CN101800611A - 基于sbs光存储的连续可调同步范围的otdm系统 - Google Patents

基于sbs光存储的连续可调同步范围的otdm系统 Download PDF

Info

Publication number
CN101800611A
CN101800611A CN200910243137A CN200910243137A CN101800611A CN 101800611 A CN101800611 A CN 101800611A CN 200910243137 A CN200910243137 A CN 200910243137A CN 200910243137 A CN200910243137 A CN 200910243137A CN 101800611 A CN101800611 A CN 101800611A
Authority
CN
China
Prior art keywords
optical fiber
laser
light
pulse
data pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910243137A
Other languages
English (en)
Other versions
CN101800611B (zh
Inventor
丁迎春
司军
李娇娇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN 200910243137 priority Critical patent/CN101800611B/zh
Publication of CN101800611A publication Critical patent/CN101800611A/zh
Application granted granted Critical
Publication of CN101800611B publication Critical patent/CN101800611B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)
  • Lasers (AREA)

Abstract

本发明是基于SBS光存储的连续可调同步范围的OTDM系统,属于非线性光学领域。该系统中两路SBS的宽带泵浦光脉冲是由噪声源调制的两个连续DFB激光器产生的。三路波长不相等的数据脉冲分别由窄带半导体激光器产生。两路独立可调谐的数据脉冲的延时是由数据脉冲在非线性光学介质中与与之对应的泵浦光相互作用产生的。每一路泵浦光都可以产生读写脉冲。泵浦激光器产生的读写脉冲通过SBS过程对两路数据脉冲进行存储。由于对数据脉冲的存储时间可以实现主动控制,所以可以方便的实现三路数据脉冲的同步和同步范围的可调谐。在发明中用硫系化合物玻璃光纤作为非线性光学介质,可以实现存储系统的长寿命,也增加了几路延时信号的同步范围。

Description

基于SBS光存储的连续可调同步范围的OTDM系统
技术领域
本发明涉及一种利用非线性光学技术实现光时分复用的系统,具体为用SBS(受激布里渊散射)光存储技术实现光延时的OTDM(optical time-divisionmultiplexer)系统,该系统可实现多路数据脉冲同步的主动控制、同步范围连续可调谐的功能,属于非线性光学领域。
背景技术
在文献B.zhang,L.-S.Yan,Jeng-Yang,I.Fazal,and Alan E.Willner.Asingle slow-light element for independent delay control and synchronization onmultiple Gb/s data channels.IEEE Photon.Technol.Lett.2007,19(14):1081-1083中介绍了一种利用SBS慢光延时线的光时分复用系统。三台输出波长分别为1546.8nm、1554.7nm和1550.9nm的窄带连续半导体激光器分别用MZM调制器(Mach-Zehnder modulators)调制产生三束数据脉冲激光,激光中的前两束光有着自己独立的控制宽带泵浦光,后一束光是没有泵浦光的参考光。宽带泵浦光是通过用噪声源直接调制半导体激光器的控制电流产生的。宽带泵浦光经过掺铒光纤放大器(Erbium-doped fiber amplifiers)放大后进入非线性光纤。三路独立调制的不相关的非归零数据通道与两路宽谱光在非线性光纤中逆向传播。用光纤偏振控制器(fiber polarization controllers)保证两路延时信号获得独立最大的SBS相互作用。通过使得慢光带宽和泵浦功率最佳化可以增加同步范围。在上述实验中,实现了在同一种介质中产生多路、独立、可调谐慢光谐振,并实现了多路信号光的同步。原理是基于SBS的慢光延时线。即在非线性光纤中信号光与具有10GHz频率蓝移的泵浦光相遇,由于发生了SBS相互作用,使得信号光发生了延时。实际上每路信号光发生的SBS慢光增益谐振是由与之对应的具有10GHz频率蓝移的泵浦光激发产生的。因此利用多路这样的泵浦光在同一块非线性介质中可以取得多路慢光增益谐振。
在文献B.zhang,L.Zhang,L.-S.Yan,I.Fazal,and Alan E.Willner.Continously-tunable,bit-rate variable OTDM using broadband SBS slow-lightdelay line.Opt.Express.2007,15(13):8317-8322中介绍了一种归零信号的连续可控OTDM实验系统。在实验中证明了使用宽带SBS基慢光作为可调谐延时线的两路2.5Gb/s的归零信号的连续可控OTDM系统。实验证明根据入射字节速率,恰当的调节可调慢光延时线,可以得到可变字节速率的OTDM系统。
此技术的问题和不足是:
1.在上述两个实验中,是应用SBS慢光技术实现OTDM系统延时的。通过控制慢光带宽和泵浦功率完成三路数据脉冲的延时和同步的。这种控制方法比较被动,同步控制的难度较大。
2.在SBS慢光延时线的报道中,到目前为止,延时时间没有超过一个字节,所以用这种延时线的方法实现OTDM系统,同步范围较小。
发明内容
本发明的目的一方面为了克服现有的基于SBS慢光延时线的OTDM系统的缺点,另一方面提出了一种新的思想,即用SBS光存储技术实现光的延时的OTDM系统,该系统实现了同步的主动控制和同步范围的连续可调谐。
本发明的基本思想如下:
在本OTDM系统中,多路通道信号的延时不是基于SBS慢光延时线技术,而是基于SBS光存储技术。多路独立可调谐的SBS延时(存储)系统是由半导体激光器产生的纳秒级数据脉冲在非线性光学介质中与唯一对应的泵浦光相互作用产生的。每一路泵浦光都可以产生读、写脉冲。在非线性光学介质中数据脉冲与具有10GHz频率蓝移的写脉冲相遇,通过受激布里渊散射(SBS)过程,数据脉冲的能量基本上被抽空,并以声波的形式存储在光纤中。声波中包含了数据脉冲的信息内容。人为控制一定时间后,一个同样具有10GHz频率蓝移的读脉冲在与写脉冲相同的方向上被输入到光纤中,读脉冲与声波相互作用后把声波还原成包含信息内容的数据脉冲。在此过程中,每一路数据脉冲都与与自己相匹配的泵浦光一一对应。数据脉冲实现了人为控制延时,控制方法简单主动,不容易引起串话。在本存储方案中,用硫系化合物玻璃光纤作为非线性光学介质,可以保证整个存储系统实现长寿命,也因此可以增加几路延时信号的同步范围。
本发明的技术方案如下:包括第一窄带半导体激光器1、第一光纤偏振控制器2、第一MZM3、第二光纤偏振控制器4、第二窄带半导体激光器5、第三光纤偏振控制器6、第二MZM7、第三窄带半导体激光器8、第四光纤偏振控制器9、第三MZM10、第五光纤偏振控制器11、合束器12、第一掺铒光纤放大器13、第一可调谐光衰减器14、第一光循环器15、硫系化合物玻璃光纤16、第二光循环器17、第一3dB耦合器18、第二掺铒光纤放大器19、第四MZM20、第一DFB激光器21、第三掺铒光纤放大器22、第五MZM23、第二DFB激光器24、第二3dB耦合器25、光衰减器26、噪声源27、滤波器28、可调谐光衰减器29、第四掺铒光纤放大器30、误码仪31。
其中:
OTDM系统中的第一路光中的数据脉冲由第一窄带半导体激光器1产生,第一窄带半导体激光器1输出的连续激光经过第一光纤偏振控制器(2)后由第一MZM3调制成具有几个纳秒的激光脉冲。纳秒级激光脉冲又依次经过第二光纤偏振控制器(4)、光合束器12、第一掺铒光纤放大器13、第一可调谐光衰减器14、第一光循环器15进入硫系化合物玻璃光纤16。第一路光中的读、写脉冲是由噪声源27调制的第一DFB激光器21产生的连续激光经过第四MZM20调制成纳秒脉冲再经第二掺铒光纤放大器19放大后产生的,并经过第一3dB耦合器18和第二光循环器17与第一路光中的数据脉冲相反方向进入硫系化合物玻璃光纤16。写脉冲先与数据脉冲相互作用,数据脉冲被变成声波并以声波形式存储在光纤中,随后到达的读脉冲与声波相互作用后把声波还原成包含信息内容的数据脉冲,恢复后的数据脉冲经第二光循环器17进入探测系统;
OTDM系统中的第二路光中的数据脉冲由第三窄带半导体激光器8产生,第三窄带半导体激光器8输出的连续激光经过第四光纤偏振控制器(9)后由第三MZM10调制成几个纳秒激光脉冲,纳秒级激光脉冲又依次经过第五光纤偏振控制器(11)、光合束器12、第一掺铒光纤放大器13、第一可调谐光衰减器14、第一光循环器15进入硫系化合物玻璃光纤16。第二路光中的读、写脉冲是由噪声源27调制的第二DFB激光器24产生的连续激光经过第五MZM23调制成纳秒脉冲后再经第三掺铒光纤放大器22放大后产生的,并经过第一3dB耦合器18和光循环器17与第一路光中的数据脉冲相反方向进入硫系化合物玻璃光纤16。写脉冲先与数据脉冲相互作用,数据脉冲被变成声波并以声波形式存储在光纤中,随后到达的读脉冲与声波相互作用后把声波还原成包含信息内容的数据脉冲,恢复后的数据脉冲第二光循环器17进入探测系统;
OTDM系统中的第三路光中的数据脉冲是由第二窄带半导体激光器5产生的,第二窄带半导体激光器5输出的连续激光经过第三光纤偏振控制器(6)后由第二MZM7调制成纳秒激光脉冲。纳秒激光脉冲然后再依次经过光合束器12、第一掺铒光纤放大器13、第一可调谐光衰减器14、第一光循环器15、硫系化合物玻璃光纤16,第二光循环器17进入探测系统。该路光没有与之对应的泵浦光,所以是作为参考光;
光探测系统是由滤波器28、第二可调谐光衰减器29、第四掺铒光纤放大器30、误码仪31组成。
所述的光纤偏振控制器4和光合束器12可以保证第一路和第二路光数据脉冲获得独立最大的SBS相互作用,实现最好的延时。
所述OTDM系统中由第一窄带半导体激光器1、第二窄带半导体激光器5、第三窄带半导体激光器9产生的三路数据脉冲的波长不等,相差可以是几个纳米。
所述的第一DFB激光器21、第二DFB激光器24输出的波长均在1550nm。
三个窄带连续半导体激光器通过MZM调制器的调制分别用于产生三路波长不相等的数据脉冲,数据脉冲的波长不等,输出波长都在1550nm左右。三路数据脉冲激光经过合束器、掺铒光纤放大器后经循环器进入到非线性硫系化合物玻璃光纤(存储介质)中,三路数据脉冲激光中有一路是参考光,没有能够与它发生SBS相互作用的泵浦光,即没有布里渊频移正好与之对应的泵浦光。另外两路是能够实现存储的数据脉冲,都有布里渊频移正好与它们对应的泵浦光,这样每一束泵浦光都与数据脉冲一一对应。两个宽带谱泵浦光源是用噪声源直接调制单模DFB(Distributed feedback)激光器的注入电流取得的。注入电流的变化引起了激光增益介质折射率的变化,因此引起了激光频率的变化,频率的变化与电流的调制振幅成正比。这样产生的激光功率谱近似为高斯型。谱的带宽是通过改变噪声源的电压来调节。两路宽谱光分别用脉冲发生器控制MZM调制器产生激光脉冲。通过控制调制器的调制信号波形可以控制增益和吸收谱线型,每一路泵浦光都可以产生读、写脉冲。通过控制调制信号的频率控制读、写脉冲到达存储介质的时间。两路泵浦光分别经3dB耦合器耦合进入硫系化合物玻璃光纤的。任意一路数据脉冲和与之对应的泵浦光的写脉冲在硫系化合物玻璃光纤中相遇,经过SBS过程,数据脉冲被变成声波存储在光纤中;随后同一路泵浦光产生的读脉冲在一定时间后进入光纤并与声波相互作用,数据脉冲被恢复,数据脉冲实现了一定时间的延时。通过人为的控制泵浦光的脉冲频率,就可以实现三路数据脉冲的同步,而且通过控制参考光的发射频率和各路数据脉冲的存储时间实现同步范围可调谐。通过控制入射的数据字节速率和数据脉冲的存储时间可实现字节速率的可调谐。
本发明的有益效果主要有:
一、本系统使用SBS光存储技术作为光延时线实现了三路数据脉冲的OTDM系统。该系统通过人为主动控制每一路泵浦光脉冲的频率,实现三路数据脉冲的同步,而且通过控制参考光的脉冲的发射频率和各路数据脉冲的存储时间实现同步范围的连续可调谐。
二、通过使用宽带泵浦光、使用MZM调制器控制和裁减SBS增益和吸收谱线型、使用硫系化合物玻璃光纤作为非线性光学介质等措施,保证数据脉冲获得长的存储时间,这样增加了三路数据脉冲的同步范围。
附图说明
图1是发明技术系统原理图
图中:1.第一窄带半导体激光器,2.第一光纤偏振控制器,3.第一MZM,4.第二光纤偏振控制器,5.第二窄带半导体激光器,6.第三光纤偏振控制器,7.第二MZM,8.第三窄带半导体激光器,9.第四光纤偏振控制器,10.第三MZM,11.第五光纤偏振控制器,12.合束器,13.第一掺铒光纤放大器,14.第一可调谐光衰减器,15.第一光循环器,16.硫系化合物玻璃光纤,17.第二光循环器,18.第一3dB耦合器,19.第二掺铒光纤放大器,20.第四MZM,21.第一DFB激光器,22.第三掺铒光纤放大器,23.第五MZM,24.第二DFB激光器,25.第二3dB耦合器,26.光衰减器,27.噪声源,28.滤波器,29.第二可调谐光衰减器,30.第四掺铒光纤放大器,31.误码仪。
具体实施方式
下面结合图1对本发明的具体实施方式进行详细的描述:
本发明中的基于SBS光存储技术的连续可调同步范围的OTDM系统,系统图参见图1,包括有第一窄带半导体激光器1、第一光纤偏振控制器2、第一MZM3、第二光纤偏振控制器4、第二窄带半导体激光器5、第三光纤偏振控制器6、第二MZM7、第三窄带半导体激光器8、第四光纤偏振控制器9、第三MZM10、第五光纤偏振控制器11、合束器12、第一掺铒光纤放大器13、第一可调谐光衰减器14、第一光循环器15、硫系化合物玻璃光纤16、第二光循环器17、第一3dB耦合器18、第二掺铒光纤放大器19、第四MZM20、第一DFB激光器21、第三掺铒光纤放大器22、第五MZM23、第二DFB激光器24、第二3dB耦合器25、光衰减器26、噪声源27、滤波器28、第二可调谐光衰减器29、第四掺铒光纤放大器30和误码仪31。
本发明是基于SBS光存储技术实现延时的三路光数据脉冲的时分复用系统。第一路光数据脉冲是由输出波长在1550nm左右的窄带连续半导体激光器1经过偏振控制器2后经MZM3调制后产生的。第一路数据脉冲再经过偏振控制器4、合束器12、第一掺铒光纤放大器13、第一可调谐光衰减器14和第一光循环器15进入到非线性光学介质硫系化合物玻璃光纤16并与第一路光数据脉冲相对应的泵浦光相遇。与第一路光数据脉冲相对应的泵浦光是由输出波长近1550nm窄带连续DFB激光器21产生的。泵浦光与数据脉冲的布里渊频移是通过温度控制DFB激光器21实现的。泵浦光是宽带谱源,是通过高斯噪声源27直接调制单模DFB激光器21的注入电流取得的。注入电流的变化引起了激光增益介质折射率的变化,因此引起了激光频率的变化,频率的变化与电流的调制振幅成正比。这样产生的激光功率谱近似为高斯型。谱的带宽是通过改变噪声源的电压来调节。宽带泵浦光先经过MZM调制器20调制变成激光脉冲,再经过掺铒光纤放大器19放大后经3dB耦合器18耦合,再经过光循环器17进入硫系化合物玻璃光纤16的。泵浦光可以产生读、写脉冲。第一路光数据脉冲的延时过程如下:在数据脉冲通过光纤的同时,泵浦光中的一个写脉冲在与数据脉冲相反方向通过光纤,在硫系化合物光纤16中相遇,这也是存储光的介质,通过受激布里渊散射过程,数据脉冲的能量基本上被抽空,同时,在光纤中产生声波,声波中包含了数据脉冲的信息内容。随后,泵浦光中一个读脉冲在与写脉冲相同的方向上通过硫系化合物光纤16,与声波相遇,相遇时间是可以人为控制的,它抽空了声波,使数据脉冲被从光纤中释放并恢复,沿着与原来数据脉冲相同的方向传播,经过光循环器17后进入到探测系统。
第二路光数据脉冲是由输出波长在1550nm左右的窄带连续半导体激光器8经过偏振控制器9后经MZM10调制后产生的。第二路数据脉冲再经过偏振控制器11、合束器12、第一掺铒光纤放大器13、第一可调谐光衰减器14和第一光循环器15进入到非线性光学介质硫系化合物玻璃光纤16并与第二路光数据脉冲相对应的泵浦光相遇。与第二路光数据脉冲相对应的泵浦光是由输出波长近1550nm窄带连续DFB激光器24产生的。泵浦光与数据脉冲的布里渊频移是通过温度控制DFB激光器24实现的。泵浦光是宽带谱源,是通过高斯噪声源27直接调制单模DFB激光器24的注入电流取得的。注入电流的变化引起了激光增益介质折射率的变化,因此引起了激光频率的变化,频率的变化与电流的调制振幅成正比。这样产生的激光功率谱近似为高斯型。谱的带宽是通过改变噪声源的电压来调节。宽带泵浦光先经过MZM调制器23调制变成激光脉冲,再经过掺铒光纤放大器22放大后经3dB耦合器18耦合,再经过光循环器17进入硫系化合物玻璃光纤16的。泵浦光可以产生读、写脉冲。第二路光数据脉冲的延时过程如下:在数据脉冲通过光纤的同时,泵浦光中的一个写脉冲在与数据脉冲相反方向通过光纤,在硫系化合物光纤16中相遇,这也是存储光的介质,通过受激布里渊散射过程,数据脉冲的能量基本上被抽空,同时,在光纤中产生声波,声波中包含了数据脉冲的信息内容。随后,泵浦光中一个读脉冲在与写脉冲相同的方向上通过硫系化合物光纤16,与声波相遇,相遇时间是可以人为控制的,它抽空了声波,使数据脉冲被从光纤中释放并恢复,沿着与原来数据脉冲相同的方向传播,经过光循环器17后进入到探测系统。
第三路光数据脉冲是由输出波长在1550nm左右的窄带连续半导体激光器5经过偏振控制器6后经MZM7调制后产生的。这路光没有与之对应的泵浦光,因此作为参考光。第三路光经过合束器12、第一掺铒光纤放大器13、第一可调谐光衰减器14、第一光循环器15、非线性光学介质硫系化合物玻璃光纤16和第二光循环器17进入到探测系统的。
光探测系统是由滤波器28、第二可调谐光衰减器29、第四掺铒光纤放大器30、误码仪31组成。
光纤偏振控制器4和光合束器12可以保证第一路和第二路光数据脉冲获得独立最大的SBS相互作用,实现最好的延时。
三路光数据脉冲的波长都在1550nm左右,但是并不相等,一般相差几个nm。
为了举例说明本发明的实现,描述了上述的具体实例。但本发明的其他变化和修改,对本领域技术人员是显而易见的,在本发明无公开内容的实质和基本原则范围内的任何修改/变化或仿效变换都属于本发明的权利要求保护范围。

Claims (1)

1.基于SBS光存储的连续可调同步范围的OTDM系统,其特征在于:包括有第一窄带半导体激光器(1)、第一光纤偏振控制器(2)、第一MZM(3)、第二光纤偏振控制器(4)、第二窄带半导体激光器(5)、第三光纤偏振控制器(6)、第二MZM(7)、第三窄带半导体激光器(8)、第四光纤偏振控制器(9)、第三MZM(10)、第五光纤偏振控制器(11)、合束器(12)、第一掺铒光纤放大器(13)、第一可调谐光衰减器(14)、第一光循环器(15)、硫系化合物玻璃光纤(16)、第二光循环器(17)、第一3dB耦合器(18)、第二掺铒光纤放大器(19)、第四MZM(20)、第一DFB激光器(21)、第三掺铒光纤放大器(22)、第五MZM(23)、第二DFB激光器(24)、第二3dB耦合器(25)、光衰减器(26)、噪声源(27)、滤波器(28)、第二可调谐光衰减器(29)、第四掺铒光纤放大器(30)、误码仪(31);其中:
OTDM系统中的第一路光中的数据脉冲由第一窄带半导体激光器(1)产生,第一窄带半导体激光器(1)输出的连续激光经过第一光纤偏振控制器(2)后由第一MZM3调制成纳秒级激光脉冲,纳秒级激光脉冲又依次经过第二光纤偏振控制器(4)、光合束器(12)、第一掺铒光纤放大器(13)、第一可调谐光衰减器(14)和第一光循环器(15)进入硫系化合物玻璃光纤(16);第一路光中的读、写脉冲是由噪声源(27)调制的第一DFB激光器(21)产生的连续激光经过第四MZM(20)调制后再经第二掺铒光纤放大器(19)放大后产生的,并经过第一3dB耦合器(18)和第二光循环器(17)与第一路光中的数据脉冲相反方向进入硫系化合物玻璃光纤(16);写脉冲先与数据脉冲相互作用,数据脉冲被变成声波并以声波形式存储在光纤中,随后到达的读脉冲与声波相互作用后把声波还原成包含信息内容的数据脉冲,恢复后的数据脉冲经第二光循环器(17)进入探测系统;
OTDM系统中的第二路光中的数据脉冲由第三窄带半导体激光器(8)产生,第三窄带半导体激光器(8)输出的连续激光经过第四光纤偏振控制器(9)后由第三MZM(10)调制成纳秒级激光脉冲,纳秒级激光脉冲又依次经过第五光纤偏振控制器(11)、光合束器(12)、第一掺铒光纤放大器(13)、第一可调谐光衰减器(14)、第一光循环器(15)进入硫系化合物玻璃光纤(16);第二路光中的读、写脉冲是由噪声源(27)调制的第二DFB激光器(24)产生的连续激光经过第五MZM(23)调制后再经第三掺铒光纤放大器(22)放大后产生的,并经过第一3dB耦合器(18)和第二光循环器(17)与第一路光中的数据脉冲相反方向进入硫系化合物玻璃光纤(16);写脉冲先与数据脉冲相互作用,数据脉冲被变成声波并以声波形式存储在光纤中,随后到达的读脉冲与声波相互作用后把声波还原成包含信息内容的数据脉冲,恢复后的数据脉冲第二光循环器(17)进入探测系统;
OTDM系统中的第三路光中的数据脉冲是由第二窄带半导体激光器(5)产生的,第二窄带半导体激光器(5)输出的连续激光经过第三光纤偏振控制器(6)后由第二MZM(7)调制成纳秒激光脉冲,纳秒激脉冲再依次经过光合束器(12)、第一掺铒光纤放大器(13)、第一可调谐光衰减器(14)、第一光循环器(15)、硫系化合物玻璃光纤(16),第二光循环器(17)进入探测系统;该路光没有与之对应的泵浦光,是作为参考光;
光探测系统是由依次连接的滤波器(28)、第二可调谐光衰减器(29)、第四掺铒光纤放大器(30)、误码仪(31)组成。
所述的第一窄带半导体激光器(1)、第二窄带半导体激光器(5)、第三窄带半导体激光器(8)输出激光波长不等;
所述的第一DFB激光器(21)、第二DFB激光器(24)输出的波长均为1550nm。
CN 200910243137 2009-12-25 2009-12-25 基于sbs光存储的连续可调同步范围的otdm系统 Expired - Fee Related CN101800611B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910243137 CN101800611B (zh) 2009-12-25 2009-12-25 基于sbs光存储的连续可调同步范围的otdm系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910243137 CN101800611B (zh) 2009-12-25 2009-12-25 基于sbs光存储的连续可调同步范围的otdm系统

Publications (2)

Publication Number Publication Date
CN101800611A true CN101800611A (zh) 2010-08-11
CN101800611B CN101800611B (zh) 2013-01-23

Family

ID=42596124

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910243137 Expired - Fee Related CN101800611B (zh) 2009-12-25 2009-12-25 基于sbs光存储的连续可调同步范围的otdm系统

Country Status (1)

Country Link
CN (1) CN101800611B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103081065A (zh) * 2010-08-31 2013-05-01 株式会社日本制钢所 激光退火装置及激光退火方法
CN103940513A (zh) * 2014-03-27 2014-07-23 华中科技大学 一种实现光谱测量动态范围改善的方法及光谱测量系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100430815C (zh) * 2006-11-11 2008-11-05 哈尔滨工业大学 基于受激布里渊散射多增益谱带宽可调光脉冲延时装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103081065A (zh) * 2010-08-31 2013-05-01 株式会社日本制钢所 激光退火装置及激光退火方法
CN103081065B (zh) * 2010-08-31 2016-04-27 株式会社日本制钢所 激光退火装置及激光退火方法
CN103940513A (zh) * 2014-03-27 2014-07-23 华中科技大学 一种实现光谱测量动态范围改善的方法及光谱测量系统

Also Published As

Publication number Publication date
CN101800611B (zh) 2013-01-23

Similar Documents

Publication Publication Date Title
CN100589348C (zh) 多波长并行缓存全光缓存器
EP0892516B1 (en) All-optical time-division demultiplexing circuit and all-optical TDM-WDM conversion circuit
CN101304284B (zh) 一种多通道全光3r再生器
JP2013528008A (ja) 光集積トランスミッタ
CN104330939A (zh) 一种sbs宽带可调谐光纤延迟系统
JP2024042013A (ja) 損失媒体を通した超短パルスレーザー通信のための方法及び装置
CN101800611B (zh) 基于sbs光存储的连续可调同步范围的otdm系统
CN101247179A (zh) Sbs慢光延迟用宽带光源优化泵浦装置
CA2598511C (en) Matrix time division multiplex (mtdm) interrogation
EP2919063B1 (en) Optical limiter, optical logic circuit, comparator, digital converter, optical transmission apparatus and optical processing method
Yan et al. All-optical multi-wavelength conversion with negative power penalty by a commercial SOA-MZI for WDM wavelength multicast
CN101741004B (zh) 基于受激布里渊散射技术的长寿命宽带光脉冲存储器
Reading-Picopoulos et al. 10Gb/s and 40Gb/s WDM multi-casting using a hybrid integrated Mach-Zehnder interferometer
US8396367B2 (en) High frequency optical processing
US6870665B2 (en) Pumping source with a number of pumping lasers for the raman amplification of a WDM signal with minimized four-wave mixing
JP3322653B2 (ja) ダークソリトン光通信システムに用いる光受信装置
JP4249093B2 (ja) Cs−rz出力波長変換装置
Chong et al. Optical 3R regeneration for 10 synchronous channels using self-phase modulation in a bidirectional fiber configuration
Guan et al. Advanced Optical Signal Processing using Time Lens based Optical Fourier Transformation
Vorreau et al. Simultaneous processing of 43 Gb/s WDM channels by a fiber-based dispersion-managed 2R regenerator
Yang et al. Comparison of all-optical XOR gates at 42.6 Gbit/s
KR20240103058A (ko) 손실 매질을 통한 초단 펄스 레이저 통신을 위한 방법 및 장치
Hecht Slow Light and Fast Data Links: Report from OFC 2006
Xu et al. 8/spl times/40 Gb/s RZ all-optical broadcasting utilizing an electroabsorption modulator
Wada et al. 640-Gbit/s/port (64-λ χ 10-Gbit/s) colored DPSK optical packet switching

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130123

Termination date: 20151225

EXPY Termination of patent right or utility model