CN101782630A - 一种具有恒流恒功率的电子负载控制器 - Google Patents

一种具有恒流恒功率的电子负载控制器 Download PDF

Info

Publication number
CN101782630A
CN101782630A CN201010115715A CN201010115715A CN101782630A CN 101782630 A CN101782630 A CN 101782630A CN 201010115715 A CN201010115715 A CN 201010115715A CN 201010115715 A CN201010115715 A CN 201010115715A CN 101782630 A CN101782630 A CN 101782630A
Authority
CN
China
Prior art keywords
power
current
output
fuel cell
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201010115715A
Other languages
English (en)
Other versions
CN101782630B (zh
Inventor
齐铂金
杜青
徐国宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN2010101157153A priority Critical patent/CN101782630B/zh
Publication of CN101782630A publication Critical patent/CN101782630A/zh
Application granted granted Critical
Publication of CN101782630B publication Critical patent/CN101782630B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel Cell (AREA)

Abstract

本发明公开了一种用于测试燃料电池的电子负载控制器,该电子负载控制器包括有DSP处理器、D/A转换器、第一驱动电路、第二驱动电路、保护电路和等效阻抗电路;其中,DSP处理器、D/A转换器、第一驱动电路、第二驱动电路和保护电路形成电子负载的控制电路部分;等效阻抗电路设置在燃料电池与控制电路之间。通过DSP处理器对接收的电压和电流信息进行相关联处理,使得在第一功率开关管T1和第二功率开关管T2开通与关断的整个周期中,实现燃料电池输出电流和输出功率的控制,并且也解决了测试过程中燃料电池堆工作进入浓差极化区,需要对其进行欠压保护。

Description

一种具有恒流恒功率的电子负载控制器
技术领域
本发明涉及一种适用于燃料电池测试系统的电子负载控制器。
背景技术
在2007年12月的大连理工大学的硕士学位论文中公开了“微小型燃料电池测试系统研究”。在第13、14页中说明了电子负载属于燃料电池测试系统的一部分。电子负载负责模拟各种情况下负载的变化,同时监测和控制燃料电池的输出电压、电流、功率和负载的电阻变化等运行参数。
在2007年5月的成都电子科技大学的硕士学位论文中公开了“一种燃料电池测试系统的电子负载设计”。在第7、8、9页中说明了电子负载的构成。
燃料电池堆输出特性的主要考核指标包括有输出外特性曲线和动态响应速度。外特性曲线是指其输出电流和电压的伏安特性曲线,其单体电压外特性曲线可以划分为活化区、欧姆极化区和浓差极化区,如图2所示。活化区是指在燃料电池加载起始阶段,其输出电压下降较快;在起始阶段之后进入欧姆极化区,输出电压随输出电流增加而近似线性下降;当输出电压降低到一定程度时,此时若进一步增大燃料电池的输出电流(功率),则有可能使燃料电池超过其使用极限,影响使用寿命,这个区域被称为浓差极化区;动态响应速度是指燃料电池堆输出电流(功率)跟随变化目标值的响应速度。
燃料电池堆外特性曲线趋势与单体电压外特性曲线类似,具体参数与堆内部单体电池数量、组合方式和衰减程度有关,这使得不同电堆输出特性存在较大差异。而燃料电池堆外特性曲线对整车控制有着重要的参考价值,因此出厂前有必要进行测试,以确保电堆能满足当前整车控制的要求。欲绘制出其输出特性曲线,就必须搭建一套能实时改变燃料电池堆输出电流和功率的测试平台。以往的测试是通过台架试验模拟整车动力系统构型实现的,实际装车后基于能量混合型动力系统构型的燃料电池城市客车采用DC/DC变换器控制燃料电池堆输出的能量流动,这种控制主要是针对DC/DC输出电压和电流而言的,并没有对燃料电池堆输出电流,即DC/DC变换器输入电流进行控制;对于燃料电池输出功率的调节虽然可以通过控制DC/DC变换器输出电流调节DC/DC变换器输出功率实现,但由于DC/DC变换器效率受输入输出电压和输出功率等因素影响而浮动较大,并不能真实反应燃料电池堆输出功率。此外,为了避免测试过程中燃料电池堆工作进入浓差极化区,需要对其进行欠压保护,即当燃料电池堆输出电压低于某值时自动关闭输出。这就要求电子负载控制器具备输入欠压保护功能并可以随时在线设定欠压值以适应多种规格的燃料电池堆。
在燃料电池测试系统中设计电子负载,是为了测试燃料电池堆的外特性。然而现有的电子负载不能适用于不同规格的燃料电池堆的外特性测试,故本发明设计一种能够进行大功率、且适于不同规格的电子负载控制器。
发明内容
本发明的目的是提供一种具有恒流恒功率的电子负载控制器,该电子负载控制器中增设了等效阻抗电路,该等效阻抗电路设置在燃料电池与电子负载控制器的控制电路之间。
本发明的一种具有恒流恒功率的电子负载控制器,包括有等效阻抗电路、DSP处理器、D/A转换器、第一驱动电路、第二驱动电路、保护电路,其中,DSP处理器、D/A转换器、第一驱动电路、第二驱动电路和保护电路形成电子负载的控制电路部分;该等效阻抗电路设置在燃料电池与控制电路之间。
所述的等效阻抗电路包括有电压传感器、第一电流传感器、第二电流传感器、第一滤波电感L1、第二滤波电感L2、第三滤波电感L3、第四滤波电感L4、第一滤波电容C1、第二滤波电容C2、第三滤波电容C3、第一功率开关管T1、第二功率开关管T2、第一功率二极管D1、第二功率二极管D2和功率电阻R。燃料电池的输出正极分别与第一滤波电感L1的1端和第二滤波电感L2的1端连接,燃料电池的输出负极分别与第一滤波电容C1的2端和第二滤波电容C2的2端连接;电压传感器连接在燃料电池的输出正极与负极之间;第一电流传感器套接在燃料电池的输出正极与第一滤波电感L1的1端之间;第二电流传感器套接在燃料电池的输出正极与第二滤波电感L2的1端之间;第一滤波电感L1的2端分别与第一滤波电容C1的1端和第一功率开关管T1的集电极连接;第二滤波电感L2的2端分别与第二滤波电容C2的1端和第二功率开关管T2的集电极连接;第一功率开关管T1的发射极分别与第一功率二极管D1的阴极和第三滤波电感L3的1端连接,第一功率开关管T1的基极与第一驱动电路连接;第一功率二极管D1的阳极连接在燃料电池的输出负极上;第二功率开关管T2的发射极分别与第二功率二极管D2的阴极和第四滤波电感L4的1端连接,第二功率开关管T2的基极与第二驱动电路连接;第二功率二极管D2的阳极连接在燃料电池的输出负极上;第三滤波电感L3的2端与第四滤波电感L4的2端连接后,且与第三滤波电容C3的1端连接,第三滤波电容C3的2端连接在燃料电池的输出负极上,电阻R与第三滤波电容C3并联。
所述的具有恒流恒功率的电子负载控制器,其中第一滤波电感L1与第一滤波电容C1形成A滤波电路,该A滤波电路能够保障燃料电池正极端输出电流的连续可控性;第二滤波电感L2与第二滤波电容C2形成B滤波电路,该B滤波电路能够保障燃料电池正极端输出电流的连续可控性。
所述的具有恒流恒功率的电子负载控制器,其中第三滤波电感L3与第三滤波电容C3形成C滤波电路,该C滤波电路为低通滤波,即滤除经第一功率开关管T1和第一功率二极管D1输出的高频分量,得到直流分量。
所述的具有恒流恒功率的电子负载控制器,其中第四滤波电感L4与第三滤波电容C3形成D滤波电路,该D滤波电路为低通滤波,即滤除经第二功率开关管T2和第二功率二极管D2输出的高频分量,得到直流分量。
所述的具有恒流恒功率的电子负载控制器,其中第一功率开关管T1、第一功率二极管D1、第三滤波电感L3和第三滤波电容C3形成单路Buck电路;第二功率开关管T2、第二功率二极管D2、第四滤波电感L4和第三滤波电容C3形成另一单路Buck电路。
本发明电子负载控制器的优点在于:
①在Buck电路前级添加了滤波电感和电容,保证了输入电流连续可控。
②采用双路并联拓扑结构大大降低了电压电流应力,增加了电源的可靠性和安全工作范围。
③本发明设计的电子负载控制器可以适用于输出功率为0~100kW、输出电压为0~600V、输出电流为0~300A的燃料电池堆测试,实现燃料电池输出恒流和恒功率控制,电流误差不超过0.3A,功率误差不超过0.1kW。
附图说明
图1是本发明电子负载控制器的结构框图。
图2是燃料电池单体电压输出特性曲线。
具体实施方式
下面将结合附图对本发明做进一步的详细说明。
参见图1所示,本发明是一种适用于燃料电池的具有恒流恒功率的电子负载控制器,该电子负载控制器包括有DSP处理器、D/A转换器、第一驱动电路、第二驱动电路、保护电路和等效阻抗电路;其中,DSP处理器、D/A转换器、第一驱动电路、第二驱动电路和保护电路形成电子负载的控制电路部分;等效阻抗电路设置在燃料电池与控制电路之间。计算机(运行有IXXAT V2.2软件)用于监测燃料电池的状态,同时给电子负载控制器发送指令。计算机是一种能够按照事先存储的程序,自动、高速地进行大量数值计算和各种信息处理的现代化智能电子设备。最低配置为CPU 2GHz,内存2GB,硬盘180GB;操作系统为windows 2000/2003/XP。
本发明设计的电子负载控制器,通过控制电路来控制等效阻抗电路的输出阻抗,从而改变燃料电池的输出电流和功率。
在本发明中的等效阻抗电路包括有电压传感器、第一电流传感器、第二电流传感器、第一滤波电感L1、第二滤波电感L2、第三滤波电感L3、第四滤波电感L4、第一滤波电容C1、第二滤波电容C2、第三滤波电容C3、第一功率开关管T1、第二功率开关管T2、第一功率二极管D1、第二功率二极管D2和功率电阻R。
其中,第一滤波电感L1与第一滤波电容C1形成A滤波电路,该A滤波电路能够保障燃料电池正极端输出电流的连续可控性。
其中,第二滤波电感L2与第二滤波电容C2形成B滤波电路,该B滤波电路能够保障燃料电池正极端输出电流的连续可控性。
A滤波电路与B滤波电路并联设置在燃料电池与两个功率开关管之间,与单路Buck电路相比,双路并联Buck降压型拓扑结构的电压电流应力都大大降低了。在相同燃料电池堆输出电流前提下,流过每一支路电流为总电流的1/2,单位时间内电流的变化随之减半,开关管关断时由于存在寄生电感而产生的电压尖峰也大大降低了,从而增大了输入电压安全工作的范围。
其中,第三滤波电感L3与第三滤波电容C3形成C滤波电路,该C滤波电路为低通滤波,即滤除经第一功率开关管T1和第一功率二极管D1输出的高频分量,得到直流分量。
其中,第四滤波电感L4与第三滤波电容C3形成D滤波电路,该D滤波电路为低通滤波,即滤除经第二功率开关管T2和第二功率二极管D2输出的高频分量,得到直流分量。
其中,第一功率开关管T1、第一功率二极管D1、第三滤波电感L3和第三滤波电容C3形成单路Buck电路。
其中,第二功率开关管T2、第二功率二极管D2、第四滤波电感L4和第三滤波电容C3形成另一单路Buck电路。
电压传感器用于采集燃料电池的输出电压Ui,即负载控制器的输入电压,该输出电压Ui返馈给DSP处理器作为电压采集值Ui′。
第一电流传感器用于采集第一滤波电感L1上流过的电流,该电流返馈给DSP处理器作为第一支路的电流采样值I1
第二电流传感器用于采集第二滤波电感L2上流过的电流,该电流返馈给DSP处理器作为第二支路的电流采样值I2
DSP处理器第一方面对接收到的电压采集值Ui′进行均值滤波处理后,输出滤波后电压值U给计算机;
DSP处理器第二方面对接收到的第一支路电流采样值I1进行均值滤波处理后,输出滤波后第一电流I1′;
DSP处理器第三方面对接收到的第二支路电流采样值I2进行均值滤波处理后,输出滤波后第二电流I2′;
DSP处理器第四方面对I1′和I2′进行求和,输出总电流I给计算机;
DSP处理器第五方面将接收到的目标指令f(V0,Mode,Iaim,Paim)通过D/A转换器输出模拟信号给第一驱动电路和第二驱动电路,从而通过第一驱动电路开启或关断第一功率开关管T1,第二驱动电路开启或关断第二功率开关管T2。所述的目标指令f(V0,Mode,Iaim,Paim)中,V0表示欠压设定值,Mode表示工作模式,Iaim表示电流设定值,Paim表示功率设定值。
在本发明中,DSP处理器首先将欠压设定值V0和电子负载控制器输入电压采样值Ui′进行比较,当输入电压采样值Ui′小于等于欠压设定值V0时关闭电子负载控制器(Ui′≤V0);
当输入电压采样值Ui′高于欠压设定值V0时,根据控制模式Mode选取电子负载控制器的工作模式,Mode=0代表恒电流模式,Mode=1代表恒功率模式。
在恒电流模式下,DSP处理器将电子负载控制器输入电流设定值Iaim通过D/A转换器送至第一驱动电路和第二驱动电路,经第一驱动电路和第二驱动电路放大后最终实现T1和T2的通断。从而使电子负载控制器的输入总电流I跟随输入电流设定值Iaim
在恒功率模式下,DSP处理器接受到功率设定值Paim后,首先除以当前电子负载控制器输入电压采样值Ui′,将功率设定值Paim换算成对应于电子负载控制器输入电流设定值Iaim,再将输入电流设定值Iaim通过D/A转换器送至第一驱动电路和第二驱动电路,经第一驱动电路和第二驱动电路放大后最终实现T1和T2的通断。从而使电子负载控制器的输入功率跟随功率设定值Paim,将误差范围控制在0.1kW内。
计算机下发目标值f给DSP处理器。在本发明中,可以通过计算机来实时观察燃料电池的状态。
本发明的等效阻抗电路的电路连接为:
燃料电池的输出正极分别与第一滤波电感L1的1端和第二滤波电感L2的1端连接,燃料电池的输出负极分别与第一滤波电容C1的2端和第二滤波电容C2的2端连接;
电压传感器连接在燃料电池的输出正极与负极之间;第一电流传感器套接在燃料电池的输出正极与第一滤波电感L1的1端之间;第二电流传感器套接在燃料电池的输出正极与第二滤波电感L2的1端之间;
第一滤波电感L1的2端分别与第一滤波电容C1的1端和第一功率开关管T1的集电极连接;
第二滤波电感L2的2端分别与第二滤波电容C2的1端和第二功率开关管T2的集电极连接;
第一功率开关管T1的发射极分别与第一功率二极管D1的阴极和第三滤波电感L3的1端连接,第一功率开关管T1的基极与第一驱动电路连接;
第一功率二极管D1的阳极连接在燃料电池的输出负极上;
第二功率开关管T2的发射极分别与第二功率二极管D2的阴极和第四滤波电感L4的1端连接,第二功率开关管T2的基极与第二驱动电路连接;
第二功率二极管D2的阳极连接在燃料电池的输出负极上;
第三滤波电感L3的2端与第四滤波电感L4的2端连接后,且与第三滤波电容C3的1端连接,第三滤波电容C3的2端连接在燃料电池的输出负极上,电阻R与第三滤波电容C3并联。
本发明中的电子负载控制器,在第一功率开关管T1和第二功率开关管T2开通与关断的整个周期中,流经第一滤波电感L1的电流I1和流经第二滤波电感L2的电流I2是连续的,继而减小了燃料电池堆输出电流的波动。在燃料电池输出正极和负极端上并联电压传感器测得输入反馈电压Ui,在滤波电感L1和滤波电感L2上分别串有第一电流传感器和第二电流传感器测得输入反馈电流值I1和I2,传感器信号输出给DSP处理芯片;同时通过计算机将欠压设定值、控制模式、目标电流、目标功率等信息发给DSP处理芯片,最后由第一驱动电路和第二驱动电路对T1和T2进行导通和关断处理,从而控制电子负载控制器输入电流和输入功率,即控制了燃料电池输出电流和输出功率;保护电路可以实现电子负载控制器过流、过温的实时保护,自动切断电源输出。
考虑到目前实际装车的燃料电池堆空载电压一般可以高达400V~500V,输出功率高达100kW,本装置选用了双路并联Buck降压型拓扑结构,在输入级增加了滤波电感和电容。非隔离型Buck变换器拓扑结构简单,效率高,并且已经成功应用在能量混合型燃料电池城市客车中。在相同燃料电池堆输出电流前提下,流过每一支路电流为总电流I的1/2,单位时间内电流的变化随之减半,开关管关断时由于存在寄生电感而产生的电压尖峰也大大降低了,从而增大了输入电压安全工作的范围。

Claims (9)

1.一种具有恒流恒功率的电子负载控制器,包括有DSP处理器、D/A转换器、第一驱动电路、第二驱动电路、保护电路,其中,DSP处理器、D/A转换器、第一驱动电路、第二驱动电路和保护电路形成电子负载的控制电路部分;其特征在于:还包括有等效阻抗电路,该等效阻抗电路设置在燃料电池与控制电路之间;
等效阻抗电路包括有电压传感器、第一电流传感器、第二电流传感器、第一滤波电感L1、第二滤波电感L2、第三滤波电感L3、第四滤波电感L4、第一滤波电容C1、第二滤波电容C2、第三滤波电容C3、第一功率开关管T1、第二功率开关管T2、第一功率二极管D1、第二功率二极管D2和功率电阻R。
燃料电池的输出正极分别与第一滤波电感L1的1端和第二滤波电感L2的1端连接,燃料电池的输出负极分别与第一滤波电容C1的2端和第二滤波电容C2的2端连接;
电压传感器连接在燃料电池的输出正极与负极之间;第一电流传感器套接在燃料电池的输出正极与第一滤波电感L1的1端之间;第二电流传感器套接在燃料电池的输出正极与第二滤波电感L2的1端之间;
第一滤波电感L1的2端分别与第一滤波电容C1的1端和第一功率开关管T1的集电极连接;
第二滤波电感L2的2端分别与第二滤波电容C2的1端和第二功率开关管T2的集电极连接;
第一功率开关管T1的发射极分别与第一功率二极管D1的阴极和第三滤波电感L3的1端连接,第一功率开关管T1的基极与第一驱动电路连接;
第一功率二极管D1的阳极连接在燃料电池的输出负极上;
第二功率开关管T2的发射极分别与第二功率二极管D2的阴极和第四滤波电感L4的1端连接,第二功率开关管T2的基极与第二驱动电路连接;
第二功率二极管D2的阳极连接在燃料电池的输出负极上;
第三滤波电感L3的2端与第四滤波电感L4的2端连接后,且与第三滤波电容C3的1端连接,第三滤波电容C3的2端连接在燃料电池的输出负极上,电阻R与第三滤波电容C3并联。
2.根据权利要求1所述的具有恒流恒功率的电子负载控制器,其特征在于:第一滤波电感L1与第一滤波电容C1形成A滤波电路,该A滤波电路能够保障燃料电池正极端输出电流的连续可控性;第二滤波电感L2与第二滤波电容C2形成B滤波电路,该B滤波电路能够保障燃料电池正极端输出电流的连续可控性。
3.根据权利要求1所述的具有恒流恒功率的电子负载控制器,其特征在于:第三滤波电感L3与第三滤波电容C3形成C滤波电路,该C滤波电路为低通滤波,即滤除经第一功率开关管T1和第一功率二极管D1输出的高频分量,得到直流分量。
4.根据权利要求1所述的具有恒流恒功率的电子负载控制器,其特征在于:第四滤波电感L4与第三滤波电容C3形成D滤波电路,该D滤波电路为低通滤波,即滤除经第二功率开关管T2和第二功率二极管D2输出的高频分量,得到直流分量。
5.根据权利要求1所述的具有恒流恒功率的电子负载控制器,其特征在于:第一功率开关管T1、第一功率二极管D1、第三滤波电感L3和第三滤波电容C3形成单路Buck电路;第二功率开关管T2、第二功率二极管D2、第四滤波电感L4和第三滤波电容C3形成另一单路Buck电路。
6.根据权利要求1所述的具有恒流恒功率的电子负载控制器,其特征在于:电压传感器用于采集燃料电池的输出电压Ui,即负载控制器的输入电压,该输出电压Ui返馈给DSP处理器作为电压采集值Ui′。
7.根据权利要求1所述的具有恒流恒功率的电子负载控制器,其特征在于:第一电流传感器用于采集第一滤波电感L1上流过的电流,该电流返馈给DSP处理器作为第一支路的电流采样值I1;第二电流传感器用于采集第二滤波电感L2上流过的电流,该电流返馈给DSP处理器作为第二支路的电流采样值I2
8.根据权利要求1、2、3、4、5或者6所述的具有恒流恒功率的电子负载控制器,其特征在于:
DSP处理器第一方面对接收到的电压采集值Ui′进行均值滤波处理后,输出滤波后电压值U给计算机;
DSP处理器第二方面对接收到的第一支路电流采样值I1进行均值滤波处理后,输出滤波后第一电流I1′;
DSP处理器第三方面对接收到的第二支路电流采样值I2进行均值滤波处理后,输出滤波后第二电流I2′;
DSP处理器第四方面对I1′和I2′进行求和,输出总电流I给计算机;
DSP处理器第五方面将接收到的目标指令f(V0,Mode,Iaim,Paim)通过D/A转换器输出模拟信号给第一驱动电路和第二驱动电路,从而通过第一驱动电路开启或关断第一功率开关管T1,第二驱动电路开启或关断第二功率开关管T2;所述的目标指令f(V0,Mode,Iaim,Paim)中,V0表示欠压设定值,Mode表示工作模式,Iaim表示电流设定值,Paim表示功率设定值;
DSP处理器首先将欠压设定值V0和电子负载控制器输入电压采样值Ui′进行比较,当输入电压采样值Ui′小于等于欠压设定值V0时关闭电子负载控制器(Ui′≤V0);
当输入电压采样值Ui′高于欠压设定值V0时,根据控制模式Mode选取电子负载控制器的工作模式,Mode=0代表恒电流模式,Mode=1代表恒功率模式;
在恒电流模式下,DSP处理器将电子负载控制器输入电流设定值Iaim通过D/A转换器送至第一驱动电路和第二驱动电路,经第一驱动电路和第二驱动电路放大后最终实现T1和T2的通断;从而使电子负载控制器的输入总电流I跟随输入电流设定值Iaim
在恒功率模式下,DSP处理器接受到功率设定值Paim后,首先除以当前电子负载控制器输入电压采样值Ui′,将功率设定值Paim换算成对应于电子负载控制器输入电流设定值Iaim,再将输入电流设定值Iaim通过D/A转换器送至第一驱动电路和第二驱动电路,经第一驱动电路和第二驱动电路放大后最终实现T1和T2的通断;从而使电子负载控制器的输入功率跟随功率设定值Paim,将误差范围控制在0.1kW内。
9.根据权利要求1所述的具有恒流恒功率的电子负载控制器,其特征在于:能够适用于输出功率为0~100kW、输出电压为0~600V、输出电流为0~300A的燃料电池堆测试,实现燃料电池输出恒流和恒功率控制,电流误差不超过0.3A,功率误差不超过0.1kW。
CN2010101157153A 2010-02-25 2010-02-25 一种具有恒流恒功率的电子负载控制器 Expired - Fee Related CN101782630B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101157153A CN101782630B (zh) 2010-02-25 2010-02-25 一种具有恒流恒功率的电子负载控制器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101157153A CN101782630B (zh) 2010-02-25 2010-02-25 一种具有恒流恒功率的电子负载控制器

Publications (2)

Publication Number Publication Date
CN101782630A true CN101782630A (zh) 2010-07-21
CN101782630B CN101782630B (zh) 2012-07-04

Family

ID=42522708

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101157153A Expired - Fee Related CN101782630B (zh) 2010-02-25 2010-02-25 一种具有恒流恒功率的电子负载控制器

Country Status (1)

Country Link
CN (1) CN101782630B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102818918A (zh) * 2012-08-07 2012-12-12 深圳睿立方智能科技有限公司 一种用于数据中心机房电源测试的负载设备
CN104655890A (zh) * 2015-02-28 2015-05-27 米祥丽 充电机电子负载控制保护电路
CN105720283A (zh) * 2016-04-07 2016-06-29 北京建筑大学 一种燃料电池混合动力系统及其工作方法
EP3244522A1 (en) * 2016-05-10 2017-11-15 Beihang University Ultrasonic-frequency pulsed gmaw welding power source device
CN108073110A (zh) * 2017-12-28 2018-05-25 上海神力科技有限公司 一种多功能燃料电池测试台控制器
CN108199442A (zh) * 2018-01-31 2018-06-22 深圳市德兰明海科技有限公司 一种输出电流计算方法、装置及光伏充电器
CN109904870A (zh) * 2019-03-28 2019-06-18 安徽铜冠铜箔有限公司 一种削峰填谷电源系统及其控制方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102818918A (zh) * 2012-08-07 2012-12-12 深圳睿立方智能科技有限公司 一种用于数据中心机房电源测试的负载设备
CN104655890A (zh) * 2015-02-28 2015-05-27 米祥丽 充电机电子负载控制保护电路
CN104655890B (zh) * 2015-02-28 2017-11-24 河南开梦电子科技有限公司 充电机电子负载控制保护电路
CN105720283A (zh) * 2016-04-07 2016-06-29 北京建筑大学 一种燃料电池混合动力系统及其工作方法
EP3244522A1 (en) * 2016-05-10 2017-11-15 Beihang University Ultrasonic-frequency pulsed gmaw welding power source device
CN108073110A (zh) * 2017-12-28 2018-05-25 上海神力科技有限公司 一种多功能燃料电池测试台控制器
CN108073110B (zh) * 2017-12-28 2024-04-23 上海神力科技有限公司 一种多功能燃料电池测试台控制器
CN108199442A (zh) * 2018-01-31 2018-06-22 深圳市德兰明海科技有限公司 一种输出电流计算方法、装置及光伏充电器
CN109904870A (zh) * 2019-03-28 2019-06-18 安徽铜冠铜箔有限公司 一种削峰填谷电源系统及其控制方法

Also Published As

Publication number Publication date
CN101782630B (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
CN101782630B (zh) 一种具有恒流恒功率的电子负载控制器
Camara et al. DC/DC converter design for supercapacitor and battery power management in hybrid vehicle applications—Polynomial control strategy
CN102340165B (zh) 电动力汽车电源管理系统
CN201682417U (zh) 基于超级电容的电源保护电路
CN103412259B (zh) 一种直流断路器通断特性测试装置
CN105045235A (zh) 基于智能云技术的梯级电站远程控制系统
CN107482911A (zh) 一种适用于氢燃料电池堆交流阻抗测试的dc/dc变换器
CN104167800A (zh) 可扩展通信后备电源锂电池管理系统及方法
CN204190689U (zh) 一种光伏电池最大功率点跟踪器
CN201868896U (zh) 变压器经济运行系统
CN2938523Y (zh) 太阳能充电器
CN108365632A (zh) 一种基于储能电池的电力系统及运行方法
CN202093095U (zh) 一种变压器直流电阻测试仪
CN203405550U (zh) 直流断路器通断特性测试装置
CN203151389U (zh) 一种三相高功率因数整流器的控制电路
CN204304782U (zh) 一种光伏mppt的全电流段boost电路
CN104659795A (zh) 一种微电网功率平衡控制装置及方法
CN206226085U (zh) 锂电池加热保护装置
CN202256491U (zh) 一种基站电能测量装置
CN204497758U (zh) 一种锂电池充电限流模块
CN204668922U (zh) 一种模块电源短路保护电路
CN204189064U (zh) 一种光伏电池mppt系统
CN103326559B (zh) 一种太阳能电池阵列功率变换系统
CN102723748A (zh) 蓄电池阵列控制器
CN104281191A (zh) 一种光伏电池mppt系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120704

Termination date: 20160225

CF01 Termination of patent right due to non-payment of annual fee