CN101803163A - 与输出功率无关地以临界导电模式工作的多通道直流调节器 - Google Patents

与输出功率无关地以临界导电模式工作的多通道直流调节器 Download PDF

Info

Publication number
CN101803163A
CN101803163A CN200880105014A CN200880105014A CN101803163A CN 101803163 A CN101803163 A CN 101803163A CN 200880105014 A CN200880105014 A CN 200880105014A CN 200880105014 A CN200880105014 A CN 200880105014A CN 101803163 A CN101803163 A CN 101803163A
Authority
CN
China
Prior art keywords
current
channel
direct current
time
microcontroller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880105014A
Other languages
English (en)
Other versions
CN101803163B (zh
Inventor
拉尔夫·巴特林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kostal Industrie Elektrik GmbH
Original Assignee
Kostal Industrie Elektrik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kostal Industrie Elektrik GmbH filed Critical Kostal Industrie Elektrik GmbH
Publication of CN101803163A publication Critical patent/CN101803163A/zh
Application granted granted Critical
Publication of CN101803163B publication Critical patent/CN101803163B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/15Arrangements for reducing ripples from dc input or output using active elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

描述了一种多通道直流调节器,该直流调节器具有多个并联的电流通道,所述电流通道通过微控制器彼此时间错位地进行控制,其中,电流通道各具有至少两个半导体开关(T1、T2、T3、T4),能够通过这些半导体开关使得电流通道由微控制器作为升压转换器或者作为降压转换器工作,其中,至少一个电流通道具有用于检测电流过零的装置(W),其中,微控制器检测该电流通道内电流过零的周期时间,并且其中,微控制器根据所检测的周期时间使由所有电流通道组成的直流调节器始终以临界导电模式工作。

Description

与输出功率无关地以临界导电模式工作的多通道直流调节器
技术领域
本发明涉及一种多通道直流调节器,该直流调节器具有多个并联的电流通道,所述电流通道通过微控制器彼此时间错位地进行控制。
背景技术
德国专利申请DE 10 2004 011 801 A1公开了一种具有四个并联电流通道的直流调节器,该直流调节器描述为一种纯升压转换器。为控制该直流调节器需要外部的限时元件。
此外还公开了双向直流调节器。这种直流调节器的基本电路在图2中示出。
发明内容
本发明的目的在于,提供一种直流调节器,该直流调节器结构简单和成本低廉,可以尽可能广泛和高效使用并提供尽可能平整的电流。
该目的根据本发明由此得以实现,即电流通道各具有至少两个半导体开关,通过这些半导体开关使得所述电流通道由微控制器作为升压转换器或者作为降压转换器工作,至少一个电流通道具有用于检测电流过零的装置,微控制器检测该电流通道内电流过零的周期时间,并且微控制器根据所检测的周期时间使所有电流通道以临界导电模式工作。
附图说明
附图中示意性示出本发明的实施例并在下面借助附图进行详细说明。
其中:
图1示出根据本发明的多通道双向直流调节器的基本电路;
图2示出根据现有技术的双向直流调节器的基本电路;
图3至5示出升压转换器的电流分布曲线图;
图6至8示出降压转换器的电流分布曲线图;
图9示出双向直流调节器的应用例;
图10示出根据现有技术的调节回路;
图11示出能以临界导电模式工作的双向直流调节器的基本电路;
图12示出根据图11以升压转换器工作时电路的电流分布曲线图;
图13示出根据图11的电路的调节回路;
图14示出以升压转换器工作时多通道直流调节器的电流分布曲线图;
图15示出根据图11作为降压转换器的电路的另一电流分布曲线图;
图16示出调节回路的一部分;
图17示出根据图16的调节回路部分的简图;
图18示出以降压转换器工作时多通道直流调节器的电流分布曲线图。
具体实施方式
图2示出双向直流调节器的示意性示出的基本电路,借助其介绍直流调节器的基本工作原理。直流调节器基本上由第一和第二电源(U1、U2)、蓄能电抗器L1以及优选构造成IGBT(Insulated Gate BipolarTransistor)的两个半导体开关T1、T2组成。与半导体开关(T1、T2)的负载接头并联联接各一个自振荡二极管(D1、D2)。
半导体开关(T1、T2)这样与其他元件联接,在第一半导体开关T1接通时,使蓄能电抗器L1的接头通过第一半导体开关T1与第一电源U1连接,而在第二半导体开关T2接通时,使蓄能电抗器L1与第二半导体开关T2和两个电源(U1、U2)同时串联。
这种直流调节器的工作原理在于,通过接通半导体开关(T1或T2)中的一个,给蓄能电抗器L1供电,蓄能电抗器L1因此构成磁场。储存在该磁场内的能量在断开一个半导体开关(T1或T2)后产生感应电流(输出电流i2或i1),该感应电流通过各自另一半导体开关(T1或T2)所属的自振荡二极管(D2或D1)和电源(U2、U1)之一流动。
为连续工作,例如需要通过PWM控制(PWM=脉冲宽度调制)对半导体开关(T1或T2)之一进行脉冲控制(Taktung),其可以通过中央控制装置和特别有利地通过微控制器实现。没有总体上的限制,这种控制装置下面称为微控制器。为简化在附图中取消了微控制器的图示。
原则上直流调节器分为两种工作方式,也就是升压转换器工作和降压转换器工作。
升压转换器工作(图3至5)
以升压转换器工作时,能量从第一电源U1向第二电源U2流动。为此半导体开关T1利用适当的PWM信号控制。半导体开关T2在这种工作状态下未激活并因此无电流。为使电路可以工作,第二电源U2的电压u2必须大于第一电源U1的电压u1
在直流调节器工作时,原则上确定三种不同的工作状态。这些工作状态由蓄能电抗器L1的电流分布iL1确定。图3至5示出三种工作状态典型的电流和电压分布。在这种情况下,uT1为第一半导体开关T1的控制电压,并且iT1、iD2和iL1为通过第一半导体开关T1、所属的二极管D1和蓄能电抗器L1流动的电流。
升压转换器三种可能的工作状态为:
·连续工作,也就是蓄能电抗器L1内的电流iL1没有零位(图3),
·断续工作,也就是出现蓄能电抗器L1无电流的时间间隔(图4),
·临界导电模式工作(过渡模式;Transition Mode)。在这里通过适当控制半导体开关T1,蓄能电抗器L1内的电流iL1保持在临界导电模式,也就是正好保持在连续与断续工作之间(图5)。
连续的升压转换器工作(图3)
蓄能电抗器L1内的电流iL1在这里没有零位。半导体开关T1接通阶段期间,电流iL1取决于下列微分方程式:
u L 1 = L di L 1 dt
如果二极管D2接通适用:
u 1 - u 2 = L di L 1 dt
因为u2大于u1,所以导数为负并且电流在该阶段下降。因此总体上电流分布取决于半导体开关T1的接通时间、电压u1和u2以及蓄能电抗器L1的电感L。
断续的升压转换器工作(图4)
在这种情况下,通过蓄能电抗器L1的电流iL1具有零位。这种工作状态通常也称为“间歇工作”。
升压转换器以临界导电模式(过渡模式)工作(图5)
图5示出升压转换器以也称为过渡模式的临界导电模式工作。这种工作状态的优点是,半导体开关T1在无电流状态下也接通并因此开关损耗最小。此外,自振荡二极管D1可以作为“正常的”快速硅二极管构成。通常在太阳能逆变器的升压转换器内使用碳化硅二极管,因为二极管的所谓反向恢复电流完全确定半导体开关T1内的损耗。此外蓄能电抗器L1得到最佳利用,也就是说,不存在蓄能电抗器L1无电流和不传递能量的时间间隔。
在采用恒定开关频率工作的直流调节器的情况下,确定出现上述三种工作状态的各自负载状态。
降压转换器工作(图6至8)
以降压转换器工作时,在根据图2的电路中,能量从电源U2向U1流动。为此半导体开关T2利用适当的脉冲宽度调制的控制电压uT2被控制。半导体开关T1未激活并因此无电流。为使电路可以工作,u2在这里必须同样大于u1
类似于升压转换器的工作状态,图6至8示出降压转换器工作时三种可能的工作状态。这里也示出与第二半导体开关T2的控制电压uT2的分布相对应的表征的电流分布iT2、iD1和iL1
所示工作状态为:
·连续工作状态(图6),
·断续工作状态(图7),
·临界导电的工作状态(过渡模式;图8)。
因此介绍了图2所示电路所有可能的工作状态。这种双向调节器例如可以在独立逆变器的电池管理用的太阳能技术中使用。图9的电路图示出双向调节器的应用。
图9所示的太阳能设备由太阳能发电机1供电。该发电机通过单向工作的升压转换器2与直流电压中间回路3连接。太阳能发电机1的能量然后可以由逆变器4利用三个输出端相位(P1、P2、P3)输入公共电网内。
在太阳能发电机1提供的功率高于输入电网所需的功率的时间内,蓄电池5可以通过双向直流调节器6充电。对此的前提是,直流电压中间回路3内的电压uz大于蓄电池5的电压uB。直流调节器6在这种情况下作为降压转换器工作,并且能量流动方向是从直流电压中间回路3到蓄电池5。
如果电网需要比太阳能发电机1暂时能够提供的更多的电能,那么蓄电池5只要此前得到足够充电,就可以将能量附加输入直流电压中间回路3内。双向直流调节器6然后作为升压转换器工作,也就是说,在这里直流电压中间回路3内的电压uz也必须大于蓄电池电压uB。能量流动方向现在从蓄电池5到直流电压中间回路3。
目前所使用的双向直流调节器通常为控制半导体开关使用固定频率的脉冲宽度调制。这样使电路可以根据负载情况在断续或连续工作状态下或者在临界导电模式的工作状态下工作并在这些工作状态之间来回变换。
调节技术上通常为这种直流调节器设置基本的电流调节回路。该电路要么借助例如具有控制器IC的硬件要么利用微控制器实现。在光电逆变器中,几乎仅使用数字调节的系统,从而为电流调节必须检测实时电流实际值并进行处理。
图10示出这种设置调节技术的等效电路图。调节作为串级调节系统实现。存在内部的“快速”调节回路(电流额定值i_soll、I调节器、积分调节器1/L、电流实际值i_ist;虚线所示)和外部的调节回路(电压额定值u_soll、U调节器、积分调节器1/C、电压实际值u_ist)用于电压调节。
这种调节器具有多个缺点:
·必须实时检测和处理电流实际值i_ist。
·根据电路的工作状态(连续、断续或过渡模式)改变电流调节回路的特性,从而在这些情况下必须进行I调节器内的配合。
·因为蓄能电抗器的电感L决定性地确定电流调节回路的性能,所以对其数值来说不得低于一定的下限。
·如果电路处于连续工作状态下,那么激活的半导体开关内损耗急剧上升,因为然后半导体开关连接到接通的自振荡二极管上。自振荡二极管的反向恢复充电严重影响半导体开关的接通损耗。
·为降低所谓的反向恢复损耗,通常使用碳化硅二极管取代常用的硅二极管。这种二极管极其昂贵、难于使用和不太耐用。
·由于功率终放级的“硬”接通工作,通常尽可能低地选择开关频率。这样导致蓄能电抗器的结构体积加大。
双向过渡模式调节器的说明
图11示意性示出一种可以始终以临界导电模式工作的双向直流调节器。为此在蓄能电抗器L1上安装附加的线圈W,该线圈W仅需具有少量几个绕组,并且通过这些绕组可以检测蓄能电抗器L1内的电流过零。电流过零的时间点例如由未示出的微控制器识别,该微控制器然后立即重新控制半导体开关(T1或T2)之一。根据负载状态出现这样一种功率终放级的可变开关频率;输出功率越高,开关频率越低。
如果将充磁阶段的时间采用“t_on”标注并将退磁阶段的时间采用“t_off”标注,那么在考虑到线性关系的情况下可以设下列方程式:
i L 1 _ dach = u 1 · t _ on L i L 1 _ dach = ( u 2 - u 1 ) · t _ off L
从图12中可以看出,电流iL1的平均值iL1_avg正好相当于最大电流值iL1_dach的一半。因此通过预先规定的接通时间t_on可以直接和无延迟地调整电流iL1_avg
因此为升压转换器运行形成图13所示调节技术的等效电路图。在这里不再需要基本的电流调节回路,因为直流调节器通过电流过零识别始终处于过渡模式,也就是始终以临界导电模式工作并因此t_on与iL1_avg成比例。各自的负载状态在调节回路内通过影响值负载电流i_Last考虑。
但临界导电上工作的缺点是蓄能电抗器iL1并因此还有输出电流i1或i2内的大的波动。为降低这种大的波动,使用具有多个并联电流通道(I、II)的直流调节器。图1示出具有两个电流通道的这种直流调节器。
为构成直流调节器,不言而喻也可以设有两个以上的并联电流通道(I、II),这样尽管元件开支较大,但仍有利,因为利用任何其他的电流通道降低蓄能电抗器iL1的波动。
第一电流通道I通过蓄能电抗器L1、半导体开关T1和T2以及二极管D1和D2形成;第二电流通道II相应通过蓄能电抗器L2、半导体开关T3和T4以及二极管D3和D4形成。
两个电流通道(I、II)以相同的脉冲率但各自带有时间错位量的方式被脉冲控制。为半导体开关(T1、T3或T2、T4)的脉冲控制所设置的微控制器在此方面有利地可以控制全部电流通道(I、II)的各自待脉冲控制的半导体开关(T1、T3或T2、T4)。
与第一电流通道I并联的第二电流通道II内的蓄能电抗器L2在这里没有用于识别电流过零的级。电流通道II在取决于第一电流通道I内所检测的电流过零情况下进行控制,并因此可以称为“副通道”,在后面则称为“主通道”的第一通道I内,其蓄能电抗器L1具有用于电流过零识别的线圈W。
如果主通道I与副通道II或者需要时还有其他副通道之间的相移为360°/n(n=电流通道的数量),那么输出电流i1或i2中的波动变得最小。微控制器现在从所检测的电流过零中确定主通道I的周期持续时间,以便从该信息中测定副通道II和需要时还有其他副通道的点火时间点。
图14中示出图1的双通道直流调节器,该直流调节器作为升压转换器工作。上部的曲线图示出通过主通道I内蓄能电抗器L1的电流分布iL1;中间的曲线图示出通过副通道II内蓄能电抗器L2的电流分布。微控制器实时确定主通道I电流过零的时间间隔T周期,以便从中然后计算出副通道II的点火时间点。因为利用主通道I和副通道II在这里总计实现两个电流通道(n=2),所以在相对于主通道I的控制而控制副通道II的半导体开关(T1、T3)时,时间错位量为1/n=1/2周期持续时间T周期/2。
图14示出在这里相反作为-i1产生的输出电流i1具有明显低于每个单个的电流通道(I、II)内电流分布(iL1、iL2)的波动。在一种实际构成中有利的是,取代仅一个副通道II而设有多个副通道,因为由此可以取得更加平整的输出电流。
除了此前介绍的升压转换器工作外,直流调节器也可以作为降压转换器工作,这样特别是对具有蓄电池缓冲器的光电逆变器具有意义。
对降压转换器工作适用对升压转换器工作非常相似的条件。从图15示意性示出的电流分布iL1中可以看出这些条件:
i L 1 _ dach = u 1 · t _ off L i L 1 _ dach = ( u 2 - u 1 ) · t _ on L
以降压转换器工作时,断开时间t_off与通过蓄能电抗器L1的最大电流iL1_dach或平均电流iL1_avg成比例。但因为微控制器只能直接调节接通时间t_on,所以必须使用另一个条件,以便可以实现调节。从最后所称的两个方程式中可以产生下列关系式:
t _ on = t _ off u 1 u 2 - u 1
通过微控制器同时检测电压u1和u2,微控制器可以计算出所需的接通时间t_on,然后得出所要求的t_off。如图15所示,t_on和t_off的和恰好得出由微控制器检测的两个电流过零之间的时间。只要电路工作时以临界导电模式工作,就可以无延迟地直接调整iL1_avg
因此也可以实现图16所示的调节回路。如果将降压转换器工作用于蓄电池的充电,那么一般情况下无需叠加的电压调节回路。充电电流的额定值i_soll可以直接由微控制器预先规定。图16中的两个比例元件L1/U1、U1/(U2-U1)然后仍可以组成唯一的比例元件L1/(U2-U1),由此获得图17中所示的调节回路。
通过使用过渡模式调节器,使得能够在无后置的电流调节回路的情况下直接且无延迟地调节电流。
图18示出电流通道(I、II)内和降压转换器工作时直流调节器输出端上的电流分布iL1、iL2。这些电流分布iL1、iL2完全相对应于从图14看到的升压转换器反向的电流分布。因此,通过时间错位地控制电流通道(I、II)还可以获得特别平整的输出电流(-i1)。
附图标记
1                    太阳能发电机
2                    升压转换器
3                    直流电压中间回路
4                    逆变器
5                    蓄电池
6                    直流调节器
D1-D4                (自振荡)二极管
I                    第一电流通道(主通道)
II                   第二电流通道(副通道)
L                    (蓄能电抗器的)电感
L1、L2               蓄能电抗器
T1-T4                半导体开关
U1、U2               电压(电源)
P1、P2、P3           相位
UZ                   直流电压中间回路内的电压
UB                   蓄电池的电压
W                    线圈
i1、i2               输出电流
iT1、iT2、iD1        (通过各自指示的元件的)电流
iL1_avg              平均输出电流
i_ist                电流实际值
i_Last               负载电流
i_soll               电流额定值
t_on                 接通时间
t_off                断开时间
T周期                (电流过零的时间间隔的)周期时间
T周期/2              时间错位量
u_ist             电压实际值(输出电压)
u_soll            电压额定值
u1、u2            (电源U1和U2的)电压
uB                蓄电池电压
uT1、uT2          (半导体开关的)控制电压
uz                直流电压中间回路内的电压
1/C、1/L                           积分调节器
L1/U1、U1/(U2-U1)L1/(U2-U1)        比例元件

Claims (9)

1.多通道直流调节器,
具有多个并联的电流通道,所述电流通道通过微控制器彼此时间错位地被控制,
其特征在于,
所述电流通道(I、II)各具有至少两个半导体开关(T1、T2;T3、T4),能够通过所述半导体开关使得所述电流通道(I、II)由所述微控制器作为升压转换器或者作为降压转换器工作;
至少一个电流通道(I)具有用于检测电流过零的装置;
所述微控制器检测所述电流通道(I)内电流过零的周期时间(T周期);
并且所述微控制器根据所检测的所述周期时间(T周期)使所有电流通道(I、II)以临界导电模式工作。
2.根据权利要求1所述的直流调节器,其特征在于,所述微控制器以时间错位量(T周期/2)调控所述电流通道(I、II),其中,所述时间错位量(T周期/2)通过所检测的周期时间(T周期)除以所述电流通道的数量得出。
3.根据权利要求1所述的直流调节器,其特征在于,每个电流通道(I、II)具有至少一个蓄能电抗器(L1、L2),并且至少一个电流通道(I)的蓄能电抗器(L1)具有附加的线圈(W),所述微控制器为检测所述电流过零评估所述线圈(W)的输出信号。
4.根据权利要求1所述的直流调节器,其特征在于,所述直流调节器为光电设备的蓄电池(5)用的充电/放电电路的组成部分。
5.根据权利要求4所述的直流调节器,其特征在于,所述微控制器为使所述蓄电池(5)充电将所述直流调节器控制为降压转换器,而为使所述蓄电池(5)放电将所述直流调节器控制为升压转换器。
6.根据权利要求5所述的直流调节器,其特征在于,电流通道(I、II)的所述半导体开关(T1、T2、T3、T4)中的各一个用的接通时间(t_on)产生所述直流调节器的与所述接通时间(t_on)成比例的输出电流(i1、i2)。
7.根据权利要求6所述的直流调节器,其特征在于,所述接通时间(t_on)在升压转换器工作时通过所述直流调节器的输出电压(u_ist)用的叠加的电压调节回路(U调节器、1/C)调节。
8.根据权利要求6所述的直流调节器,其特征在于,所述接通时间(t_on)在降压转换器工作时与平均输出电流(iL1_avg)成比例,且与输出/输入电压差(U2-U1)成反比例。
9.根据前述权利要求中一项所述的直流调节器,其特征在于,微控制器控制全部电流通道(I、II)的半导体开关(T1、T2、T3、T4)。
CN2008801050142A 2007-08-31 2008-08-29 与输出功率无关地以临界导电模式工作的多通道直流调节器 Expired - Fee Related CN101803163B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102007041510.0 2007-08-31
DE102007041510A DE102007041510A1 (de) 2007-08-31 2007-08-31 Mehrkanaliger Gleichstromsteller
PCT/EP2008/061422 WO2009027523A1 (de) 2007-08-31 2008-08-29 Mehrkanaliger gleichstromsteller der unabhängig von der ausgangsleistung an der lückgrenze arbeitet

Publications (2)

Publication Number Publication Date
CN101803163A true CN101803163A (zh) 2010-08-11
CN101803163B CN101803163B (zh) 2013-05-29

Family

ID=40130568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008801050142A Expired - Fee Related CN101803163B (zh) 2007-08-31 2008-08-29 与输出功率无关地以临界导电模式工作的多通道直流调节器

Country Status (8)

Country Link
US (1) US8378633B2 (zh)
EP (1) EP2193597B1 (zh)
CN (1) CN101803163B (zh)
DE (1) DE102007041510A1 (zh)
DK (1) DK2193597T3 (zh)
ES (1) ES2411466T3 (zh)
PT (1) PT2193597E (zh)
WO (1) WO2009027523A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412722A (zh) * 2010-09-22 2012-04-11 三菱电机株式会社 Dc-dc转换器
CN103384122A (zh) * 2012-05-04 2013-11-06 施耐德电器工业公司 转换级、电转换器、交直电流转换装置、再充电端装置
CN105119486A (zh) * 2015-09-23 2015-12-02 三峡大学 一种低电压应力双向dc/dc变换器
CN110994993A (zh) * 2019-12-30 2020-04-10 施耐德电气(中国)有限公司 一种多通道双向升降压电路
CN111226394A (zh) * 2017-11-01 2020-06-02 艾思玛太阳能技术股份公司 电路装置和电力电子转换器电路

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007057230A1 (de) 2007-11-28 2009-06-04 Kostal Industrie Elektrik Gmbh Verfahren zur Steuerung eines Gleichstromstellers
US8576598B2 (en) * 2009-07-20 2013-11-05 General Electric Company Systems, methods, and apparatus for converting direct current (DC) power to alternating current (AC) power
TWI473394B (zh) * 2009-09-04 2015-02-11 Richtek Technology Corp 切換式電源供應器及其驅動電路與控制方法
JP5355617B2 (ja) 2011-04-25 2013-11-27 三菱電機株式会社 電源装置
US8963529B2 (en) * 2011-04-28 2015-02-24 Texas Instruments Incorporated Transition mode charge control for a power converter
DE102012204255A1 (de) * 2012-03-19 2013-09-19 Siemens Aktiengesellschaft Gleichspannungswandler
DE102013009823A1 (de) * 2013-06-11 2014-12-11 Liebherr-Components Biberach Gmbh Elektrisches Antriebssystem sowie Engergiespeichervorrichtung hierfür
US9343967B2 (en) * 2014-01-24 2016-05-17 Analog Devices, Inc. Single input multiple input/output supply for energy harvest application
CN104065119B (zh) * 2014-06-04 2017-01-04 南京矽力杰半导体技术有限公司 电池供电电路及供电方法
US20170063094A1 (en) * 2015-08-27 2017-03-02 Sunpower Corporation Power processing
US9966853B2 (en) 2015-10-05 2018-05-08 Maxim Integrated Products, Inc. Method and apparatus for multi-phase DC-DC converters using coupled inductors in discontinuous conduction mode
FR3138253A1 (fr) * 2022-07-25 2024-01-26 Synchrotron Soleil Système de conversion tension/courant ou courant/tension.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905369A (en) * 1996-10-17 1999-05-18 Matsushita Electric Industrial Co., Ltd. Variable frequency switching of synchronized interleaved switching converters
JP4110470B2 (ja) * 2003-05-28 2008-07-02 株式会社デンソー 多相多重制御方式
DE102004011801A1 (de) 2003-11-11 2005-06-09 Leopold Kostal Gmbh & Co Kg Verfahren zur Steuerung eines Hochsetzstellers und mehrkanaliger Hochsetzsteller sowie Verwendung eines solchen
US7288924B2 (en) * 2004-07-16 2007-10-30 Cellex Power Products, Inc. Digital input current control for switch mode power supplies
JP2006149107A (ja) * 2004-11-19 2006-06-08 Matsushita Electric Ind Co Ltd 多出力電源回路
US7375985B2 (en) * 2006-03-17 2008-05-20 Yuan Ze University High efficiency single stage bidirectional converter
US7652393B2 (en) * 2006-09-14 2010-01-26 American Power Conversion Corporation Apparatus and method for employing a DC source with an uninterruptible power supply

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412722A (zh) * 2010-09-22 2012-04-11 三菱电机株式会社 Dc-dc转换器
CN102412722B (zh) * 2010-09-22 2014-12-10 三菱电机株式会社 Dc-dc转换器
CN103384122A (zh) * 2012-05-04 2013-11-06 施耐德电器工业公司 转换级、电转换器、交直电流转换装置、再充电端装置
CN103384122B (zh) * 2012-05-04 2018-02-27 施耐德电器工业公司 转换级、电转换器、交直电流转换装置、再充电端装置
CN105119486A (zh) * 2015-09-23 2015-12-02 三峡大学 一种低电压应力双向dc/dc变换器
CN111226394A (zh) * 2017-11-01 2020-06-02 艾思玛太阳能技术股份公司 电路装置和电力电子转换器电路
CN111226394B (zh) * 2017-11-01 2024-03-22 艾思玛太阳能技术股份公司 电路装置和电力电子转换器电路
CN110994993A (zh) * 2019-12-30 2020-04-10 施耐德电气(中国)有限公司 一种多通道双向升降压电路
CN110994993B (zh) * 2019-12-30 2021-01-29 施耐德电气(中国)有限公司 一种多通道双向升降压电路

Also Published As

Publication number Publication date
CN101803163B (zh) 2013-05-29
DE102007041510A1 (de) 2009-03-05
WO2009027523A1 (de) 2009-03-05
DK2193597T3 (da) 2013-06-10
US8378633B2 (en) 2013-02-19
EP2193597A1 (de) 2010-06-09
EP2193597B1 (de) 2013-03-06
US20100164435A1 (en) 2010-07-01
ES2411466T3 (es) 2013-07-05
PT2193597E (pt) 2013-06-04

Similar Documents

Publication Publication Date Title
CN101803163B (zh) 与输出功率无关地以临界导电模式工作的多通道直流调节器
Caricchi et al. Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives
US7227277B2 (en) Multiple input DC-DC power converter
US7948221B2 (en) Electric power converter
US7009859B2 (en) Dual input DC-DC power converter integrating high/low voltage sources
US8853888B2 (en) Multiple-input DC-DC converter
CN102468677B (zh) 基于控制策略向负载提供功率的系统和方法
CN102904450B (zh) 电流型绝缘转换器
US20110149609A1 (en) Bidirectional signal conversion
CN103872919A (zh) 直流-直流变换器及直流-直流变换系统
CN111725993B (zh) 一种高效Sepic软开关变换器及其控制方法
CN111231730B (zh) 一种充电桩充放电控制方法及系统
CN100420135C (zh) 不断电供电系统的控制方法
CN103296712A (zh) 用于储能装置的充电电路和为储能装置充电的方法
CN102474190A (zh) 用于对蓄电池组充电的充电装置
Song et al. A three-switch-based single-input dual-output converter with simultaneous boost & buck voltage conversion
CN111231703B (zh) 一种充电桩充放电控制方法及充放电系统
JP5414950B2 (ja) 高効率led電源
Rezaii et al. Design and experimental study of a high voltage gain bidirectional dc-dc converter for electrical vehicle application
US20220393472A9 (en) Vehicle-grid-home power interface
CN116365879A (zh) 一种新型双向llc电路及其控制方法
Praneeth et al. A zero-voltage, zero-current transition boost cascaded-by-buck PFC converter for universal E-transportation charging applications
Jin et al. Single-inductor multiple-output inverter with precise and independent output voltage regulation
CN102055338B (zh) 恒定电压输出电路
WO2008064767A1 (en) Power supply system for a vehicle, and method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130529

Termination date: 20170829

CF01 Termination of patent right due to non-payment of annual fee