CN101807609A - 适用于高倍聚光电池和薄膜电池的电极结构 - Google Patents

适用于高倍聚光电池和薄膜电池的电极结构 Download PDF

Info

Publication number
CN101807609A
CN101807609A CN201010146162A CN201010146162A CN101807609A CN 101807609 A CN101807609 A CN 101807609A CN 201010146162 A CN201010146162 A CN 201010146162A CN 201010146162 A CN201010146162 A CN 201010146162A CN 101807609 A CN101807609 A CN 101807609A
Authority
CN
China
Prior art keywords
electrode
battery
cell
electrode structure
high power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201010146162A
Other languages
English (en)
Inventor
张瑞英
董建荣
杨辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Original Assignee
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Institute of Nano Tech and Nano Bionics of CAS filed Critical Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority to CN201010146162A priority Critical patent/CN101807609A/zh
Publication of CN101807609A publication Critical patent/CN101807609A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明揭示了一种太阳电池电极结构,该电极结构适用于高倍聚光电池或薄膜电池,其特征在于:该电池表面形成的金属电极为密布而分散的网络孔状结构,与半导体的电池表面形成欧姆接触,其中每个单孔轴向长度远大于径向长度。制法上先选择高倍聚光电池或薄膜电池结构材料,而后再在电池表面通过金属沉积、刻蚀或剥离等方法制备形成网络孔状电极结构。本发明采用网络孔状结构电极代替实体电极,一方面可以在栅线相同的情况下,获得稳定的电极图形,有效减少金属和半导体之间的接触电阻和金半接触导致的非辐射复合,并有效减少遮光比,提升载流子的收集效率,从而整体上提高该聚光电池或者薄膜电池的效率。

Description

适用于高倍聚光电池和薄膜电池的电极结构
技术领域
本发明涉及一种太阳电池结构,尤其涉及一种能显著提高高倍聚光电池和薄膜电池效率的电极结构,属于太阳能应用领域。
背景技术
太阳电池作为太阳能利用的典型方式,成为可再生能源的重要发展方向。性价比成为衡量太阳电池研发以及地面民用的重要指标。基于高倍聚光系统的高倍聚光电池和基于减少材料厚度的薄膜电池成为实现高性价比太阳电池的两种主要途径,也是太阳电池真正能够民用化的主要手段。
对于太阳电池,为了降低串联电阻,采用在金半接触的基础上进一步蒸镀导电率高、价格便宜的金属层,如Ag或者Cu等;对于聚光电池,随着聚光倍数的增加,电池效率一方面对电池的串联电阻变得更加敏感,另一方面对电池表面的遮光比要求更高。通常采用各种布局的密栅+公共电极结构(如图1所示),鉴于现有剥离技术和电极机械稳定性的限制,栅极条宽最窄只能做到3μm,采用该种电极结构,聚光1000倍单结电池的最高效率达26.2%,2000倍单结电池的最高效率达25%(IEEE Trans.Electron Devices,48(5),pp840-844)。进一步提高高倍聚光电池的效率,很大程度上依赖于电池串联电阻的减少,因此,改进电极结构,在保证机械稳定性的同时,进一步降低电池的串联电阻和遮光比,成为提高高倍聚光电池效率的重要手段。然而,目前的条形电极结构,无论形状如何,都是一种平面实体电极结构,串联电阻的减少基本上依赖于平面面积的增加,电极高度的增加受到电极稳定性的限制,只能和电极的宽度相当,目前已做到极致。此外,对于薄膜电池,半导体与金属接触界面的载流子非辐射复合非常严重,势必会影响载流子的高效收集,因此,尽量减少金半接触,也是提高电池性能的重要因素(中国发明专利:“一种制备晶Si太阳电池局域背接触的方法”申请号:200810119967.6)。
如图1所示,给出了目前太阳电池普遍采用的一种正面梳状的电极结构,其中,正面栅线电极1、共用电极2和半导体接触层3的复合结构,有利于实现金属与半导体的欧姆接触;半导体电池的其他部分4为对应于不同太阳电池的基本单元。对于Si电池,该部分包括PN结的emitter layer、base layer、背场以及衬底;对于III-V电池,包括window layer、emitter layer and base layer以及背场、隧道结和衬底等构成电池的所有材料。正面电极呈栅线结构,并且有一共用电极与诸栅线相连,且提供金属压焊地方,实现与外界连接。这里,所有电极图形均为实体结构,遮光比通过栅线的疏密和栅线自身的宽窄来控制,而栅线电极自身的宽窄和高低受到器件剥离工艺和金属立体稳定性的限制,成为电池串联电阻减少的一个障碍。
发明内容
针对上述现有太阳电池电极结构对电池效率的限制,本发明的目的旨在提出一种适用于高倍聚光电池和薄膜电池的电极结构,以期减少金半接触,提高电池性能。
本发明的目的,将通过以下技术方案来实现:
适用于高倍聚光电池和薄膜电池的电极结构,所述电极结构形成于高倍聚光电池或薄膜电池的表面,其特征在于:所述电池表面形成的金属电极为密布而分散的网络孔状结构,与半导体的电池表面形成欧姆接触,其中所述网络孔状结构的每个单孔轴向长度远大于径向长度。
进一步地,前述的一种电极结构,其中该金属电极的图形包括网孔覆盖部分栅线电极配合实体共用电极、网孔覆盖全部栅线电极配合实体共用电极,或网孔全面覆盖栅线电极和共用电极。
进一步地,前述的一种电极结构,其中该网络孔状结构的每个单孔形状包括圆形、方形或任意多边形,单一或混杂地互联成网状。
进一步地,前述的一种电极结构,其中该网络孔状结构的复数个单孔大小相同且均匀排布成阵列形状,或离散分布;或单孔大小存在差异,均匀或离散地分布于金属电极上。
进一步地,前述的一种电极结构,其中高倍聚光电池或薄膜电池为基于III-V族材料的任意单结、双结及多结电池;或为基于体硅、多晶硅、微晶硅、多孔硅和非晶硅材料的任意单结或多结电池。
本发明的目的通过一种电极结构的制备方法来实现,其特征在于:所述网络孔状电极的结构为先在半导体的电池表面沉积金属层,而后对金属层进行刻蚀形成。其中所述沉积金属层的方法至少包括热蒸发、电子束蒸发、磁控溅射及电镀;所述网络孔状电极图形采用至少包括电子束曝光、干涉光刻、聚焦离子束光刻、普通光刻及自组装的方法制成;且针对金属层刻蚀的方法包括离子束刻蚀、聚焦离子束刻蚀和湿法腐蚀。
本发明目的的实现,还可以通过一种太阳电池电极结构的制备方法,其特征在于:所述网络孔状电极的结构制法为先在半导体的电池表面形成相反图形,沉积金属层后采用剥离的方式去除相反图形。
实施本发明的技术方案,其有益效果为:
本发明提出采用网络孔状结构电极代替原有的实体电极,一方面可以在栅线相同的情况下,获得稳定的电极图形,有效减少金属和半导体之间的非辐射复合,经网络孔透射的光一方面可以有效减少遮光比,同时降低发射层和窗口层的串联电阻。此外,采用大长径比的孔状结构,可以有效增加金属电极的高度,降低金属电极层的串联电阻,而密集排列的网络孔状电极又有利于载流子的有效收集,从而整体上提高该聚光电池或者薄膜电池的效率。
附图说明
下面结合具体实施例及其附图对本发明创新实质作进一步地详细说明:
图1是现有传统普式正面梳状电极结构的示意图;
图2是网络孔状结构覆盖栅线电极和共用电极的结构示意图;
图3是网络孔状结构覆盖整个电池表面的结构示意图。
具体实施方式
本发明为提高传统太阳电池的性能,提出了一种适用于高倍聚光电池和薄膜电池的新型电极结构,采用网络孔状结构的电极代替原有的实体电极,可以在栅线相同的情况下,获得稳定的电极图形。该电极结构的特殊性体现在:先选择合适的高倍聚光电池或薄膜电池结构材料,然后再采用适当方法在电池表面形成网络孔状电极结构。
上述太阳电池电极结构,其细化的技术方案主要包括:
首先,所选择的电池结构材料包括基于III-V族材料的任何单结、双结及多结电池结构材料,也包括基于体Si、多晶Si、微晶Si和非晶Si材料的单结多结电池结构材料。但凡用于高倍聚光的电池,或对光照面串联电阻特别敏感的电池结构材料、或对金属半导体界面非辐射复合非常敏感的电池结构。
其次,该网络孔状的电极结构,每个单孔5形状可以包括圆形、方形、多边形以及其它任何形状,但务必保证在每个结构单元中孔状网络可实现互联;此外,该任意单孔的大小没有具体限制,可根据具体的电池设计,主要是能满足电极间实现电互联并保证机械稳定性要求和实际工艺水平;且这些单孔的大小均匀性和密度均匀性也没有严格要求,只要满足金属和半导体间实现良好的欧姆接触,金属电极层可实现电互联,有效收集载流子,自身机械稳定性高即可。
特别地,该网络孔状电极形成的电极图形包括:网孔覆盖部分栅线电极配合实体共用电极、网孔覆盖全部栅线电极配合实体共用电极,或网孔全面覆盖栅线电极和共用电极。
以下通过本发明两个具体实施案例并结合其附图,进一步详细说明该太阳电池电极结构的特征及其效果,但值得注意的是:这些实施例仅作为示例提供,并非限制本发明的专利申请保护范围及实施范围。
实施例一
如图2所示,给出了具有网络孔状的栅线电极和共有电极结构示意图。其中网络孔状栅线电极1、网络孔状共用电极1、半导体接触层部分3、电池的其他半导体材料部分4复合构成,对于Si电池,该电池的其它半导体材料部分4包括PN结的emitter layer、base layer、背场以及衬底;而对于III-V电池,则电池的其他半导体材料部分包括window layer、emitter layer and base layer以及背场、隧道结和衬底等构成电池的所有材料。该种电池具有与目前普通电池一样的电极图形,所不同的是将所有的实体电极替换成了网络孔状电极,网孔的大小以及与实体的分布可以根据实际需要(电极机械稳定性和电极工艺)随意排布,遮光比仍然由栅线占空比决定,但是采用该种网络孔状电极构成的栅线电极和共用电极结构,一方面网络孔的长径比提高,可以有效增加电极高度,降低电极的串联电阻;同时减少金半接触面积,从网络孔进入的太阳光可以直接被电池的接触层吸收,降低接触层的串联电阻。因此,总体上有效降低了太阳电池的串联电阻和金属与半导体的界面复合,获得优异的聚光电池和薄膜电池性能。
实施例二
如图3所示,给出了完全采用网络孔状电极结构的太阳电池示意图。由网络孔状金属电极1、电池半导体接触层3和半导体电池的其它部分4复合而成,其中电池的其它部分对于Si电池来说,该部分包括PN结的emitterlayer、base layer、背场以及衬底;对于III-V电池来说,该部分包括windowlayer、emitter layer、base layer以及背场、隧道结和衬底等构成电池的所有材料。由于正面电极不是实体电极,而是网络孔状电极,对于III-V族电池,在对应的网络孔下面去除相应的接触层,太阳光可以透过这些网孔进入被电池吸收,其遮光比取决于网孔的占空比,同时,高长径比的网络孔状电极结构又可以获得低的串联电阻,此外该种结构电极与载流子产生区更接近,有利于高效收集载流子,也有利于散热。因此,非常适合高倍聚光电池使用。

Claims (9)

1.适用于高倍聚光电池和薄膜电池的电极结构,所述电极结构形成于高倍聚光电池或薄膜电池的表面,其特征在于:所述电池表面形成的金属电极为密布而分散的网络孔状结构,与半导体的电池表面形成欧姆接触,其中所述网络孔状结构的每个单孔轴向长度远大于径向长度。
2.根据权利要求1所述的适用于高倍聚光电池和薄膜电池的电极结构,其特征在于:所述金属电极的图形包括网孔覆盖部分栅线电极配合实体共用电极、网孔覆盖全部栅线电极配合实体共用电极,或网孔全面覆盖栅线电极和共用电极。
3.根据权利要求1所述的适用于高倍聚光电池和薄膜电池的电极结构,其特征在于:所述网络孔状结构的每个单孔形状包括圆形、方形或任意多边形,单一或混杂地互联成网状。
4.根据权利要求1所述的适用于高倍聚光电池和薄膜电池的电极结构,其特征在于:所述网络孔状结构的复数个单孔大小相同且均匀排布成阵列形状,或离散分布。
5.根据权利要求1所述的适用于高倍聚光电池和薄膜电池的电极结构,其特征在于:所述网络孔状结构的复数个单孔大小存在差异,均匀或离散地分布于金属电极上。
6.根据权利要求1所述的适用于高倍聚光电池和薄膜电池的电极结构,其特征在于:所述高倍聚光电池或薄膜电池为基于III-V族材料的任意单结、双结及多结电池;或为基于体硅、多晶硅、微晶硅、多孔硅和非晶硅材料的任意单结或多结电池。
7.权利要求1所述适用于高倍聚光电池和薄膜电池的电极结构的制备方法,其特征在于:所述网络孔状电极的结构为先在半导体的电池表面沉积金属层,而后对金属层进行刻蚀形成。
8.根据权利要求7所述适用于高倍聚光电池和薄膜电池的电极结构的制备方法,其特征在于:所述沉积金属层的方法至少包括热蒸发、电子束蒸发、磁控溅射及电镀;所述网络孔状电极图形采用至少包括电子束曝光、干涉光刻、聚焦离子束光刻、普通光刻及自组装的方法制成;且针对金属层刻蚀的方法包括离子束刻蚀、聚焦离子束刻蚀和湿法腐蚀。
9.权利要求1所述适用于高倍聚光电池和薄膜电池的电极结构的制备方法,其特征在于:所述网络孔状电极的结构制法为先在半导体的电池表面形成相反图形,沉积金属层后采用剥离的方式去除相反图形。
CN201010146162A 2010-04-02 2010-04-02 适用于高倍聚光电池和薄膜电池的电极结构 Pending CN101807609A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010146162A CN101807609A (zh) 2010-04-02 2010-04-02 适用于高倍聚光电池和薄膜电池的电极结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010146162A CN101807609A (zh) 2010-04-02 2010-04-02 适用于高倍聚光电池和薄膜电池的电极结构

Publications (1)

Publication Number Publication Date
CN101807609A true CN101807609A (zh) 2010-08-18

Family

ID=42609313

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010146162A Pending CN101807609A (zh) 2010-04-02 2010-04-02 适用于高倍聚光电池和薄膜电池的电极结构

Country Status (1)

Country Link
CN (1) CN101807609A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102446986A (zh) * 2010-09-30 2012-05-09 常州天合光能有限公司 一种硅太阳能电池的栅线结构
CN106548926A (zh) * 2016-10-27 2017-03-29 京东方科技集团股份有限公司 多晶硅层的制备方法、薄膜晶体管、阵列基板及显示装置
CN107140600A (zh) * 2017-05-16 2017-09-08 广东工业大学 一种金属孔可控制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721872A (en) * 1980-07-15 1982-02-04 Hitachi Ltd Photocell
US5034068A (en) * 1990-02-23 1991-07-23 Spectrolab, Inc. Photovoltaic cell having structurally supporting open conductive back electrode structure, and method of fabricating the cell
WO2000031803A1 (en) * 1998-11-23 2000-06-02 Stichting Energieonderzoek Centrum Nederland Method for optimizing a metallization pattern on a photovoltaic cell
US20020130605A1 (en) * 1998-07-04 2002-09-19 Peter Mueller Electrode for use in electro-optical devices
JP2009158575A (ja) * 2007-12-25 2009-07-16 Sharp Corp 光電変換装置および光電変換装置の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5721872A (en) * 1980-07-15 1982-02-04 Hitachi Ltd Photocell
US5034068A (en) * 1990-02-23 1991-07-23 Spectrolab, Inc. Photovoltaic cell having structurally supporting open conductive back electrode structure, and method of fabricating the cell
US20020130605A1 (en) * 1998-07-04 2002-09-19 Peter Mueller Electrode for use in electro-optical devices
WO2000031803A1 (en) * 1998-11-23 2000-06-02 Stichting Energieonderzoek Centrum Nederland Method for optimizing a metallization pattern on a photovoltaic cell
JP2009158575A (ja) * 2007-12-25 2009-07-16 Sharp Corp 光電変換装置および光電変換装置の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102446986A (zh) * 2010-09-30 2012-05-09 常州天合光能有限公司 一种硅太阳能电池的栅线结构
CN106548926A (zh) * 2016-10-27 2017-03-29 京东方科技集团股份有限公司 多晶硅层的制备方法、薄膜晶体管、阵列基板及显示装置
CN106548926B (zh) * 2016-10-27 2018-04-10 京东方科技集团股份有限公司 多晶硅层的制备方法、薄膜晶体管、阵列基板及显示装置
US10283355B2 (en) 2016-10-27 2019-05-07 Boe Technology Group Co., Ltd. Method for manufacturing poly-silicon layer, thin film transistor, array substrate and display device
CN107140600A (zh) * 2017-05-16 2017-09-08 广东工业大学 一种金属孔可控制造方法

Similar Documents

Publication Publication Date Title
Xing et al. A review of concentrator silicon solar cells
US7847180B2 (en) Nanostructure and photovoltaic cell implementing same
US9960302B1 (en) Cascaded photovoltaic structures with interdigitated back contacts
CN101151736A (zh) 三维多结光生伏打器件
WO2019218639A1 (zh) 一种背面钝化矩阵点式激光开槽导电结构
CN103840017A (zh) 一种石墨烯硅基太阳能电池及其制造方法
CN101700871B (zh) 铜铟硒纳米线阵列及其制备方法与应用
CN104332522B (zh) 一种石墨烯双结太阳能电池及其制备方法
CN110047952A (zh) 一种太阳能电池Al栅线结构及其制备方法
CN101700872B (zh) 铜铟镓硒纳米线阵列及其制备方法与应用
CN103038885A (zh) 在会聚的太阳辐射通量下使用的光伏组件
CN102054889A (zh) 一种双结太阳电池及其制备方法
CN105990525B (zh) 一种太阳能电池及其制备方法
CN111799348A (zh) 一种异质结背接触太阳能电池及其形成方法
CN115241299A (zh) 一种太阳能电池以及光伏组件
CN110752274A (zh) 一种用阴罩掩膜镀膜制造hbc电池片及电池的方法
CN101807609A (zh) 适用于高倍聚光电池和薄膜电池的电极结构
WO2012057604A1 (en) Nanostructure-based photovoltaic cell
CN106449850A (zh) 一种高效硅基异质结双面电池及其制备方法
CN116913989A (zh) 太阳能电池及光伏组件
CN206961839U (zh) 一种砷化镓太阳能电池
CN216084899U (zh) 一种新能源应用相变蓄热的太阳能电池
CN101459206A (zh) 高效多结太阳能电池的制造方法
CN102280501B (zh) 一种硅基埋栅薄膜太阳能电池
Pengcheng et al. Characteristics and development of interdigital back contact solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20100818