CN101825096B - Fan assembly - Google Patents

Fan assembly Download PDF

Info

Publication number
CN101825096B
CN101825096B CN2010101298024A CN201010129802A CN101825096B CN 101825096 B CN101825096 B CN 101825096B CN 2010101298024 A CN2010101298024 A CN 2010101298024A CN 201010129802 A CN201010129802 A CN 201010129802A CN 101825096 B CN101825096 B CN 101825096B
Authority
CN
China
Prior art keywords
air
nozzle
fan component
flow
mouth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010101298024A
Other languages
Chinese (zh)
Other versions
CN101825096A (en
Inventor
彼得·D·甘马克
詹姆斯·戴森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dyson Technology Ltd
Dyson Ltd
Original Assignee
Dyson Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dyson Ltd filed Critical Dyson Ltd
Publication of CN101825096A publication Critical patent/CN101825096A/en
Application granted granted Critical
Publication of CN101825096B publication Critical patent/CN101825096B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/08Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/601Mounting; Assembling; Disassembling specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/62Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps
    • F04D29/624Mounting; Assembling; Disassembling of radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/626Mounting or removal of fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/32Supports for air-conditioning, air-humidification or ventilation units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/065Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit fan combined with single duct; mounting arrangements of a fan in a duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/28Details or features not otherwise provided for using the Coanda effect

Abstract

A bladeless fan assembly comprises a nozzle (14) and means (64, 68) for creating an air flow through the nozzle (14). The nozzle (14) comprises an interior passage (204), a mouth (40) for receiving the air flow from the interior passage (40), and a surface (42) located adjacent the mouth (40) and over which the mouth is arranged to direct the air flow. The nozzle (14) is mounted on a height adjustable pedestal (12).

Description

Fan component
Technical field
The present invention relates to a kind of fan component.In a preferred embodiment, the present invention relates to a kind of family expenses fan, desk fan for example is used in the room, office or other family environment produce air stream.
Background technique
The conventional domestic fan typically comprises and is installed as a group of blade or the fin that rotates around axis and is used to make the rotation of this group blade to produce the drive unit of air-flow.The motion of air-flow and circulation produce " air-cooled " or gentle breeze, the result, because heat dissipates through convection current and evaporation, the user feels the effect of cooling off.
This fan can be various sizes and shape.For example, ceiling fan can have the diameter of 1m at least, and usually to install from the mode of ceiling board suspension to carry air-flow under the east orientation with cool room.On the other hand, desk fan has the diameter of 30cm usually, and freely erects usually and be easy to move.The desk fan that stands on ground generally comprises support drive height of devices can regulate stand and is used to produce the vane group of air-flow (usually from 300 to 500l/s scopes).
The shortcoming of such structure is inhomogeneous usually by the air-flow of the rotation blade generation of rotary fan.This is because the variation of striding blade surface or striding the outward surface of fan.The degree of these variations can be from the product to the product and is changed and even change to another from an independent fan machine.These variations cause air-flow inhomogeneous or " springing up ", and this can be perceived as a series of air pulses and it is uncomfortable for the user.
In family environment, do not expect that the part of device is outwards outstanding, or the user can touch the part that moves arbitrarily, for example blade.Desk fan tends to have around the shrouding preventing to contact the injury of rotation blade of blade, but this part that is covering is difficult to cleaning.And because drive unit and rotation blade are installed on the stand top, the top that the center of gravity of desk fan is usually located at stand makes progress.This can cause desk fan when accident is clashed into, to fall easily, only if this stand is provided with relative broad or heavier base, this is undesirable for the user.
Summary of the invention
The present invention provides a kind of on-bladed fan component; Comprise nozzle and be used to produce device through the air-flow of this nozzle; This nozzle comprises the inner passage, is used to receive the mouth from the air-flow of inner passage; And be positioned near the surface the mouth, and mouth is set to steering flow and flows through this surface, and wherein this nozzle is installed on the Height Adjustable stand.
Through using the on-bladed fan component, air-flow can be through not using the band blade fan to produce.Compare with this blade fan assembly, the on-bladed fan component causes the minimizing of moving parts and complexity.And, do not use the band blade fan to come from fan component emission air-flow, uniform airflow can be formed and be directed in the room or towards the user relatively.Air-flow can flow out from nozzle effectively, because the energy and the speed of turbulent flow loss are minimum.
Term " on-bladed " is used to describe a kind of fan component, and wherein air-flow is never used the fan component emission of moving part or penetrates.Therefore, the on-bladed fan component can be considered to have the output area that does not have moving blade, or emitting area, and air-flow is guided or get into the room from this zone towards the user.The output area of on-bladed fan component can be supplied the main air flow of a generation in the multiple not homology (for example pump, generator, motor or other fluid delivery device); And it can comprise whirligig, and for example motor rotor and/or band blade impeller are to produce air-flow.The main air flow that produces can be from the space in room or other environment outside the fan component pass telescopic pipe to nozzle, the mouth through nozzle turns back in the room space then.
Therefore, fan component is described as on-bladed, does not extend to describe power supply or for the required parts of secondary fan function motor for example.The example of secondary fan function can comprise the adjusting and the swing of illumination, fan component.
Its shape of nozzle of fan component is not comprised the restriction of the space requirement of being with blade fan.Preferably, nozzle ring gets around mouth.Nozzle can be a ring nozzle, and it preferably has from the height of 200 to 600mm scopes, more preferably from 250 to 500mm scopes.
Preferably, the mouth of nozzle gets around a mouthful extension, and is preferably annular.Nozzle preferably includes inner shell body section and external shell body section, and it limits the mouth of nozzle.Each part is preferably formed by the respective annular member, but each part can be provided by a plurality of members that link together or otherwise assemble to form this part.External shell body section preferably is set up and is shaped as partly overlapping inner shell body section.This can make the outlet of mouth be limited between the inner surface of outer surface and external shell body section of inner shell body section of nozzle.Outlet is preferably the form of notch, preferably has from the width of 0.5 to 5mm scope.Nozzle can comprise a plurality of spacer elements, is used to make the inner shell body section of nozzle and the lap of external shell body section to separate.This can help to keep the even basically of parameatal exit width.Spacer element preferably along outlet equably at interval.
The inner passage is preferably continuous, more preferably is annular, and preferably shape is set to be divided into two air-flows to air-flow, and it gets around mouthful two opposite directions in edge and flows.The inner passage is preferably also by the inner shell body section and the external shell body paragraph qualification of nozzle.
Fan component preferably includes the device that is used for oscillating nozzle, so that air stream scans in the arc scope, preferably in from 60 to 120 ° of scopes.For example, the base portion of stand comprises the device that is used for swinging with respect to the bottom part of base portion the top part of base portion, and nozzle is connected to this top part.
As stated, nozzle preferably includes and is positioned near the surface of mouth, and this mouth is set to guide from the air flow stream of its emission crosses this surface.This surface is preferably the coanda surface.Preferably, the external surface shape of the inner housing of nozzle part is set to limit the coanda surface.The coanda surface preferably gets around a mouthful extension.The coanda surface is a kind of surface of known type, and the air-flow that leaves near this surperficial exit orifice represents Coanda effect in this surface.Fluid tends to flow above that near this surface, almost " adheres to " or " having in arms " this surface.Coanda effect is a method of entrainment certified, the document record, and main air flow is wherein guided on the coanda surface.The characteristic on coanda surface and the explanation of the effect of flowing fluid on the coanda surface can be at article Reba for example, Scientific American, and Volume 214, find among the June 1966 pages 84to 92.Through using the coanda surface, from the air of the outside increasing amount of fan component by air suction passing through opening from the mouth emission.
In the present invention, the air-flow of fan component generation gets into nozzle.In the explanation below, this air-flow is called as main air flow.Main air flow is launched from the mouth of nozzle and is preferably passed through on the coanda surface.Main air flow is carried the air around the mouth of nozzle secretly, and it is used for supplying main air flow and the air of carrying secretly to the user as the air amplifier.The air of carrying secretly is become secondary gas flow.Secondary gas flow is by from around the external environment condition of the mouth of nozzle or zone or space and through dislocation other zone suction around the fan, and mainly passes the opening that is limited at nozzle.Be directed flowing through the main air flow of coanda surface and the secondary gas flow merging of carrying secretly, equal the total air flow of launching or throwing forward from the opening that nozzle limits.Preferably, make main air flow be exaggerated at least five times, more preferably be exaggerated at least ten times, and keep level and smooth total output around the carrying secretly of mouth air of nozzle.The maximum airflow of the air stream that produces by fan component preferably in the scope of 300 to 800 liters of per seconds, the scope of from 400 to 700 liters of per seconds more preferably.
Preferably, nozzle comprises the diffusing surface that is positioned at downstream, coanda surface.The outer surface of the inner shell body section of nozzle is preferably shaped to and limits this diffusing surface.
Nozzle is installed on the can regulate stand.Preferably, the ccontaining said device that is used to produce air-flow of stand is so that fan component has compact outward appearance.Stand can comprise the pipe that is used for being sent to air-flow nozzle.Therefore, the gas that stand can be used for support nozzle and is used to transmit generation flows to nozzle, and wherein the air-flow that produces of fan component is passed this nozzle by emission.The device that is used to produce the air-flow that passes nozzle can be positioned on the bottom of stand; Compare the center of gravity that reduces fan component thus with the existing technology desk fan, be connected to the top of stand with blade fan and the device that is used for the rotating band blade fan in the prior art and cause fan component by collision the time, to be toppled over easily.For example, in a preferred embodiment, stand comprises base portion, the ccontaining said device that is used to produce air-flow of this base portion, and pipe extends between this base portion and nozzle.Alternatively, the device that is used to produce air-flow can be positioned in the pipe.
Preferably, the device that is used to produce the air-flow that passes nozzle comprises impeller, be used for the motor of rotary blade and be positioned at the diffuser in impeller downstream.Impeller is preferably the mixed flow impeller.Motor preferably the DC brushless motor to avoid frictional loss and from using the carbonaceous fragment that the brush in the brush motor is arranged in tradition.Reduce carbonaceous fragment and be emitted on for example hospital or to have around the hypersensitive people be favourable of cleaning or pollution sensibility environment.Though usually use the induction motor in desk fan also not have brush, the DC brushless motor can provide than the induction motor service speed of wide range more.
Diffuser can comprise a plurality of helical, causes from the air-flow of diffuser discharging spiral.Because the air-flow that passes pipe usually vertically or longitudinal direction, fan component preferably includes an air-flow that is used for from the diffuser emission and is directed to the device in the pipe.This can reduce the conduction loss in the fan component.Airflow guiding device preferably includes a plurality of fins, its each be used to guide from the corresponding part of diffuser towards the air-flow of pipe emission.These fins can be positioned on the inner surface of the air guide member that is installed in the diffuser top, and preferably equably at interval.Airflow guiding device also can comprise a plurality of radial fins, is positioned at least in part in the pipe, and each of radial fins is in abutting connection with corresponding one of above-mentioned a plurality of fins.These radial fins can in pipe, limit a plurality of axially or vertical passages, and each all receives the corresponding part of air-flow of the passage of free above-mentioned a plurality of fins qualifications.These parts of air-flow are preferably mixed in pipe.
Pipe can comprise the base on the base portion that is installed in stand and be connected to a plurality of tubular members of the base of pipe.Crooked fin can be positioned in the base of pipe at least in part.Axially fin can be positioned at least in part and be used for being connected to a tubular member in the device of base of pipe.This connection set can comprise air conduit or be used to receive other tubular member of a tubular member.
Description of drawings
Only through example, with reference to appended accompanying drawing, embodiment of the present invention will be described now, in the accompanying drawings:
Fig. 1 is the perspective view of fan component, and wherein the telescopic pipe of fan component is in the configuration of stretching out fully;
Fig. 2 is another perspective view of the fan component of Fig. 1, and wherein the telescopic pipe of fan component is in the retracted position;
Fig. 3 is the sectional view of base portion of stand of the fan component of Fig. 1;
Fig. 4 is the decomposition view of telescopic pipe of the fan component of Fig. 1;
Fig. 5 is that the pipe of Fig. 4 is in the side view in the configuration of stretching out fully;
Fig. 6 is the sectional view along the pipe of the line A-A intercepting among Fig. 5;
Fig. 7 is the sectional view along the pipe of the line B-B intercepting among Fig. 5;
Fig. 8 is that the pipe of Fig. 4 is in the perspective view in the configuration of stretching out fully, and wherein the part of lower tubular member is excised;
Fig. 9 is the partial enlarged view of Fig. 8, and wherein the various piece of pipe is removed;
Figure 10 is the side view of the pipe of Fig. 4 when being in the retracted configuration;
Figure 11 is the sectional view along the pipe of the line C-C intercepting among Figure 10;
Figure 12 is the decomposition view of nozzle of the fan component of Fig. 1;
Figure 13 is the front elevation of the nozzle of Figure 12;
Figure 14 is the sectional view along the nozzle of the line P-P intercepting among Figure 13; With
Figure 15 is the zoomed-in view of the region R of indication among Figure 14.
Embodiment
Fig. 1 and 2 shows the embodiment's of fan component 10 perspective view.In this embodiment, fan component 10 is on-bladed fan components, and is the form of family expenses desk fan, and it comprises that Height Adjustable stand 12 is used to launch the nozzle 14 from the air of fan component 10 with being installed on the stand 12.Stand 12 comprises the base portion that lands 16 and telescopic pipe 18 forms Height Adjustable, and this telescopic pipe extends upward to send from the bottom 16 main air flow to nozzle 14 from base portion 16.
The base portion 16 of stand 12 comprises the columniform basically motor casing part 20 that is installed on the cylindrical bottom portion housing parts 22 basically.Motor casing part 20 preferably has substantially the same outer diameter with lower case part 22, so that the outer surface of motor casing part 20 flushes with the outer surface of lower case part 22 basically.Lower case part 22 is installed in alternatively lands on the plate-like base plate 24, and comprises that a plurality of user-operable button 26 and user-operable rotating disk 28 are used to control the running of fan component 10.Base portion 16 also comprises a plurality of air inlets 30, and it is sucked base portion 16 through this hole from external environment condition for form and the main air flow that is formed on the hole on the motor casing part 20 in this embodiment.In this embodiment, the base portion 16 of stand 12 has from the height of 200 to 300mm scopes, and motor casing part 20 has from the diameter of 100 to 200mm scopes.Base plate 24 preferably has from the diameter of 200 to 300mm scopes.
The telescopic pipe 18 of stand 12 can move between the configuration (as shown in Figure 2) of configuration of stretching out fully (as shown in Figure 1) and withdrawal.Pipe 18 comprises cylindrical basically base 32 on the base portion 12 that is installed in fan component 10, be connected to base 32 and be positioned at the inner tubular member 36 of outer tubular member 34 from its upwardly extending outer tubular member 34 and part.Connector 37 is connected to nozzle 14 open upper of the inner tubular member 36 of pipe 18.Inner tubular member 36 is externally slided between the position (as shown in Figure 2) of the position of stretching out fully (as shown in Figure 1) and withdrawal with respect to it in the tubular member 34.When inner tubular member 36 is in the complete extended position; Fan component 10 preferably has from the height of 1200 to 1600mm scopes; And when inner tubular member 36 was in the retracted position, fan component 10 preferably had from the height of 900 to 1300mm scopes.In order to regulate the height of fan component 10, the user can catch the expose portion of inner tubular member 36, as required along the inner tubular member of direction slip up or down 36, so that nozzle 14 is in the vertical position of hope.When inner tubular member 36 was in its retracted position, the user can catch link 37 upwards to draw inner tubular member 36.
Nozzle 14 has annular shape, extends to limit opening 38 around central axis X.Nozzle 14 comprises mouth 40, and the rear portion that this mouth is positioned at nozzle 14 is used to send from fan component 10 and passes the air-flow of opening 38.Mouth 40 gets around mouthful 38 extensions, and is preferably annular.Be positioned at the comprising in interior week of nozzle 14 near the mouth 40 coanda surface 42 (mouth 40 guiding are crossed this surface from the air that fan component 10 sends), be positioned at the diffusing surface 44 in 42 downstream, coanda surface and be positioned at the guiding surface 46 in diffusing surface 44 downstream.Diffusing surface 44 is set to the central axis X away from opening 38, the flowing of the air that helps thus to send from fan component 10.Angle between the central axis X of diffusing surface 44 and opening 38 is in from 5 to 25 ° scope, and is about 7 ° in this embodiment.Guiding surface 46 is set to angled with respect to diffusing surface 44, with the effective transmission of further help from the cooling blast of fan component 10.Guiding surface 46 preferably is set to be arranged essentially parallel to the central axis X of opening 38, to present smooth basically and smooth basically surface for the air-flow that sends from mouth 40.Visually attractive conical surface 48 is positioned at the downstream of guiding surface 46, ends to be substantially perpendicular to end surface 50 places of the central axis X of opening 38.Between the central axis X of conical surface 48 and opening 38 right angle be preferably about 45 °.In this embodiment, nozzle 14 has from the height of 400 to 600mm scopes.
Fig. 3 shows the cross sectional view of the base portion 16 that passes stand 12.The lower case part 22 ccontaining controllers of base portion 16; Usually represent with 52; Be used to respond pressing down and/or the manipulation of user-operable rotating disk 28 of the user-operable button 26 shown in Fig. 1 and 2, with the running of control fan component 10, lower case part 22 comprises sensor 54 alternatively; Be used to receive from the control signal of remote controller (not shown) and be used for being sent to controller 52 to control signal.These control signals are preferably infrared signal.Sensor 54 is positioned at window 55 back, and control signal gets into the lower case part 22 of base portion 16 through this window.The light emitting diode (not shown) can be set for indication fan component 10 and whether be in standby mode.The also ccontaining mechanism of lower case part 22 representes with 56 usually, is used for lower case part 22 swings of the motor casing part 20 of base portion 16 with respect to base portion 16.Swing mechanism 56 comprises running shaft 56a, and this axle extends to the motor casing part 20 from lower case part 22.Axle 56a is supported on through bearing among the sleeve 56b that is connected to lower case part 22, rotates with respect to sleeve 56b to allow axle 56a.The end of axle 56a is connected to the core of annular connecting plate 56c, and the exterior section of connecting plate 56c is connected to the base of motor casing part 20.This allows motor casing part 20 with respect to 22 rotations of lower case part.Swing mechanism 56 also comprises the motor (not shown) that is positioned in the lower case part 22, and its operating crank arm (usually with the 56d indication), this crankweb make the top part swing of motor casing part 20 with respect to lower case part 22.Be used for a part normally knownly, and here will not describe thus with respect to the crankweb structure of another swing.Motor casing part 20 preferably between 60 ° and 120 °, and is about 90 ° with respect to the scope of each wobble cycles of lower case part 22 in this embodiment.In this embodiment, swing mechanism 56 is set to per minute and carries out about 3 to 5 wobble cycles.Mains power cable 58 is passed the hole extension that is formed in the lower case part 22, thinks fan component 10 power supplies.
Motor casing part 20 comprises cylindrical grid 60, and the array in hole 62 is formed in the grid air inlet 30 with the base portion 16 that stand 12 is provided.Motor casing part 20 is ccontaining to be used to aspirate the impeller 64 that main air flow passes hole 62 and gets into base portion 16.Preferably, impeller 64 is forms of mixed flow dynamic formula impeller.Impeller 64 is connected to from motor 68 outward extending running shafts 66.In this embodiment, motor 68 is DC brushless motors, and its speed changes the manipulation of rotating disk 28 and/or the signal from remote controller that receives through controller 52 response users.The top speed of motor 68 is preferably from 5000 to 10000rpm scopes.Motor 68 is contained in the motor seat, and this motor seat comprises the top part 70 that is connected to bottom part 72.The top part 70 of motor seat comprises the diffuser 74 of the stationary disk form with helical blade.It is interior and mounted thereto that the motor seat is positioned at somewhat frusto-conical impeller housing 76, and this impeller housing 76 is connected to motor casing part 20.The shape of impeller 64 and impeller housing 76 is arranged so that impeller 64 is right after the nearly inner surface that does not still contact impeller housing 76.Basic inlet component 78 for annular is connected to the bottom of impeller housing 76, is used to guide main air flow to get into impeller housing 76.
Preferably, the base portion 16 of stand 12 also comprises quiet foam, is used to reduce the noise that sends from base portion 16.In this embodiment, the motor casing part 20 of base portion 16 comprises the first annular foam member 80 that is positioned under the grid 60, and the second annular foam member 82 between impeller housing 76 and inlet component 78.
Describe the telescopic pipe 18 of stand 12 in detail referring now to Fig. 4 to 11.Pipe 18 base 32 comprises cylindrical basically sidewall 102 and annular upper portion surface 104, and this surface is substantially normal to sidewall 102 and preferably is integral body with it.Sidewall 102 preferably has basically the outer diameter identical with the motor casing part of base portion 16 20; And shape is provided so that when pipe 18 when being connected to base portion 16, and the outer surface of sidewall 102 flushes with the outer surface of the motor casing part 20 of base portion 16 basically.Base 32 also comprises from upper face 104 upwardly extending relatively short air ducts 106, is used for being sent to main air flow the outer tubular member 34 of pipe 18.Air duct 106 preferably basically with sidewall 102 coaxial lines, and have outer dia, this outer dia is slightly less than the inside diameter of the outer tubular member 34 of pipe 18, so that air duct 106 can be inserted into the outer tubular member 34 of pipe 18 fully.A plurality of extending axially on the outer surface that rib 108 can be positioned in air duct 106 is used to form and manages the interference fit of 18 outer tubular member 34 and be fixed to base 32 to outer tubular member 34 thus.Annular seat component 110 is positioned on the upper end of air duct 106, externally to form hermetically sealing between tubular member 34 and the air duct 106.
Pipe 18 comprises is with dome air guide member 114, is used for getting into air duct 106 to the main air flow guiding of sending from diffuser 74.Air guide member 114 has to be used to receive from the lower end 116 of opening wide of the main air flow of base portion 16 with main air flow and is sent to the open upper end 118 in the air duct 106.Air guide member 114 is contained in the base 32 of pipe 18.Air guide member 114 is connected to base 32 through the cooperation bayonet connection 120 that is positioned on base 32 and the air guide member 114.Second annular seat component 121 is positioned around the open upper portion end 118, between base 32 and air guide member 114, to form hermetically sealing.As shown in Figure 3, the open upper end of the motor casing part 20 that air guide member 114 for example is connected to base portion 16 through cooperation bayonet connection 123 on the motor casing part 20 that is positioned at air guide member 114 and base portion 16 or threaded connector.Therefore, air guide member 114 is used for being connected to pipe 18 base portion 16 of stand 12.
A plurality of air guide tabs 122 are positioned on the inner surface of air guide member 114, are used to guide the spiral air flow that sends from diffuser 74 to get into air duct 106.In this example, air guide member 114 comprises seven air guide tabs 122, and its inner surface around air guide member 114 distributes equably.Air guide tabs 122 is in the centre convergence of the open upper end 118 of air guide member 114, and in air guide member 114, limits a plurality of air passagewayss 124 thus, and each air passageways all is used to guide the appropriate section of main air flow to get into air duct 106.Specifically all be positioned at air duct 106 with reference to 4, seven radial air guide tabs 126 of figure.Each radial air guide tabs 126 is extended along the whole length of air duct 126 basically, and when air guide member 114 is connected to base 32 in abutting connection with a corresponding air guide tabs 122.Radial air guide tabs 126 limits a plurality of air passagewayss 128 that extend axially thus in air duct 106; Each passage all receives the corresponding a part of main air flow from the corresponding air passageways 124 in the air guide member 114, and its this part main air flow of transmission axially passes in the outer tubular member 34 of air duct 106 and entering pipe 18.Therefore, base 32 is used for the spiral air flow that sends from diffuser 74 is converted into axial flow with the air guide member 114 of pipe 18, and this axial flow passes outer tubular member 34 and gets into nozzle 14 with inner tubular member 36.The 3rd annular seat component 129 can be provided, and is used in air guide member 114 and manages between 18 the base 32 forming hermetic seal.
Cylindrical upper section sleeve 130 for example utilizes binder or is connected to the inner surface of the top part of outer tubular member 34 through interference fit, so that the upper end 132 of upper sleeve 130 flushes with the upper end of outer tubular member 34.Upper sleeve 130 has inner diameter, and this inner diameter passes upper sleeve 130 less times greater than the outer diameter of inner tubular member 36 to allow inner tubular member 36.The 3rd annular seat component 136 is positioned on the upper sleeve 130, to form gas tight seal with inner tubular member 36.The 3rd annular seat component 136 comprises annular lip 138, and its upper end 132 that engages outer tubular member 34 is to form hermetic seal between upper sleeve 130 and outer tubular member 34.
Cylindrical lower portion sleeve 140 for example utilizes binder or is connected to the outer surface of the bottom part of inner tubular member 36 through interference fit, so that the lower end 142 of inner tubular member 36 is positioned between the upper end 144 and lower end 146 of lower sleeve portion 140.The upper end 144 of lower sleeve portion 140 has basically the outer diameter identical with the lower end of upper sleeve 130 148.Therefore, in the complete extended position of inner tubular member 36, the upper end 144 of following parts casing pipe 140 prevents thus that against the lower end 148 of upper sleeve 130 inner tubular member 36 from being extracted out from outer tubular member 34 fully.In the retracted position of inner tubular member 36, the lower end 146 of lower sleeve portion 140 is against the upper end of air duct 106.
Main spring (main spring) 150 reels around axle 152, and this is supported between the arm that extends internally 154 of lower sleeve portion 140 of pipe 18 with being rotated, and is as shown in Figure 7.With reference to figure 8, main spring 150 comprises steel bar, and it has the free end 156 between the inner surface of outer surface and outer tubular member 34 of upper sleeve of being fixedly located in 130.Therefore, when inner tubular member 36 when complete extended position (as illustrated in Figures 5 and 6) drops to retracted position (shown in Figure 10 and 11), main spring 150 from axle 152 debatchings around.The elastic energy that is stored in the main spring 150 is used for keeping the user selected position of inner tubular member 36 with respect to outer tubular member 34 as counterweight.
Through spring-loaded arcus 158, provide for the additional movement resistance of inner tubular member 36 with respect to outer tubular member 34, this arcus is preferably formed by plastic materials, and is positioned at the annular groove 160 that extends circumferentially around lower sleeve portion 140.With reference to figure 7 and 9, be with 158 not exclusively to extend, and comprise two opposed ends 161 thus around lower sleeve portion 140.Each end 161 with 158 all comprises inner radial part 161a, and this part is received in the hole 162 that is formed in the lower sleeve portion 140.Pressure spring 164 is positioned between the inner radial part 161a with 158 end 161; To be pressed against outer surface on the inner surface of outer tubular member 34, increase the frictional force of opposing inner tubular member 36 thus with respect to outer tubular member 34 motions with 158.
Be with 158 also to comprise with groove part 166, this part is positioned as relatively with pressure spring 164 in this embodiment, and its qualification is with extending axially groove 167 on 158 the outer surface.Groove 167 with 158 is positioned at salient rib 168 tops, and its length along the inner surface of outer tubular member 34 is axially extended.Groove 167 has basically angular breadth and the radial depth identical with salient rib 168, to suppress the relative rotation between inner tubular member 36 and the outer tubular member 34.
With reference now to Figure 12 to 15, the nozzle 14 of fan component 10 is described.Nozzle 14 comprises annular outer shell portion section 200, and it is connected to ring-shaped inner part shell part 202 and extends around this inner shell body section.Each of these sections all can be formed by a plurality of attachment portions, but in this embodiment, each of external shell body section 200 and inner shell body section 202 formed by single moulded parts respectively.Inner shell body section 202 limits the central opening 38 of nozzle 14, and has outer peripheral surfaces 203, and this outer peripheral surfaces shape is set to limit coanda surface 42, diffusing surface 44, guiding surface 46 and conical surface 48.
External shell body section 200 and inner shell body section 202 limit the ring-shaped inner part passage 204 of nozzle 14 together.Therefore, inner passage 204 gets around mouthful 38 extensions.Inner passage 204 is defined through the interior periphery surface 206 of external shell body section 200 and the interior periphery surface 208 of inner shell body section 202.The base of external shell body section 200 comprises hole 210.
Connector 37 (it connects the open upper end 170 of nozzle 14 to the inner tubular member 36 of pipe 18) comprises leaning device, is used for tilting nozzle 14 with respect to stand 12.Leaning device comprises upper component, and for being positioned at the form of the plate 300 in the hole 210 regularly.Alternatively, plate 300 can be whole with external shell body section 200.Plate 300 comprises circular hole 302, and main air flow passes this circular hole from telescopic pipe 18 entering inner passages 204.Connector 37 also comprises lower member, and this lower member is the form of air conduit 304, and it inserted the open upper end 170 of inner tubular member 36 at least in part.Air conduit 304 have basically with the upper board that is formed on connector 37 300 in the identical inner diameter of circular hole 302.If desired, annular seat component can be provided, be used between the outer surface of the inner surface of inner tubular member 36 and air conduit 304, forming gas tight seal, and stop air conduit 304 internally tubular member 36 extract out.Plate 300 utilizes one group of link (representing with 306 among Figure 12) to be connected to air conduit 304 pivotally, and these links are covered by end cap 308.Flexible hose 310 extends to transmit air betwixt between air conduit 304 and plate 300.Flexible hose 310 can be the ring bellows seal element.First annular seat component 312 forms gas tight seal between flexible pipe 310 and air conduit 304, second annular seat component 314 forms gas tight seal between flexible pipe 310 and plate 300.In order to tilt nozzle 14 with respect to stand 12, the user draws simply or pushes away nozzle 14 so that flexible pipe 310 bendings are to allow plate 300 with respect to air conduit 304 motions.The required power of moving nozzle depends on the tightness (tightness) of the connection between plate 300 and the air conduit 304, and preferably arrives in the scope of 4N 2.Nozzle 14 preferably can be in ± 10 ° of scopes never oblique position (wherein axis X substantial horizontal) to complete oblique position motion.When nozzle 14 was tilted with respect to stand 12, axis X was scanned along the perpendicular plane.
The mouth 40 of nozzle 14 is positioned at the rear portion of nozzle 14.Mouth 40 is limited the part corresponding overlapping or that face 212,214 of the outer peripheral surfaces 203 of the interior periphery of external shell body section 200 surface 206 and inner shell body section 202.In this embodiment, mouth 40 is general toroidal, and is shown in figure 15, when along diameter have U-shaped cross section basically when passing the line intercepting of nozzle 14.In this embodiment; The shape of the lap 212,214 of the interior periphery surface 206 of external shell body section 200 and the outer peripheral surfaces 203 of inner shell body section 202 is provided so that mouth 40 is tapered towards outlet 216, and this outlet is provided for guiding main air flow to flow through 42 tops, coanda surface.Outlet 216 is forms of annular notches, preferably has the constant relatively width in 0.5 to the 5mm scope.In this embodiment, outlet 216 has from the width of 0.5 to 1.5mm scope.Spacer element can be arranged on around the mouth 40, so that the lap 212,214 of the outer peripheral surfaces 203 of the interior periphery of external shell body section 200 surface 206 and inner shell body section 202 is spaced apart, with the width that keeps outlet 216 level in expectation.These spacer elements can with the interior periphery of external shell body section 200 surface 206 or with the outer peripheral surfaces 203 of inner shell body section 202 be integral body.
In order to operate fan component 10, the user pushes suitable in the button 26 on the base portion 16 of stand 12, responds this and pushes, and controller 52 starting motors 68 are with rotary blade 64.The rotation of impeller 64 causes main air flow to be drawn into the base portion 16 of stand 12 through the hole 62 of grid 60.Depend on the speed of motor, the main air flow flow velocity can be between 20 and 40 liters of per seconds.Main air flow passes impeller housing 76 and diffuser 74 in succession.The spiral-shaped main air flow that causes of the blade of diffuser 74 is discharged with the form of spiral air flow from diffuser 74.Main air flow gets into air guide member 114, and wherein crooked air guide tabs 122 is divided into a plurality of parts with main air flow, and corresponding of getting in the air duct 106 of base 32 of telescopic pipe 18 of each part of guiding main air flow extends axially air passageways 128.These parts of main air flow are being converted into axial flow when air duct 106 is issued.Main air flow is upward through the outer tubular member 34 and inner tubular member 36 of pipe 18, and passes the inner passage 86 that connector 37 gets into nozzle 14.
In nozzle 14, main air flow is divided into two strands of air-flows, and it passes through around the central opening 38 of nozzle 14 in opposite direction.When air-flow passed inner passage 204, air got into the mouth 40 of nozzle 14.The air-flow that gets into mouth 40 is uniform around the opening 38 of nozzle 14 basically preferably.In mouth 40, the flow direction of air-flow is reversed basically.Air-flow receive mouth 40 tapering part constraint and send through exporting 216.
The main air flow that sends from mouth 40 is directed on the coanda surface 42 of nozzle 14, causes producing secondary gas flow through the carrying secretly of air near external environment condition (particularly outlet 216 peripheral regions and the rear portion from nozzle 14 from mouth 40).This secondary gas flow passes the central opening 38 of nozzle 14, closes with the generation total air flow with main air flow there, or air stream, throw forward from nozzle 14.Depend on the speed of motor 68; The mass velocity of the air stream that throws forward from fan component 10 can be up to 400 liters of per seconds; Preferably up to 600 liters of per seconds, and more preferably up to 800 liters of per seconds, and the top speed of air stream can be 2.5 in the scope of 4.5m/s.
Main air flow guarantees that along mouth 40 even distributions of nozzle 14 air-flow passes through equably on diffusing surface 44.Through air-flow being moved through the controlled expansion zone, diffusing surface 44 causes the mean velocity of air-flow to reduce.The less relatively angle of the central axis X with respect to opening 38 of diffusing surface 44 allows the expansion of air-flow little by little to take place.Otherwise, sharply or fast disperse causing air-flow to become chaotic, in expansion area, produce vortex.This vortex can cause the increase of the turbulent flow in the air-flow and the noise that is associated, and this does not expect, particularly in the household electric appliance of for example fan.Throwing the air-flow of crossing diffusing surface 44 forward can tend to disperse continuously.This air-flow is further assembled in the existence that is arranged essentially parallel to the guiding surface 46 that the central axis X of opening 38 extends.As a result, air-flow can advance to come out from nozzle 14 effectively, makes air-flow being experienced fast from more than 10 meters distance of fan component.

Claims (19)

1. on-bladed fan component; Comprise nozzle and the device that is used to produce the air-flow that passes this nozzle; This nozzle comprises the inner passage, be used to receive mouth from the air-flow of this inner passage, be positioned near the surface the mouth; Mouth is set up this air flow stream of guiding and crosses this surface, and wherein this nozzle is installed on the Height Adjustable stand; And wherein nozzle comprises the diffusing surface that is positioned at the mouth downstream; And wherein, nozzle has annular shape, around extension of central axis to limit opening; And wherein, diffusing surface is set to the central axis away from opening.
2. fan component as claimed in claim 1, the wherein ccontaining said device that is used to produce air-flow of stand.
3. fan component as claimed in claim 2, wherein stand comprises and is used to transmit the pipe that gas flows to nozzle.
4. fan component as claimed in claim 3, wherein stand comprises the ccontaining said base portion that is used to produce the device of air-flow, and wherein said pipe extends between this base portion and nozzle.
5. fan component as claimed in claim 4, the diffuser that the wherein said device that is used to produce air-flow comprises impeller, is used to rotate the motor of this impeller and is positioned at these impeller downstream.
6. fan component as claimed in claim 5 comprises that the air-flow that is used for from diffuser is directed to the device in the said pipe.
7. fan component as claimed in claim 6, wherein said airflow guiding device comprises a plurality of fins, its each fin all guides the corresponding part of the air-flow that sends towards said pipe from diffuser.
8. fan component as claimed in claim 7, wherein airflow guiding device comprises that at least part is positioned at a plurality of radial fins in the said pipe, each of radial fins is all in abutting connection with corresponding of said a plurality of fins.
9. like each described fan component in the claim 1 to 8, wherein the shape of inner passage is set to be divided into two strands of air-flows to the air-flow that receives, and per share air-flow is along a corresponding side flow of opening.
10. like each described fan component in the claim 1 to 8, wherein the inner passage is continuous.
11. like each described fan component in the claim 1 to 8, wherein the inner passage is an annular.
12. like each described fan component in the claim 1 to 8, wherein mouth gets around a mouthful extension.
13. fan component as claimed in claim 12, wherein mouth is concentric with the inner passage.
14. like each described fan component in the claim 1 to 8, wherein nozzle comprises inner shell body section and external shell body section, it limits said inner passage and mouth together.
15. fan component as claimed in claim 14, wherein mouth comprises the outlet between the inner surface of the external shell body section of the outer surface of the inner shell body section of nozzle and nozzle.
16. fan component as claimed in claim 15, its middle outlet are to get around mouthful form of the notch that extends at least in part.
17. fan component as claimed in claim 15, its middle outlet has from the width of 0.5 to 5mm scope.
18. like each described fan component in the claim 1 to 8, wherein said surface comprises the coanda surface.
19. fan component as claimed in claim 18, wherein the coanda surface gets around a mouthful extension.
CN2010101298024A 2009-03-04 2010-03-04 Fan assembly Expired - Fee Related CN101825096B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0903685A GB2468325A (en) 2009-03-04 2009-03-04 Height adjustable fan with nozzle
GB0903685.6 2009-03-04

Publications (2)

Publication Number Publication Date
CN101825096A CN101825096A (en) 2010-09-08
CN101825096B true CN101825096B (en) 2012-09-19

Family

ID=40580581

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101298024A Expired - Fee Related CN101825096B (en) 2009-03-04 2010-03-04 Fan assembly

Country Status (16)

Country Link
US (1) US20100226749A1 (en)
EP (1) EP2271841B1 (en)
JP (1) JP5068838B2 (en)
KR (1) KR101311397B1 (en)
CN (1) CN101825096B (en)
AT (1) ATE513998T1 (en)
AU (2) AU2010219492B2 (en)
CA (1) CA2746723C (en)
DK (1) DK2271841T3 (en)
ES (1) ES2366943T3 (en)
GB (1) GB2468325A (en)
HK (1) HK1148045A1 (en)
PL (1) PL2271841T3 (en)
PT (1) PT2271841E (en)
RU (1) RU2504694C2 (en)
WO (1) WO2010100457A1 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8967979B2 (en) 2010-10-18 2015-03-03 Dyson Technology Limited Fan assembly
US8967980B2 (en) 2010-10-18 2015-03-03 Dyson Technology Limited Fan assembly
US9004878B2 (en) 2009-11-06 2015-04-14 Dyson Technology Limited Fan having a magnetically attached remote control
US9011116B2 (en) 2010-05-27 2015-04-21 Dyson Technology Limited Device for blowing air by means of a nozzle assembly
USD728092S1 (en) 2013-08-01 2015-04-28 Dyson Technology Limited Fan
USD728770S1 (en) 2013-08-01 2015-05-05 Dyson Technology Limited Fan
USD728769S1 (en) 2013-08-01 2015-05-05 Dyson Technology Limited Fan
USD729373S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729375S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729374S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729376S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729372S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729925S1 (en) 2013-03-07 2015-05-19 Dyson Technology Limited Fan
US9127689B2 (en) 2009-03-04 2015-09-08 Dyson Technology Limited Fan assembly
US9127855B2 (en) 2011-07-27 2015-09-08 Dyson Technology Limited Fan assembly
US9151299B2 (en) 2012-02-06 2015-10-06 Dyson Technology Limited Fan
USD746425S1 (en) 2013-01-18 2015-12-29 Dyson Technology Limited Humidifier
USD746966S1 (en) 2013-01-18 2016-01-05 Dyson Technology Limited Humidifier
USD747450S1 (en) 2013-01-18 2016-01-12 Dyson Technology Limited Humidifier
US9249809B2 (en) 2012-02-06 2016-02-02 Dyson Technology Limited Fan
USD749231S1 (en) 2013-01-18 2016-02-09 Dyson Technology Limited Humidifier
US9283573B2 (en) 2012-02-06 2016-03-15 Dyson Technology Limited Fan assembly
US9366449B2 (en) 2012-03-06 2016-06-14 Dyson Technology Limited Humidifying apparatus
US9410711B2 (en) 2013-09-26 2016-08-09 Dyson Technology Limited Fan assembly
US9458853B2 (en) 2011-07-27 2016-10-04 Dyson Technology Limited Fan assembly
US9599356B2 (en) 2014-07-29 2017-03-21 Dyson Technology Limited Humidifying apparatus

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2452593A (en) 2007-09-04 2009-03-11 Dyson Technology Ltd A fan
GB2463698B (en) 2008-09-23 2010-12-01 Dyson Technology Ltd A fan
GB2464736A (en) 2008-10-25 2010-04-28 Dyson Technology Ltd Fan with a filter
GB2466058B (en) 2008-12-11 2010-12-22 Dyson Technology Ltd Fan nozzle with spacers
GB2468323A (en) 2009-03-04 2010-09-08 Dyson Technology Ltd Fan assembly
GB2468315A (en) 2009-03-04 2010-09-08 Dyson Technology Ltd Tilting fan
GB2468320C (en) * 2009-03-04 2011-06-01 Dyson Technology Ltd Tilting fan
CN201884310U (en) 2009-03-04 2011-06-29 戴森技术有限公司 Fan assembly
GB2468317A (en) * 2009-03-04 2010-09-08 Dyson Technology Ltd Height adjustable and oscillating fan
GB2468326A (en) 2009-03-04 2010-09-08 Dyson Technology Ltd Telescopic pedestal fan
DK2276933T3 (en) 2009-03-04 2011-09-19 Dyson Technology Ltd Fan
AU2010220190B2 (en) 2009-03-04 2012-11-15 Dyson Technology Limited Humidifying apparatus
GB2468329A (en) 2009-03-04 2010-09-08 Dyson Technology Ltd Fan assembly
GB2476171B (en) 2009-03-04 2011-09-07 Dyson Technology Ltd Tilting fan stand
GB0903682D0 (en) 2009-03-04 2009-04-15 Dyson Technology Ltd A fan
WO2010100460A1 (en) 2009-03-04 2010-09-10 Dyson Technology Limited A fan
GB2468331B (en) 2009-03-04 2011-02-16 Dyson Technology Ltd A fan
GB2478925A (en) 2010-03-23 2011-09-28 Dyson Technology Ltd External filter for a fan
GB2478927B (en) 2010-03-23 2016-09-14 Dyson Technology Ltd Portable fan with filter unit
GB2482549A (en) 2010-08-06 2012-02-08 Dyson Technology Ltd A fan assembly with a heater
GB2482547A (en) 2010-08-06 2012-02-08 Dyson Technology Ltd A fan assembly with a heater
GB2482548A (en) 2010-08-06 2012-02-08 Dyson Technology Ltd A fan assembly with a heater
GB2483448B (en) 2010-09-07 2015-12-02 Dyson Technology Ltd A fan
US8561935B2 (en) 2010-09-17 2013-10-22 Karl F. Milde, Jr. STOL and/or VTOL aircraft
JP5588565B2 (en) 2010-10-13 2014-09-10 ダイソン テクノロジー リミテッド Blower assembly
US9926804B2 (en) 2010-11-02 2018-03-27 Dyson Technology Limited Fan assembly
GB2486019B (en) 2010-12-02 2013-02-20 Dyson Technology Ltd A fan
CN101994714A (en) * 2010-12-20 2011-03-30 徐伟 Movable bladeless fan
KR101229109B1 (en) 2011-01-21 2013-02-05 (주)엠파워텍 Hair dryer
CN102141048A (en) * 2011-04-29 2011-08-03 美的集团有限公司 Oscillating mechanism of fan
CN102269459A (en) * 2011-07-13 2011-12-07 上海腾邦环境科技有限公司 Movable spraying unit
CN102242737B (en) * 2011-08-15 2013-10-16 李耀强 Bladeless fan with double air nozzles
CN202228444U (en) * 2011-08-23 2012-05-23 曹珂 Bladeless fan provided with hidden air inlet
CN102338133A (en) * 2011-09-30 2012-02-01 东莞市旭尔美电器科技有限公司 Blade-free fan
GB201119500D0 (en) 2011-11-11 2011-12-21 Dyson Technology Ltd A fan assembly
GB2496877B (en) 2011-11-24 2014-05-07 Dyson Technology Ltd A fan assembly
GB2498547B (en) 2012-01-19 2015-02-18 Dyson Technology Ltd A fan
KR101699293B1 (en) 2012-03-06 2017-01-24 다이슨 테크놀러지 리미티드 A fan assembly
GB2512192B (en) 2012-03-06 2015-08-05 Dyson Technology Ltd A Humidifying Apparatus
GB2500017B (en) 2012-03-06 2015-07-29 Dyson Technology Ltd A Humidifying Apparatus
GB2500012B (en) 2012-03-06 2016-07-06 Dyson Technology Ltd A Humidifying Apparatus
GB2500011B (en) 2012-03-06 2016-07-06 Dyson Technology Ltd A Humidifying Apparatus
GB2500903B (en) 2012-04-04 2015-06-24 Dyson Technology Ltd Heating apparatus
CN103362875A (en) * 2012-04-07 2013-10-23 任文华 Fan and jet nozzle thereof
GB2501301B (en) 2012-04-19 2016-02-03 Dyson Technology Ltd A fan assembly
CN103375445A (en) * 2012-04-28 2013-10-30 任文华 Fan and rack for fan
EP2850324A2 (en) 2012-05-16 2015-03-25 Dyson Technology Limited A fan
GB2502103B (en) 2012-05-16 2015-09-23 Dyson Technology Ltd A fan
GB2502104B (en) 2012-05-16 2016-01-27 Dyson Technology Ltd A fan
GB2503907B (en) 2012-07-11 2014-05-28 Dyson Technology Ltd A fan assembly
CN102777405A (en) * 2012-07-19 2012-11-14 罗赟 Infrared fan without fan blade
CN102878113A (en) * 2012-10-30 2013-01-16 李起武 Fan
CN102889239A (en) * 2012-11-02 2013-01-23 李起武 Fan
AU2014211001B2 (en) 2013-01-29 2016-09-15 Dyson Technology Limited A fan assembly
GB2510195B (en) 2013-01-29 2016-04-27 Dyson Technology Ltd A fan assembly
GB2516058B (en) 2013-07-09 2016-12-21 Dyson Technology Ltd A fan assembly with an oscillation and tilt mechanism
CN104879308B (en) * 2014-06-30 2018-01-30 广东美的环境电器制造有限公司 Fan
CN104154014A (en) * 2014-07-14 2014-11-19 无锡市崇安区科技创业服务中心 Electric fan
GB2528708B (en) 2014-07-29 2016-06-29 Dyson Technology Ltd A fan assembly
GB2528704A (en) 2014-07-29 2016-02-03 Dyson Technology Ltd Humidifying apparatus
CN104807080B (en) * 2014-08-29 2017-08-01 青岛海尔空调器有限总公司 A kind of wall-hanging indoor unit of air conditioner
CN104863829B (en) * 2015-02-03 2017-07-28 广东美的环境电器制造有限公司 The luffing structure and bladeless fan of bladeless fan
CN106286331A (en) * 2015-05-22 2017-01-04 王永平 A kind of landscape type bladeless fan
CN104832443B (en) * 2015-05-25 2017-05-24 广东美的环境电器制造有限公司 Fan
WO2018058849A1 (en) * 2016-09-28 2018-04-05 Fang Liu No-clean smoke exhauster
US11384956B2 (en) 2017-05-22 2022-07-12 Sharkninja Operating Llc Modular fan assembly with articulating nozzle
EP3946882A1 (en) * 2019-03-26 2022-02-09 S.I.P.A. Società Industrializzazione Progettazione e Automazione S.p.A. Preform cooling apparatus
CN110493689B (en) * 2019-08-23 2020-12-18 朱少池 Bladeless fan sound box
US11781763B2 (en) 2020-01-13 2023-10-10 Johnson Controls Tyco IP Holdings LLP Air flow amplifier for HVAC system
US11378100B2 (en) 2020-11-30 2022-07-05 E. Mishan & Sons, Inc. Oscillating portable fan with removable grille
KR20230075100A (en) 2021-11-22 2023-05-31 코웨이 주식회사 Air Blower

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2488467A (en) * 1947-09-12 1949-11-15 Lisio Salvatore De Motor-driven fan
GB2178256B (en) * 1985-05-30 1989-07-05 Sanyo Electric Co Electric fan
CN2251639Y (en) * 1995-11-15 1997-04-09 黄进成 Height adjusting device for fan
CN2263729Y (en) * 1996-05-09 1997-10-01 叶明昆 Hight adjusting device for electric fan
US5881685A (en) * 1996-01-16 1999-03-16 Board Of Trustees Operating Michigan State University Fan shroud with integral air supply

Family Cites Families (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2035733A (en) * 1935-06-10 1936-03-31 Marathon Electric Mfg Fan motor mounting
US2071266A (en) * 1935-10-31 1937-02-16 Continental Can Co Lock top metal container
US2476002A (en) * 1946-01-12 1949-07-12 Edward A Stalker Rotating wing
US2746673A (en) * 1954-10-25 1956-05-22 Collins Aubrey Lawrence Oscillating and like mechanism for electric fans
NL110393C (en) * 1955-11-29 1965-01-15 Bertin & Cie
BE560119A (en) * 1956-09-13
US3518776A (en) * 1967-06-03 1970-07-07 Bremshey & Co Blower,particularly for hair-drying,laundry-drying or the like
GB1319793A (en) * 1970-11-19 1973-06-06
US3743186A (en) * 1972-03-14 1973-07-03 Src Lab Air gun
US3795367A (en) * 1973-04-05 1974-03-05 Src Lab Fluid device using coanda effect
US3872916A (en) * 1973-04-05 1975-03-25 Int Harvester Co Fan shroud exit structure
US4037991A (en) * 1973-07-26 1977-07-26 The Plessey Company Limited Fluid-flow assisting devices
US3875745A (en) * 1973-09-10 1975-04-08 Wagner Minning Equipment Inc Venturi exhaust cooler
US3943329A (en) * 1974-05-17 1976-03-09 Clairol Incorporated Hair dryer with safety guard air outlet nozzle
US4184541A (en) * 1974-05-22 1980-01-22 International Harvester Company Heat exchange apparatus including a toroidal-type radiator
GB1593391A (en) * 1977-01-28 1981-07-15 British Petroleum Co Flare
GB1495013A (en) * 1974-06-25 1977-12-14 British Petroleum Co Coanda unit
US4136735A (en) * 1975-01-24 1979-01-30 International Harvester Company Heat exchange apparatus including a toroidal-type radiator
RO62593A (en) * 1975-02-12 1977-12-15 Inst Pentru Creatie Stintific GASLIFT DEVICE
US4332529A (en) * 1975-08-11 1982-06-01 Morton Alperin Jet diffuser ejector
DK140426B (en) * 1976-11-01 1979-08-27 Arborg O J M Propulsion nozzle for means of transport in air or water.
JPS56167897A (en) * 1980-05-28 1981-12-23 Toshiba Corp Fan
US4568243A (en) * 1981-10-08 1986-02-04 Barry Wright Corporation Vibration isolating seal for mounting fans and blowers
US4448354A (en) * 1982-07-23 1984-05-15 The United States Of America As Represented By The Secretary Of The Air Force Axisymmetric thrust augmenting ejector with discrete primary air slot nozzles
US4850804A (en) * 1986-07-07 1989-07-25 Tatung Company Of America, Inc. Portable electric fan having a universally adjustable mounting
US4734017A (en) * 1986-08-07 1988-03-29 Levin Mark R Air blower
JPS6421300U (en) * 1987-07-27 1989-02-02
JPH0660638B2 (en) * 1987-10-07 1994-08-10 松下電器産業株式会社 Mixed flow impeller
US4856968A (en) * 1988-02-02 1989-08-15 Armbruster Joseph M Air circulation device
JPH0765597B2 (en) * 1989-03-01 1995-07-19 株式会社日立製作所 Electric blower
USD325435S (en) * 1990-09-24 1992-04-14 Vornado Air Circulation Systems, Inc. Fan support base
JPH0499258U (en) * 1991-01-14 1992-08-27
US5296769A (en) * 1992-01-24 1994-03-22 Electrolux Corporation Air guide assembly for an electric motor and methods of making
US5762661A (en) * 1992-01-31 1998-06-09 Kleinberger; Itamar C. Mist-refining humidification system having a multi-direction, mist migration path
US5310313A (en) * 1992-11-23 1994-05-10 Chen C H Swinging type of electric fan
US5312465A (en) * 1993-03-12 1994-05-17 Raine Riutta Filtration apparatus with bag-like plenum chamber
DE4315538C1 (en) * 1993-05-10 1994-11-03 Friedhelm Meyer Heat exchanger, especially cooling device
US5317815A (en) * 1993-06-15 1994-06-07 Hwang Shyh Jye Grille assembly for hair driers
US5402938A (en) * 1993-09-17 1995-04-04 Exair Corporation Fluid amplifier with improved operating range using tapered shim
GB2285504A (en) * 1993-12-09 1995-07-12 Alfred Slack Hot air distribution
US5407324A (en) * 1993-12-30 1995-04-18 Compaq Computer Corporation Side-vented axial fan and associated fabrication methods
US5435489A (en) * 1994-01-13 1995-07-25 Bell Helicopter Textron Inc. Engine exhaust gas deflection system
DE4418014A1 (en) * 1994-05-24 1995-11-30 E E T Umwelt Und Gastechnik Gm Method of conveying and mixing a first fluid with a second fluid under pressure
US5487766A (en) * 1994-05-24 1996-01-30 Vannier; Mervin R. Portable air filtration apparatus
US5645769A (en) * 1994-06-17 1997-07-08 Nippondenso Co., Ltd. Humidified cool wind system for vehicles
US5497633A (en) * 1994-06-17 1996-03-12 Cool Zone Products & Promotions, Inc. Evaporative cooling unit
US5518370A (en) * 1995-04-03 1996-05-21 Duracraft Corporation Portable electric fan with swivel mount
FR2735854B1 (en) * 1995-06-22 1997-08-01 Valeo Thermique Moteur Sa DEVICE FOR ELECTRICALLY CONNECTING A MOTOR-FAN FOR A MOTOR VEHICLE HEAT EXCHANGER
US5649370A (en) * 1996-03-22 1997-07-22 Russo; Paul Delivery system diffuser attachment for a hair dryer
US5783117A (en) * 1997-01-09 1998-07-21 Hunter Fan Company Evaporative humidifier
US5862037A (en) * 1997-03-03 1999-01-19 Inclose Design, Inc. PC card for cooling a portable computer
KR200159830Y1 (en) * 1997-06-24 1999-11-01 강상근 Height control unit of stand in electric fan
DE19955517A1 (en) * 1999-11-18 2001-05-23 Leybold Vakuum Gmbh High-speed turbopump
JP3503822B2 (en) * 2001-01-16 2004-03-08 ミネベア株式会社 Axial fan motor and cooling device
US6599088B2 (en) * 2001-09-27 2003-07-29 Borgwarner, Inc. Dynamically sealing ring fan shroud assembly
US20040049842A1 (en) * 2002-09-13 2004-03-18 Conair Cip, Inc. Remote control bath mat blower unit
JP3971991B2 (en) * 2002-12-03 2007-09-05 株式会社日立産機システム Air shower device
US7699580B2 (en) * 2002-12-18 2010-04-20 Lasko Holdings, Inc. Portable air moving device
WO2005000700A1 (en) * 2003-06-10 2005-01-06 Efficient Container Company Container and closure combination
EP1498613B1 (en) * 2003-07-15 2010-05-19 EMB-Papst St. Georgen GmbH & Co. KG Fan assembly and its fabrication method
US7059826B2 (en) * 2003-07-25 2006-06-13 Lasko Holdings, Inc. Multi-directional air circulating fan
TW589932B (en) * 2003-10-22 2004-06-01 Ind Tech Res Inst Axial flow ventilation fan with enclosed blades
WO2005050026A1 (en) 2003-11-18 2005-06-02 Distributed Thermal Systems Ltd. Heater fan with integrated flow control element
US20050128698A1 (en) * 2003-12-10 2005-06-16 Huang Cheng Y. Cooling fan
US20050163670A1 (en) * 2004-01-08 2005-07-28 Stephnie Alleyne Heat activated air freshener system utilizing auto cigarette lighter
ITBO20040743A1 (en) * 2004-11-30 2005-02-28 Spal Srl VENTILATION PLANT, IN PARTICULAR FOR MOTOR VEHICLES
TWM274459U (en) * 2005-02-04 2005-09-01 Hung-Ji Jian Mechanism for hanging and swinging
US20100171465A1 (en) * 2005-06-08 2010-07-08 Belkin International, Inc. Charging Station Configured To Provide Electrical Power to Electronic Devices And Method Therefor
EP1754892B1 (en) * 2005-08-19 2009-11-25 ebm-papst St. Georgen GmbH & Co. KG Fan
CN2835669Y (en) * 2005-09-16 2006-11-08 霍树添 Air blowing mechanism of post type electric fan
US7443063B2 (en) * 2005-10-11 2008-10-28 Hewlett-Packard Development Company, L.P. Cooling fan with motor cooler
US7478993B2 (en) * 2006-03-27 2009-01-20 Valeo, Inc. Cooling fan using Coanda effect to reduce recirculation
US20080124060A1 (en) * 2006-11-29 2008-05-29 Tianyu Gao PTC airflow heater
US7866958B2 (en) * 2006-12-25 2011-01-11 Amish Patel Solar powered fan
US20080166224A1 (en) * 2007-01-09 2008-07-10 Steve Craig Giffin Blower housing for climate controlled systems
US8029244B2 (en) * 2007-08-02 2011-10-04 Elijah Dumas Fluid flow amplifier
US7652439B2 (en) * 2007-08-07 2010-01-26 Air Cool Industrial Co., Ltd. Changeover device of pull cord control and wireless remote control for a DC brushless-motor ceiling fan
US8212187B2 (en) * 2007-11-09 2012-07-03 Lasko Holdings, Inc. Heater with 360° rotation of heated air stream
US7540474B1 (en) * 2008-01-15 2009-06-02 Chuan-Pan Huang UV sterilizing humidifier
DE202008001613U1 (en) * 2008-01-25 2009-06-10 Ebm-Papst St. Georgen Gmbh & Co. Kg Fan unit with an axial fan
US20090214341A1 (en) * 2008-02-25 2009-08-27 Trevor Craig Rotatable axial fan
US8167542B1 (en) * 2008-02-27 2012-05-01 Owusu Elijah A Centrifugal fan with 360 degree continuous rotation
GB2463698B (en) * 2008-09-23 2010-12-01 Dyson Technology Ltd A fan
US8152495B2 (en) * 2008-10-01 2012-04-10 Ametek, Inc. Peripheral discharge tube axial fan
GB2466058B (en) * 2008-12-11 2010-12-22 Dyson Technology Ltd Fan nozzle with spacers
KR20100072857A (en) * 2008-12-22 2010-07-01 삼성전자주식회사 Controlling method of interrupt and potable device using the same
GB2476171B (en) * 2009-03-04 2011-09-07 Dyson Technology Ltd Tilting fan stand
AU2010220190B2 (en) * 2009-03-04 2012-11-15 Dyson Technology Limited Humidifying apparatus
GB2468326A (en) * 2009-03-04 2010-09-08 Dyson Technology Ltd Telescopic pedestal fan
GB2468317A (en) * 2009-03-04 2010-09-08 Dyson Technology Ltd Height adjustable and oscillating fan
WO2010100460A1 (en) * 2009-03-04 2010-09-10 Dyson Technology Limited A fan
GB2468320C (en) * 2009-03-04 2011-06-01 Dyson Technology Ltd Tilting fan
GB2468331B (en) * 2009-03-04 2011-02-16 Dyson Technology Ltd A fan
US8113490B2 (en) * 2009-09-27 2012-02-14 Hui-Chin Chen Wind-water ultrasonic humidifier
GB2482547A (en) * 2010-08-06 2012-02-08 Dyson Technology Ltd A fan assembly with a heater
GB2482549A (en) * 2010-08-06 2012-02-08 Dyson Technology Ltd A fan assembly with a heater
GB2482548A (en) * 2010-08-06 2012-02-08 Dyson Technology Ltd A fan assembly with a heater
GB2483448B (en) * 2010-09-07 2015-12-02 Dyson Technology Ltd A fan
GB2484670B (en) * 2010-10-18 2018-04-25 Dyson Technology Ltd A fan assembly
EP2630373B1 (en) * 2010-10-18 2016-12-28 Dyson Technology Limited A fan assembly
CA2842869C (en) * 2011-07-27 2019-01-15 Dyson Technology Limited A fan assembly
GB2493506B (en) * 2011-07-27 2013-09-11 Dyson Technology Ltd A fan assembly
GB201119500D0 (en) * 2011-11-11 2011-12-21 Dyson Technology Ltd A fan assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2488467A (en) * 1947-09-12 1949-11-15 Lisio Salvatore De Motor-driven fan
GB2178256B (en) * 1985-05-30 1989-07-05 Sanyo Electric Co Electric fan
CN2251639Y (en) * 1995-11-15 1997-04-09 黄进成 Height adjusting device for fan
US5881685A (en) * 1996-01-16 1999-03-16 Board Of Trustees Operating Michigan State University Fan shroud with integral air supply
CN2263729Y (en) * 1996-05-09 1997-10-01 叶明昆 Hight adjusting device for electric fan

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP昭56-167897A 1981.12.23

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9127689B2 (en) 2009-03-04 2015-09-08 Dyson Technology Limited Fan assembly
US9004878B2 (en) 2009-11-06 2015-04-14 Dyson Technology Limited Fan having a magnetically attached remote control
US9011116B2 (en) 2010-05-27 2015-04-21 Dyson Technology Limited Device for blowing air by means of a nozzle assembly
US8967980B2 (en) 2010-10-18 2015-03-03 Dyson Technology Limited Fan assembly
US8967979B2 (en) 2010-10-18 2015-03-03 Dyson Technology Limited Fan assembly
US9458853B2 (en) 2011-07-27 2016-10-04 Dyson Technology Limited Fan assembly
US9335064B2 (en) 2011-07-27 2016-05-10 Dyson Technology Limited Fan assembly
US9291361B2 (en) 2011-07-27 2016-03-22 Dyson Technology Limited Fan assembly
US9127855B2 (en) 2011-07-27 2015-09-08 Dyson Technology Limited Fan assembly
US9283573B2 (en) 2012-02-06 2016-03-15 Dyson Technology Limited Fan assembly
US9249809B2 (en) 2012-02-06 2016-02-02 Dyson Technology Limited Fan
US9151299B2 (en) 2012-02-06 2015-10-06 Dyson Technology Limited Fan
US9366449B2 (en) 2012-03-06 2016-06-14 Dyson Technology Limited Humidifying apparatus
USD746966S1 (en) 2013-01-18 2016-01-05 Dyson Technology Limited Humidifier
USD749231S1 (en) 2013-01-18 2016-02-09 Dyson Technology Limited Humidifier
USD747450S1 (en) 2013-01-18 2016-01-12 Dyson Technology Limited Humidifier
USD746425S1 (en) 2013-01-18 2015-12-29 Dyson Technology Limited Humidifier
USD729375S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729376S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729374S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729925S1 (en) 2013-03-07 2015-05-19 Dyson Technology Limited Fan
USD729373S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD729372S1 (en) 2013-03-07 2015-05-12 Dyson Technology Limited Fan
USD728769S1 (en) 2013-08-01 2015-05-05 Dyson Technology Limited Fan
USD728770S1 (en) 2013-08-01 2015-05-05 Dyson Technology Limited Fan
USD728092S1 (en) 2013-08-01 2015-04-28 Dyson Technology Limited Fan
US9410711B2 (en) 2013-09-26 2016-08-09 Dyson Technology Limited Fan assembly
US9599356B2 (en) 2014-07-29 2017-03-21 Dyson Technology Limited Humidifying apparatus

Also Published As

Publication number Publication date
EP2271841A1 (en) 2011-01-12
DK2271841T3 (en) 2011-10-03
KR20110099284A (en) 2011-09-07
KR101311397B1 (en) 2013-09-25
HK1148045A1 (en) 2011-08-26
US20100226749A1 (en) 2010-09-09
ES2366943T3 (en) 2011-10-26
RU2011136078A (en) 2013-03-10
PT2271841E (en) 2011-09-01
JP2010203447A (en) 2010-09-16
CA2746723C (en) 2016-03-22
AU2010219492A1 (en) 2010-09-10
CA2746723A1 (en) 2010-09-10
EP2271841B1 (en) 2011-06-22
CN101825096A (en) 2010-09-08
ATE513998T1 (en) 2011-07-15
AU2010101299A4 (en) 2010-12-23
GB2468325A (en) 2010-09-08
JP5068838B2 (en) 2012-11-07
GB0903685D0 (en) 2009-04-15
RU2504694C2 (en) 2014-01-20
PL2271841T3 (en) 2011-10-31
AU2010101299C4 (en) 2012-04-19
WO2010100457A1 (en) 2010-09-10
AU2010219492B2 (en) 2011-11-17

Similar Documents

Publication Publication Date Title
CN101825096B (en) Fan assembly
CN101825101B (en) Fan assembly
CN101825102B (en) Fan
CN101825097B (en) Fan assembly
CN101825103B (en) Fan assembly
CN102052335A (en) A fan

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120919

Termination date: 20200304

CF01 Termination of patent right due to non-payment of annual fee