CN101793662B - 宽测量空间转筒式流变仪的测量方法 - Google Patents

宽测量空间转筒式流变仪的测量方法 Download PDF

Info

Publication number
CN101793662B
CN101793662B CN 201010107278 CN201010107278A CN101793662B CN 101793662 B CN101793662 B CN 101793662B CN 201010107278 CN201010107278 CN 201010107278 CN 201010107278 A CN201010107278 A CN 201010107278A CN 101793662 B CN101793662 B CN 101793662B
Authority
CN
China
Prior art keywords
fluid
drum
type rheometer
distance
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201010107278
Other languages
English (en)
Other versions
CN101793662A (zh
Inventor
徐继润
丁仕强
徐俊杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University
Original Assignee
Dalian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University filed Critical Dalian University
Priority to CN 201010107278 priority Critical patent/CN101793662B/zh
Publication of CN101793662A publication Critical patent/CN101793662A/zh
Application granted granted Critical
Publication of CN101793662B publication Critical patent/CN101793662B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

本发明属于化学工程领域,具体涉及一种宽测量空间转筒式流变仪。为在测量易沉降悬浮液流变参数时有效实现流体的循环,本发明在传统转筒式流变仪基础上,将内外筒间距增大,该间距从理论上来说没有限制,实际上视操作需要而定,内外筒间距增大到传统转筒式流变仪内外筒间距的3~10倍。用实际流体作旋转运动时的数学模型取代原来的理想流体模型,内筒壁面上的剪切速率计算公式如下:
Figure DSA00000011975400011
本发明增大内外筒的间距后,宽测量空间转筒式流变仪测量均质流体的结果与传统流变仪的测量结果相一致。本发明的有益效果是:用实际流体的流动速度模型代替理想流体模型,导出的流变性测量公式不受内外筒间距的限制,同时完全消除了理想流体模型带来的误差。

Description

宽测量空间转筒式流变仪的测量方法
所属技术领域
本发明属于化学工程领域,具体涉及一种宽测量空间转筒式流变仪的测量方法
技术背景
在传统的转筒式流变仪中,假定测量空间(即转子与容器壁之间)内的流体为无粘性的理想流体,于是有动量矩守恒定律,即
ru(r)=c                (1)
这里c为常数,u(r)为半径r处的流体线速度。在半径r处的流体剪切速率D为:
D = - r dω ( r ) dr - - - ( 2 )
其中ω(r)为半径r处的流体旋转角线速。考虑转子壁面与容器内壁面的边界条件(假定内筒旋转):
r=Rc,ω=0;                    (3)
r=Rb,ω=ω0
其中Rb、Rc分别为内、外筒半径。经推导可得在转子壁面上(r=Rb)的剪切速率为:
D w = 2 ω 0 R c 2 R c 2 - R b 2 - - - ( 4 )
可见,对一定的转子与容器,只要给定转速,即可得到剪切速率。公式(4)是常用的筒式转筒式流变仪测量与计算流体剪切速率的依据(Brookfield Engineering Laboratories,INC:More Solutions to Stick Problems.)。
依据上述原理,在流变仪测量空间内流动的流体应是理想流体,因为表示动量矩守恒定律的公式(1)只对理想流体才成立。而理想流体是不存在粘性的流体,从无粘性流体出发导出的速度分布却要作为粘度测量的依据,这显然是相互矛盾的。但如果控制转子与外筒间的间距,则(1)式可以近似使用。如图1所示,由于实际流体粘性导致的能量耗损,流动空间的实际流体切向速度u(r)要小于理想流体的切向速度,但当外筒半径向转子半径靠近即内外筒间距缩小时,两者的差距逐渐减小。如果转子与容器壁的间距足够小(如容器半径从图中的Rc减小到R′c),则实际流体的速度分布与理想流体很接近。这就是转筒式粘度计的内外筒间距取得很小的缘故。
传统转筒式流变仪内外筒之间的狭窄空间对于均质流体的粘性测量并无影响,但若用其测量易沉降的非均相流体,如颗粒较大的悬浮浆体,则有相当困难。因为解决测量过程中的颗粒沉降问题,需要考虑流体的循环,此时狭窄的循环空间使实际操作几乎难以进行;此外,若测量经絮凝处理后的悬浮液,则流动空间的狭小还将对絮体产生与剪切无关的挤压破碎作用,影响对流体实际流变特性的判断。
发明内容
为了解决用转筒式流变仪测量易沉降悬浮液时流体循环空间宽度不足的问题,本发明提供一种宽测量空间转筒式流变仪的测量方法。
本发明的原理与计算模型研究:
为使流变仪测量空间在半径方向得以加宽,本发明考虑使用实际旋转流体的速度分布模型替代公式(1),所用实际流体的速度模型如公式(5)所示:
rnu(r)=c    (5)
其中的指数n一般在0.4~0.9之间,可取平均值n=0.64。注意到u(r)=rω(r),从式(5)得角速度梯度:
dω ( r ) dr = - ( 1 + n ) c r 2 + n - - - ( 6 )
边界条件仍如公式(3)。积分(6),得:
ω 0 = c ( 1 R b 1 + n - 1 R c 1 + n ) = c ( R c 1 + n - R b 1 + n ) R c 1 + n R b 1 + n - - - ( 7 )
从(7)得常数c,代回(6),得
dω ( r ) dr = - ( 1 + n ) r 2 + n ω 0 R b 1 + n R c 1 + n R c 1 + n - R b 1 + n - - - ( 8 )
再将式(8)代入(2),得任意半径处的剪切速率D′为:
D ′ = ( 1 + n ) r 1 + n ω 0 ( R b R c ) 1 + n R c 1 + n - R b 1 + n - - - ( 9 )
式(9)中剪切速率D′中的上标“′”表示该剪切速率是在实际流体的速度分布模型(5)下导出的。在转子壁面上,r=Rb,剪切速率为:
D w ′ = ( 1 + n ) ω 0 R c 1 + n R c 1 + n - R b 1 + n - - - ( 10 )
与式(4)相比,式(10)并未对转筒式流变仪内外筒的间距作任何要求。这就从理论上解决了转筒式流变仪用于检测非均质流体流变性时所遭遇的内外筒间距狭小的问题,而且式(10)考虑的是实际流体,完全避免了公式(1)对流体的无粘性假设所可能带来的误差。
理想流体假设导致的误差分析:
将实际流体的转子壁面剪切速率公式(10)与理想流体的相应公式(4)在相同的内外筒半径下相比较,可得:
D w D w ′ = 2 1 + n × 1 - ( R b / R c ) 1 + n 1 - ( R b / R c ) 2 - - - ( 11 )
由此可以对传统转筒式流变仪由于假设流体为无粘性流体而带来的误差进行定量估计。
可以证明,在指数n的取值范围内以及Rb/Rc<1的情况下,总有Dw/Dw′>1。而在转子结构尺寸、转速、被测流体性质不变时,转子所受的应力不变,于是测出的表观粘度与实际表观粘度之比为:
&eta; &eta; &prime; = D w &prime; D w < 1 - - - ( 12 )
即由传统的转筒式流变仪测出的悬浮液表观粘度要小于实际值。而这种误差的大小与流变仪内外筒的直径之比有关。表1计算出不同Rb/Rc值下导致的表观粘度误差(取n=0.64),可见随Rb/Rc的减小(即流变仪内外筒间距的加大),所引起的误差显著增大,但在内外筒间距很小时,这种误差可以忽略不计。
表1:传统转筒式流变仪测得表观粘度的误差(n=0.64)
  Rb/Rc   1   0.8   0.6   0.4   0.2   0.1   0
  (η-η′)/η′,%   0   -3.68   -7.49   -11.41   -15.23   -16.92   -18.00
由式(11)和式(12),也可以估计实际流体与理想流体的偏离程度对传统转筒式流变仪测定结果的影响。实际流体偏离理想流体的程度可用n值予以表征。n=1时为理想流体,n越小,流体越偏离理想流体,n=-1时流体则以刚体的规律旋转而完全失去流动性。表2为不同n值下传统转筒式流变仪测量结果与实际流体模型值的偏差(取Rb/Rc=0.8)。
表2:传统转筒式流变仪测得表观粘度的误差(Rb/Rc=0.8)
  n   1   0.8   0.6   0.4   0.2   0.1   0   -1
  (η-η′)/η′,%   0   -2.05   -4.08   -6.08   -8.05   -9.03   -10.00   -19.33
本发明的技术方案是:宽测量空间转筒式流变仪的测量方法,为在测量易沉降悬浮液流变参数时有效实现流体的循环,该流变仪是在传统转筒式流变仪基础上,将内外筒间距增大,该间距从理论上来说没有限制,实际上视操作需要而定,内外筒间距增大到传统转筒式流变仪内外筒间距的3~10倍。
用实际流体作旋转运动时的数学模型取代原来的理想流体模型,内筒壁面上的剪切速率计算公式如下:
D w &prime; = ( 1 + n ) &omega; 0 R c 1 + n R c 1 + n - R b 1 + n
本发明增大内外筒的间距后,宽测量空间转筒式流变仪测量均质流体的结果与传统流变仪的测量结果相一致。
本发明的有益效果是:在宽间距转筒式流变仪中,用实际流体的流动速度模型代替理想流体模型,导出的流变性测量公式不受内外筒间距的限制,同时完全消除了理想流体模型带来的误差。
附图说明
图1是传统转筒式流变仪流动空间的限制示意图。
图中:I、理想流体,II、实际流体,纵坐标为切向速度u(r),横坐标为半径r,Rb、Rc分别为内、外筒半径,R′c为减小的外筒半径。
具体实施方式
为考察内外筒间距的改变及计算模型的有效性,分别用传统转筒式流变仪及本发明宽测量空间转筒式流变仪对浓度为60ppm、温度为20℃的PAM高分子溶液的表观粘度进行了测定,其中,宽测量空间转筒式流变仪内外筒间距是传统转筒式流变仪内外筒间距的3倍,测定结果见表3。可见两者的结果极为接近,说明加大内外筒间距后,启用针对实际流体的计算模型,对均质溶液的流变性测定没有影响。但这种内外筒宽间距设计却为流体循环提供了极大方便。
表3:传统转筒式流变仪和宽测量空间转筒式流变仪对均质溶液的流变性测定结果

Claims (1)

1.一种宽测量空间转筒式流变仪的测量方法,其特征在于,将转筒式流变仪的内外筒间距增大到3-10倍,形成宽测量空间转筒式流变仪,并采用实际流体作旋转运动时的数学模型取代理想流体模型,内筒壁面上的剪切速率计算公式如下:
D w &prime; = ( 1 + n ) &omega; 0 R c 1 + n R c 1 + n - R b 1 + n
其中,Dw′为内筒壁面上的剪切速率,指数n取值在0.4-0.9之间,Rb、Rc分别为内、外筒半径。
CN 201010107278 2010-02-06 2010-02-06 宽测量空间转筒式流变仪的测量方法 Expired - Fee Related CN101793662B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010107278 CN101793662B (zh) 2010-02-06 2010-02-06 宽测量空间转筒式流变仪的测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010107278 CN101793662B (zh) 2010-02-06 2010-02-06 宽测量空间转筒式流变仪的测量方法

Publications (2)

Publication Number Publication Date
CN101793662A CN101793662A (zh) 2010-08-04
CN101793662B true CN101793662B (zh) 2013-01-30

Family

ID=42586474

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010107278 Expired - Fee Related CN101793662B (zh) 2010-02-06 2010-02-06 宽测量空间转筒式流变仪的测量方法

Country Status (1)

Country Link
CN (1) CN101793662B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6588254B1 (en) * 2002-03-29 2003-07-08 Waters Investment Limited Rotary rheometer
CN101101254A (zh) * 2006-07-05 2008-01-09 崔兆星 一种流变仪
DE102007060908A1 (de) * 2007-12-14 2009-06-18 Thermo Electron (Karlsruhe) Gmbh Rotationsrheometer und Verfahren zur Bestimmung von Materialeigenschaften mit einem Rotationsrheometer
CN101506640A (zh) * 2006-08-23 2009-08-12 巴斯夫欧洲公司 流变仪

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6588254B1 (en) * 2002-03-29 2003-07-08 Waters Investment Limited Rotary rheometer
CN101101254A (zh) * 2006-07-05 2008-01-09 崔兆星 一种流变仪
CN101506640A (zh) * 2006-08-23 2009-08-12 巴斯夫欧洲公司 流变仪
DE102007060908A1 (de) * 2007-12-14 2009-06-18 Thermo Electron (Karlsruhe) Gmbh Rotationsrheometer und Verfahren zur Bestimmung von Materialeigenschaften mit einem Rotationsrheometer

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
徐继润等.旋转流变仪测定易沉降悬浮液流变性的初步探讨.《过滤与分离》.2008,第18卷(第2期),1-3,14.
徐继润等.易沉降悬浮液流变性测定时循环速度的理论分析.《过滤与分离》.2009,第19卷(第3期),1-3.
徐继润等.易沉降悬浮液流变性测试时流体循环的理论分析.《过滤与分离》.2008,第18卷(第3期),1-3,20.
旋转流变仪测定易沉降悬浮液流变性的初步探讨;徐继润等;《过滤与分离》;20081231;第18卷(第2期);1-3 *
易沉降悬浮液流变性测定时循环速度的理论分析;徐继润等;《过滤与分离》;20091231;第19卷(第3期);1-3 *
易沉降悬浮液流变性测试时流体循环的理论分析;徐继润等;《过滤与分离》;20081231;第18卷(第3期);1-3 *

Also Published As

Publication number Publication date
CN101793662A (zh) 2010-08-04

Similar Documents

Publication Publication Date Title
Pakzad et al. Using electrical resistance tomography and computational fluid dynamics modeling to study the formation of cavern in the mixing of pseudoplastic fluids possessing yield stress
Kazemzadeh et al. Investigation of hydrodynamic performances of coaxial mixers in agitation of yield-pseudoplasitc fluids: Single and double central impellers in combination with the anchor
Pakzad et al. Characterisation of the mixing of non‐newtonian fluids with a scaba 6SRGT impeller through ert and CFD
Kelly et al. Using CFD to predict the behavior of power law fluids near axial-flow impellers operating in the transitional flow regime
Adams et al. CFD analysis of caverns and pseudo-caverns developed during mixing of non-Newtonian fluids
Kim et al. Laminar flow past a sphere rotating in the streamwise direction
Dasgupta et al. Speed of a swimming sheet in Newtonian and viscoelastic fluids
Kazemzadeh et al. Intensification of mixing of shear-thinning fluids possessing yield stress with the coaxial mixers composed of two different central impellers and an anchor
Pakzad et al. Evaluation of the mixing of non-Newtonian biopolymer solutions in the reactors equipped with the coaxial mixers through tomography and CFD
Pakzad et al. Agitation of Herschel–Bulkley fluids with the Scaba–anchor coaxial mixers
Guida et al. The effects of the azimuthal position of the measurement plane on the flow parameters determined by PIV within a stirred vessel
Yang et al. Effects of rotor and stator geometry on dissolution process and power consumption in jet-flow high shear mixers
Yang et al. Numerical analysis of non-Newtonian rheology effect on hydrocyclone flow field
CN101793662B (zh) 宽测量空间转筒式流变仪的测量方法
Singh et al. CFD modeling of pilot-scale pump-mixer: Single-phase head and power characteristics
Saeed et al. Using dynamic tests to study the continuous mixing of xanthan gum solutions
Patel et al. Tomography images to analyze the deformation of the cavern in the continuous‐flow mixing of non‐Newtonian fluids
Luan et al. Effect of the 6PBT stirrer eccentricity and off-bottom clearance on mixing of pseudoplastic fluid in a stirred tank
Zamiri et al. Ability of URANS approach in prediction of unsteady turbulent flows in an unbaffled stirred tank
CN206399647U (zh) 一种液力变矩器叶轮压降测试装置
Zhang et al. Optimization design of submerged propeller in oxidation ditch by computational fluid dynamics and comparison with experiments
Liang et al. Numerical analysis in the effects of blade’s arrangement on the torque load characteristics of the three-blade planetary mixer
Luan et al. Chaotic characteristics of pseudoplastic fluid induced by 6PBT impeller in a stirred vessel
CN104598674B (zh) 基于能量梯度理论的分流叶片进口直径确定方法
Yang et al. Application of electrical resistance tomography in bubble columns for volume fraction measurement

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130130

Termination date: 20160206

CF01 Termination of patent right due to non-payment of annual fee