2012-11-07 2013-03-20 东南大学 Apparatus for preparing synthesis gas based on dual fluidized bed biomass gasification and preparation method thereof
CN103060003A (en) * 2012-12-27 2013-04-24 东南大学 Method and device for preparing H2 and separating CO2 based on calcium-based sorbent
CN104803819B (en) * 2015-05-15 2016-10-05 北京神雾环境能源科技集团股份有限公司 A kind of method and system utilizing fine coal preparing ethylene
CN107964426A (en) * 2017-12-04 2018-04-27 山东大学 A kind of fossil fuel hydrogen production process of carbon dioxide zero discharge
CN110065943B (en) * 2019-04-22 2021-08-10 东南大学 Coal gasification CO separation2Apparatus and separation method thereof
CN115818571B (en) * 2022-12-14 2024-02-23 福建久策气体股份有限公司 System for producing hydrogen from methanol and water vapor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201678442U (en) * 2010-05-14 2010-12-22 东南大学 Device for preparing hydrogen and separating carbon dioxide CO2 based on coal gasification

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008247638A (en) * 2007-03-29 2008-10-16 Gifu Univ Hydrogen production method and hydrogen production apparatus used for the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201678442U (en) * 2010-05-14 2010-12-22 东南大学 Device for preparing hydrogen and separating carbon dioxide CO2 based on coal gasification

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JP特开2008-247638A 2008.10.16
仲兆平等.流化床煤部分气化、热解脱硫过程试验研究.《环境科学学报》.2004,第24卷(第4期),667-671. *
王勤辉等.新型近零排放煤气化燃烧利用系统.《动力工程》.2003,第23卷(第5期),2711-2715. *
王智化等.新型煤气化燃烧集成制氢系统的热力学研究.《中国电机工程学报》.2005,第25卷(第12期),91-97. *

Also Published As

Publication number Publication date
CN101830432A (en) 2010-09-15

Similar Documents

Publication Publication Date Title
CN101830432B (en) Method and device based on coal gasification for preparing hydrogen and separating CO2
CN102200277B (en) Chemical chain combustion method and device through solid fuel
CN103062910B (en) Method and device for integrating chemical-looping combustion with CO<2> trapping
CN101245264B (en) Single-bed self-heating type thermal decomposition gasification combustion reactor and thermal decomposition gasification combustion method
CN102977927A (en) Apparatus for preparing synthesis gas based on dual fluidized bed biomass gasification and preparation method thereof
CN103897743A (en) Solid fuel grading gasification-combustion double-bed poly-generation system and method
CN103742899A (en) Oxygen-enriched combustion circulating fluidized bed poly-generation system and process
CN102816606B (en) Method for preparing hydrocarbon-rich combustible gas through gasification of combustible solid waste
CN107974300A (en) A kind of biomass chemical chain gasification method and device based on the carrier of oxygen/carbon carrier
CN103409171A (en) Biomass pressurized fluidized bed gasification gas turbine combined cycle power generation system
CN103087776A (en) Chemical Iooping combustion-based dry pulverized coal pressurized entrained-flow bed gasification method and chemical Iooping combustion-based dry pulverized coal pressurized entrained-flow bed gasification device
CN101746721B (en) Method and device for producing hydrogen and separating CO2 based on iron or iron oxide
CN203403070U (en) Biomass pressurized fluidized-bed gasification gas turbine combined cycle power generation system
CN102589147B (en) Method for combusting solid fuel by chemical looping and device thereof
CN103045308B (en) Power generation method and system based on step conversion of hydrocarbon components of coal
CN1033427C (en) Process for high temp. refining of reducing gas, and gasifying composite electricity-generating apparatus
CN103060003A (en) Method and device for preparing H2 and separating CO2 based on calcium-based sorbent
CN207828206U (en) A kind of biomass chemical chain gasification device based on the carrier of oxygen/carbon carrier
CN201103916Y (en) Exhaust-heat pre-heating fuel device for biomass gasified power generation
CN103791503A (en) Organic solid waste gasifying and incineration integrated device and method
CN103695040A (en) Technological process for technology of preparing coal chemical chain oxygen carrier to synthesis gas
CN201678442U (en) Device for preparing hydrogen and separating carbon dioxide CO2 based on coal gasification
CN203096004U (en) Power generation system based on classification and transformation of hydrocarbon components of coal
CN109652147B (en) Circulating fluidized bed pyrolysis-gasification device and method
CN205740888U (en) A kind of device reducing biomass gas generating carbon dioxide in process productivity

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120523

Termination date: 20160514

CF01 Termination of patent right due to non-payment of annual fee