CN101769396B - Five-way valve for switching of natural cooling, refrigeration and heating modes - Google Patents

Five-way valve for switching of natural cooling, refrigeration and heating modes Download PDF

Info

Publication number
CN101769396B
CN101769396B CN2010101084913A CN201010108491A CN101769396B CN 101769396 B CN101769396 B CN 101769396B CN 2010101084913 A CN2010101084913 A CN 2010101084913A CN 201010108491 A CN201010108491 A CN 201010108491A CN 101769396 B CN101769396 B CN 101769396B
Authority
CN
China
Prior art keywords
valve
capillary
connecting tube
tube
capillary tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010101084913A
Other languages
Chinese (zh)
Other versions
CN101769396A (en
Inventor
石文星
周德海
郜义军
韩宗伟
王宝龙
李先庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Shuimu Nenghuan Energy Saving Technology Co ltd
Tsinghua University
Original Assignee
Beijing Shuimu Nenghuan Energy Saving Technology Co ltd
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Shuimu Nenghuan Energy Saving Technology Co ltd, Tsinghua University filed Critical Beijing Shuimu Nenghuan Energy Saving Technology Co ltd
Priority to CN2010101084913A priority Critical patent/CN101769396B/en
Publication of CN101769396A publication Critical patent/CN101769396A/en
Application granted granted Critical
Publication of CN101769396B publication Critical patent/CN101769396B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention relates to a five-way valve for switching of natural cooling, refrigeration and heating modes, belonging to the technical field of a flow control valve. The valve comprises a first valve body, a second valve body and a driving capillary group. The five-way valve can realize the switching of three modes of natural cooling, refrigeration and heating of an air conditioning unit by the differential pressure change generated by starting and stopping of a refrigeration compressor, the elasticity of springs and the power turn-on/off of electromagnetic coils. Compared with the traditional control by a plurality of valves, the five-way valve is easier to control and has good control and operating performances. The five-way valve causes the air conditioning unit with natural cooling and heating functions to increase the operating reliability and has the characteristics of simple installation, convenient maintenance and mass production.

Description

Be used for the five-way valve that natural cooling and refrigeration and heating mode switch
Technical field
The present invention relates to a kind of five-way valve that natural cooling and refrigeration and heating mode switch that is used for; It is a kind of autocontrol valve with five ports; Be applicable to the switching between the different condition lower pipeline; Be particularly useful for switching, belong to the valve design technical field with the mode of operation of the direct evaporative type air-conditioning equipment of the refrigeration agent of natural cooling, refrigeration and heat-production functions.
Background technique
For the existing building outskirt; Because the fluctuation of loads such as the increase of the improvement of buildings exterior-protected structure performance and office lighting, equipment heating amount and building heat transfer, solar radiation; Make building outskirt refrigeration duty increase; Under the prerequisite of heat supply in the winter time, summer cooling, transition season also needs cooling sometimes.But at present building energy consumption becomes the target of everyone, and how to save the problem that energy consumption has become the designer and paid close attention to.And natural cooling (free cooling) technology is exactly to utilize natural cooling source to come to the building cooling, thus energy efficient.
For this reason; The existing air-conditioning processing equipment that much utilizes natural cooling technology; CN101514856A has announced " a kind of air processor with the natural cold and heat supply function ", utilizes natural cooling to reduce the purpose of air conditioning energy consumption though realized transition season, owing to adopt a plurality of electromagnetism or electric valve to realize the switching of compressor cycle pattern and natural cooling circulation mode; Cause the complexity of control system to increase, thereby increased maintenance and the maintenance workload in the actual motion.
To above-mentioned situation, the present invention proposes this five-way valve that natural cooling and refrigeration and heating mode switch that is used for, solved very cleverly and adopted a plurality of electromagnetism or electric valve to carry out those shortcomings of switching.
Summary of the invention
To this shortcoming of switching at the air conditioner group mode of the novel band natural cold and heat supply function of building the outskirt use; The present invention proposes and thisly be used to realize that natural cooling and common refrigeration, heat pump heat the five-way valve of three kinds of mode switching; Solved very cleverly and adopted a plurality of electromagnetism or electric valve to carry out those shortcomings of switching, thus can realize natural circulation and compressor cycle the whole year efficiently, reliable operation.
Concrete technological scheme of the present invention is: a kind of five-way valve that is used for natural cooling and refrigeration and heating mode switching, and it is characterized in that: this five-way valve is made up of first main valve, second main valve, pilot valve and driving capillary tube group; Said first main valve comprises the first main valve housing, stage clip, first valve core of main valve, first connecting tube, second connecting tube and condenser inlet connecting tube; Said second main valve comprises the second main valve housing, second valve core of main valve, the 3rd connecting tube, the 4th connecting tube, compressor air suction connecting tube and compressor air-discharging connecting tube; Said pilot valve comprises pilot valve housing, pilot valve spool and electromagnetic coil; Said driving capillary tube group comprises low pressure capillary tube, high pressure capillary, first capillary tube, second capillary tube, three capillary and the 4th capillary tube; The said first main valve housing and first valve core of main valve constitute two seal spacies, are respectively hyperbaric chamber and low pressure chamber; Said stage clip is arranged in the low pressure chamber; The said second main valve housing and second valve core of main valve constitute two seal spacies, are respectively first chamber and second chamber; Said second connecting tube is communicated with the 3rd connecting tube; A said low pressure end capillaceous is communicated with described compressor air suction connecting tube, and a low pressure other end capillaceous is communicated with low pressure chamber; One end of said high pressure capillary is communicated with described compressor air-discharging connecting tube, and the other end of high pressure capillary is communicated with hyperbaric chamber; Said first end capillaceous is communicated with the compressor air suction connecting tube, and first the other end capillaceous is connected with pilot valve; Said second end capillaceous is communicated with first chamber, and second the other end capillaceous is connected with pilot valve; One end of said three capillary is communicated with second chamber, and the other end of three capillary is connected with pilot valve; The said the 4th end capillaceous is communicated with the compressor air-discharging connecting tube, and the 4th the other end capillaceous is connected with pilot valve; During said electromagnetic coil power down, in pilot valve, first capillary tube and three capillary are through the conducting of pilot valve spool, second capillary tube and the 4th capillary tube conducting; When electromagnetic coil was charged, the adhesive of pilot valve spool was moved, and at this moment, first capillary tube and second capillary tube are through the conducting of pilot valve spool, three capillary and the 4th capillary tube conducting.
Technical characteristics of the present invention also is: first valve core of main valve is arch spool or mobile piston spool.
The present invention compared with prior art; Have the following advantages and the high-lighting effect: utilize the pressure reduction of opening, shut down generation of refrigeration compressor self to change, the elastic force of spring and the break-make of electromagnetic coil; Can realize that natural circulation, common refrigeration and heat pump heat the switching of three kinds of patterns, can satisfy the demand of annual heat supply, cooling mode switching; Adopt a plurality of valve controls much easier than tradition, control and ride quality are good; Make the air-conditioning unit operational reliability of band natural cold and heat supply function high; But have the characteristics simple, mass production easy to maintenance of installing.
Description of drawings
Fig. 1 is the five-way valve structural representation that natural cooling and refrigeration and heating mode switch that is used for of the present invention, and this figure is heat pipe and the steam compressed compound-refrigerating air-conditioning unit valve element position figure when being in natural circulation.
Fig. 2 is the five-way valve structural representation that natural cooling and refrigeration and heating mode switch that is used for of the present invention, and this figure is heat pipe and the steam compressed compound-refrigerating air-conditioning unit valve element position figure when being in refrigeration cycle.
Fig. 3 is the five-way valve structural representation that natural cooling and refrigeration and heating mode switch that is used for of the present invention, and this figure is that heat pipe and steam compressed compound-refrigerating air-conditioning unit are in the valve element position figure that heats circulation time.
Fig. 4 is that the present invention is applied to the direct evaporative type air-conditioning equipment of the refrigeration agent fundamental diagram with natural cooling, common refrigeration and heat pump heat-production functions.
Among Fig. 1~Fig. 4: 100-first main valve; The 101-first main valve housing; The 102-stage clip; 103-first valve core of main valve; 104-condenser inlet connecting tube; 105-first connecting tube; 106-second connecting tube; The 107-low pressure chamber; The 108-hyperbaric chamber; 200-second main valve; The 201-second main valve housing; 202-second valve core of main valve; 203-the 3rd connecting tube; 204-compressor air suction connecting tube; 205-the 4th connecting tube; 206-compressor air-discharging connecting tube; 207-first chamber; 208-second chamber; The 300-pilot valve; 301-pilot valve housing; 302-pilot valve spool; The 303-electromagnetic coil; 401-low pressure capillary tube; The 402-high pressure capillary; 403-first capillary tube; 404-second capillary tube; The 405-three capillary; 406-the 4th capillary tube; The 500-compressor; The 600-condenser; The 700-throttle mechanism; The 800-vaporizer; 900-is used for the five-way valve that natural cooling and refrigeration and heating mode switch.
Embodiment
The contrast accompanying drawing is done further explain to theory structure of the present invention and working procedure below.
Fig. 1 is the five-way valve schematic representation that natural cooling and refrigeration and heating mode switch that is used for of the present invention, and this figure is heat pipe and the steam compressed compound-refrigerating air-conditioning unit valve element position figure when being in natural circulation.This five-way valve is by first main valve 100, second main valve 200, pilot valve 300 and drive the capillary tube group and form; Said first main valve 100 comprises the first main valve housing 101, stage clip 102, first valve core of main valve 103, condenser inlet connecting tube 104, first connecting tube 105 and second connecting tube 106; Said second main valve 200 comprises the second main valve housing 201, second valve core of main valve 202, the 3rd connecting tube 203, compressor air suction connecting tube 204, the 4th connecting tube 205 and compressor air-discharging connecting tube 206; Said pilot valve 300 comprises pilot valve housing 301, pilot valve spool 302 and electromagnetic coil 303; Said driving capillary tube group comprises low pressure capillary tube 401, high pressure capillary 402, first capillary tube 403, second capillary tube 404, three capillary 405 and the 4th capillary tube 406; The said first main valve housing 101 and first valve core of main valve 103 constitute two seal spacies, are respectively hyperbaric chamber 108 and low pressure chamber 107, and said stage clip 102 is arranged in the low pressure chamber 107; The said second main valve housing 201 and second valve core of main valve 202 constitute two seal spacies, are respectively first chamber 207 and second chamber 208; Said second connecting tube 106 is communicated with the 3rd connecting tube 203; One end of said low pressure capillary tube 401 is communicated with compressor air suction connecting tube 204, and an other end of low pressure capillary tube 401 is communicated with low pressure chamber 107; One end of said high pressure capillary 402 is communicated with compressor air-discharging connecting tube 206, and the other end of high pressure capillary 402 is communicated with hyperbaric chamber 108; One end of said first capillary tube 403 is communicated with compressor air suction connecting tube 204, and the other end of first capillary tube 403 is connected with pilot valve 300; One end of said second capillary tube 404 is communicated with first chamber 207, and the other end of second capillary tube 404 is connected with pilot valve 300; One end of said three capillary 405 is communicated with second chamber 208, and the other end of three capillary 405 is connected with pilot valve 300; One end of said the 4th capillary tube 406 is communicated with compressor air-discharging connecting tube 206, and the other end of the 4th capillary tube 406 is connected with pilot valve 300; During said electromagnetic coil 303 power down, in pilot valve 300, first capillary tube 403 and three capillary 405 are through 302 conductings of pilot valve spool, second capillary tube 404 and 406 conductings of the 4th capillary tube; When electromagnetic coil 303 was charged, 302 adhesives of pilot valve spool were moved, and at this moment, first capillary tube 403 and second capillary tube 404 are through 302 conductings of pilot valve spool, three capillary 405 and 406 conductings of the 4th capillary tube.First connecting tube 105 is connected with evaporator outlet with the 4th connecting tube 205.Under the natural cooling circulation mode; Compressor 500 is shut down; Refrigeration agent becomes low-pressure steam after vaporizer 800 absorbs heat, get into first connecting tube 105 of novel five-way valve 900, flows out to condenser 600 through condenser inlet connecting tube 104 and emits heat; Flow back to vaporizer 800 then, accomplish natural circulation (referring to Fig. 4).
Fig. 2 is the five-way valve schematic representation that natural cooling and refrigeration and heating mode switch that is used for of the present invention, and this figure is heat pipe and the steam compressed compound-refrigerating air-conditioning unit valve element position figure when being in refrigeration cycle.First connecting tube 105 is connected with evaporator outlet with the 4th connecting tube 205.Under the refrigeration cycle pattern; Electromagnetic coil 303 power down and compressor 500 start; Refrigeration agent gets into the 4th connecting tube 205 in the novel five-way valve 900 after vaporizer 800 absorbs heat; Because the suction and discharge pressure reduction of compressor 500, the pressure in the compressor air-discharging connecting tube 206 are higher than compressor air suction connecting tube 204, again the conducting effect through high pressure capillary 402 and low pressure capillary tube 401 make first main valve 100 hyperbaric chamber 108 internal pressures greater than low pressure chamber 107 internal pressures; Thereby first valve core of main valve 103 is moved to left; Second connecting tube 106 and 104 conductings of condenser inlet connecting tube, refrigeration agent gets into compressor 500 from the 4th connecting tube 205 and compressor air suction connecting tube 204, and the high-temperature high-pressure refrigerant steam after the compression gets into the 3rd connecting tube 203 from compressor air-discharging connecting tube 206 and flows out to condenser 600 through second connecting tube, 106 self cooling condenser inlet connecting tubes 104; After throttle mechanism 700 throttling step-downs, flow back into vaporizer 800, realize refrigeration cycle (referring to Fig. 4).
Fig. 3 is the five-way valve schematic representation that natural cooling and refrigeration and heating mode switch that is used for of the present invention, and this figure is that heat pipe and steam compressed compound-refrigerating air-conditioning unit are in the valve element position figure that heats circulation time.First connecting tube 105 is connected with evaporator outlet with the 4th connecting tube 205.Heat under the circulation mode; Compressor 500 starts; Electromagnetic coil 303 is charged, and refrigeration agent gets into condenser inlet connecting tube 104 in the novel five-way valve 900 after condenser 600 absorbs heat, and this moment is because the suction and discharge pressure reduction of compressor 500; Make compressor air-discharging connecting tube 206 internal pressures greater than compressor air suction connecting tube 204; Because hyperbaric chamber 108 internal pressures that the conducting effect of low pressure capillary tube 401 and high pressure capillary 402 makes first main valve 100 are greater than low pressure chamber 107 internal pressures, thereby the spool 103 of first main valve 100 is moved to left, refrigeration agent gets into second connecting tube 106 through condenser inlet connecting tube 104; And because the connection effect of first capillary tube 403 and second capillary tube 404 and connection effect and three capillary 405 and the 4th capillary tube 406; First chamber, 207 internal pressures of second main valve 200 are less than first chamber, 208 internal pressures, and when pressure reduction acquired a certain degree, second valve core of main valve 202 moved to left under differential pressure action; Refrigeration agent gets into compressor 500 through the 3rd connecting tube 203 through compressor air suction connecting tube 204; High-temperature high-pressure refrigerant steam after the compression after the 4th connecting tube 205 flows out to vaporizer 800 and emits heat, flows back to condenser 600 from compressor air-discharging connecting tube 206 after throttle mechanism 700 throttling step-downs, accomplish heating circulation (referring to Fig. 4).

Claims (2)

1. one kind is used for the five-way valve that natural cooling and refrigeration and heating mode switch, and it is characterized in that: this five-way valve is made up of first main valve (100), second main valve (200), pilot valve (300) and driving capillary tube group; Said first main valve (100) comprises the first main valve housing (101), stage clip (102), first valve core of main valve (103), first connecting tube (105), second connecting tube (106) and condenser inlet connecting tube (104); Said second main valve (200) comprises the second main valve housing (201), second valve core of main valve (202), the 3rd connecting tube (203), the 4th connecting tube (205), compressor air suction connecting tube (204) and compressor air-discharging connecting tube (206); Said pilot valve (300) comprises pilot valve housing (301), pilot valve spool (302) and electromagnetic coil (303); Said driving capillary tube group comprises low pressure capillary tube (401), high pressure capillary (402), first capillary tube (403), second capillary tube (404), three capillary (405) and the 4th capillary tube (406); The said first main valve housing (101) constitutes two seal spacies with first valve core of main valve (103), is respectively hyperbaric chamber (108) and low pressure chamber (107); Said stage clip (102) is arranged in the low pressure chamber (107); The said second main valve housing (201) constitutes two seal spacies with second valve core of main valve (202), is respectively first chamber (207) and second chamber (208); Said second connecting tube (106) is communicated with the 3rd connecting tube (203); One end of said low pressure capillary tube (401) is communicated with described compressor air suction connecting tube (204), and an other end of low pressure capillary tube (401) is communicated with low pressure chamber (107); One end of said high pressure capillary (402) is communicated with described compressor air-discharging connecting tube (206), and the other end of high pressure capillary (402) is communicated with hyperbaric chamber (108); One end of said first capillary tube (403) is communicated with compressor air suction connecting tube (204), and the other end of first capillary tube (403) is connected with pilot valve (300); One end of said second capillary tube (404) is communicated with first chamber (207), and the other end of second capillary tube (404) is connected with pilot valve (300); One end of said three capillary (405) is communicated with second chamber (208), and the other end of three capillary (405) is connected with pilot valve (300); One end of said the 4th capillary tube (406) is communicated with compressor air-discharging connecting tube (206), and the other end of the 4th capillary tube (406) is connected with pilot valve (300); During said electromagnetic coil (303) power down, in pilot valve (300), first capillary tube (403) passes through pilot valve spool (302) conducting with three capillary (405), second capillary tube (404) and the 4th capillary tube (406) conducting; When electromagnetic coil (303) was charged, pilot valve spool (302) adhesive was moved, and at this moment, first capillary tube (403) passes through pilot valve spool (302) conducting with second capillary tube (404), three capillary (405) and the 4th capillary tube (406) conducting.
2. a kind of five-way valve that natural cooling and refrigeration and heating mode switch that is used for according to claim 1, it is characterized in that: first valve core of main valve (103) is arch spool or mobile piston spool.
CN2010101084913A 2010-02-05 2010-02-05 Five-way valve for switching of natural cooling, refrigeration and heating modes Expired - Fee Related CN101769396B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101084913A CN101769396B (en) 2010-02-05 2010-02-05 Five-way valve for switching of natural cooling, refrigeration and heating modes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101084913A CN101769396B (en) 2010-02-05 2010-02-05 Five-way valve for switching of natural cooling, refrigeration and heating modes

Publications (2)

Publication Number Publication Date
CN101769396A CN101769396A (en) 2010-07-07
CN101769396B true CN101769396B (en) 2012-05-30

Family

ID=42502435

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101084913A Expired - Fee Related CN101769396B (en) 2010-02-05 2010-02-05 Five-way valve for switching of natural cooling, refrigeration and heating modes

Country Status (1)

Country Link
CN (1) CN101769396B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104482685B (en) * 2014-11-24 2017-06-06 广东美的制冷设备有限公司 Heating and air conditioner
JP2017075675A (en) * 2015-10-16 2017-04-20 株式会社鷺宮製作所 Slide type selector valve and refrigeration cycle system
CN109154461A (en) * 2016-05-25 2019-01-04 开利公司 For freely cooling down air cooling and the water-cooled freezer unit of application
CN107883552A (en) * 2017-12-12 2018-04-06 珠海格力电器股份有限公司 Five-way valve, air-conditioner set and control method
FR3076766B1 (en) * 2018-01-12 2019-12-13 Valeo Systemes Thermiques FIVE-WAY VALVE AIR CONDITIONING SYSTEM, MODULE AND CORRESPONDING METHOD
CN113175768B (en) * 2021-02-09 2023-03-21 三花控股集团有限公司 Fluid control assembly
CN115031444A (en) * 2021-03-05 2022-09-09 约克广州空调冷冻设备有限公司 Heat pump system
CN115265002B (en) * 2021-04-29 2023-10-13 约克广州空调冷冻设备有限公司 heat pump system
CN115950121A (en) * 2022-12-02 2023-04-11 珠海格力电器股份有限公司 Capillary tube structure and air conditioner
CN117450791B (en) * 2023-12-26 2024-04-23 山西晋能集团大同能源发展有限公司 Pressure roasting furnace for graphite preparation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CS205748B1 (en) * 1979-03-05 1981-05-29 Jan Balun Five-way valve
US4760709A (en) * 1986-09-11 1988-08-02 Kabushiki Kaisha Saginomiya Seisakusho Five-way valve having simultaneous defrosting and heating functions
WO2006059800A1 (en) * 2004-12-03 2006-06-08 Yoichi Kawakami Five-way control valve
CN201651430U (en) * 2010-02-05 2010-11-24 清华大学 Five-way valve for switching over natural cooling mode, refrigerating mode and heating mode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CS205748B1 (en) * 1979-03-05 1981-05-29 Jan Balun Five-way valve
US4760709A (en) * 1986-09-11 1988-08-02 Kabushiki Kaisha Saginomiya Seisakusho Five-way valve having simultaneous defrosting and heating functions
WO2006059800A1 (en) * 2004-12-03 2006-06-08 Yoichi Kawakami Five-way control valve
CN201651430U (en) * 2010-02-05 2010-11-24 清华大学 Five-way valve for switching over natural cooling mode, refrigerating mode and heating mode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王建.自动五通阀在高速列车给水系统上应用的前景浅析.《铁道车辆》.2003, *

Also Published As

Publication number Publication date
CN101769396A (en) 2010-07-07

Similar Documents

Publication Publication Date Title
CN101769396B (en) Five-way valve for switching of natural cooling, refrigeration and heating modes
CN101270934B (en) Combination method and device of two-stage compression heat pump air conditioner and refrigerator system
CN202813914U (en) Ultralow-temperature air source heat pump unit system
CN102840716A (en) Heat pump system and control method thereof
CN201819475U (en) Air-conditioner refrigeration equipment
CN201651430U (en) Five-way valve for switching over natural cooling mode, refrigerating mode and heating mode
CN201627986U (en) Four-way valve for switching natural cooling and refrigerating and heating modes
CN101776162B (en) Four-way valve for switching natural cooling, refrigerating and heating modes
CN202328962U (en) Water heater system of condensation heat defrosting air conditioner
CN104566703A (en) Dual-system energy-saving central air-conditioner
CN202119162U (en) Heat pump system
CN101382354A (en) Double- effective day/night high temperature water-water heat pump hot water unit
CN108759157B (en) One-time throttling two-stage compression heat pump system
CN110701819A (en) Three-working-condition system
CN202470417U (en) Commercial water heating device with air source heat pump and adjustability in power level
CN203010772U (en) Thermoregulation humidifying type air-conditioning system
CN101608845B (en) Parallel connection type modularized heat pump unit
CN101625174B (en) Multi-functional modularization heat pump machine set
CN200989640Y (en) Solar air conditioner
CN102445024A (en) Household multi-connection comprehensive refrigerating system
CN109357432A (en) Double variable-frequency multi-connection type air-conditioner sets
CN213931578U (en) Heat exchange assembly, humidifying device and air conditioning system
CN217383327U (en) Solar photovoltaic driven heat pump type hot water unit
CN201637185U (en) Afterheat energy-saving air source heat pump air conditioning in metering room in oil field
CN102322708A (en) Household triple cogeneration system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120530

Termination date: 20190205