CN101767057A - Method for separating aluminum and iron in high-iron bauxite - Google Patents

Method for separating aluminum and iron in high-iron bauxite Download PDF

Info

Publication number
CN101767057A
CN101767057A CN200810190802A CN200810190802A CN101767057A CN 101767057 A CN101767057 A CN 101767057A CN 200810190802 A CN200810190802 A CN 200810190802A CN 200810190802 A CN200810190802 A CN 200810190802A CN 101767057 A CN101767057 A CN 101767057A
Authority
CN
China
Prior art keywords
iron
bauxite
magnetic separation
mineral
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200810190802A
Other languages
Chinese (zh)
Other versions
CN101767057B (en
Inventor
赵恒勤
马化龙
胡四春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou Institute of Multipurpose Utilization of Mineral Resources CAGS
Original Assignee
Zhengzhou Institute of Multipurpose Utilization of Mineral Resources CAGS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou Institute of Multipurpose Utilization of Mineral Resources CAGS filed Critical Zhengzhou Institute of Multipurpose Utilization of Mineral Resources CAGS
Priority to CN2008101908028A priority Critical patent/CN101767057B/en
Publication of CN101767057A publication Critical patent/CN101767057A/en
Application granted granted Critical
Publication of CN101767057B publication Critical patent/CN101767057B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention discloses a method for separating aluminum and iron in high-iron bauxite, which comprises the following steps: (1) crushing high-iron bauxite; (2) carrying out magnetization roasting on the crushed high-iron bauxite; (3) grinding ore; (4) separating the bauxite from the iron mineral through low-intensity magnetic separation to respectively obtain the bauxite and the iron mineral. Before the high-iron bauxite is dissolved out, the method adopts the magnetizing roasting-magnetic separation process to separate the iron from the bauxite containing high iron through the magnetizing roasting-magnetic separation process, and the bauxite after the magnetic separation is subjected to strong magnetic separation for removing the iron to obtain the qualified bauxite concentrate, so that the high-iron bauxite is well utilized, the bauxite and the iron mineral in the bauxite can be comprehensively utilized, and the method has the advantages of simple process, low cost, high yield, good product quality, safety, environmental protection and the like.

Description

The method that aluminium in the high-iron bauxite is separated with iron phase
Technical field
The present invention relates to a kind of separation method of mineral, relate in particular to a kind of method that aluminium in the high-iron bauxite is separated with iron phase, belong to the screening and the separation technology field of mineral.
Background technology
China's high-iron bauxite reserves are very abundant, mainly be distributed in provinces such as Henan, Guangxi, Shanxi, high ferro trihydrate aluminum stone type bauxite prospective reserves can reach more than 1,000,000,000 tons, and the high iron diaspore bauxite reserves are also very abundant, and only the Shanxi county just has more than 100,000,000 tons.Because iron oxide content more than 10%, can't directly be produced aluminium oxide with sintering process, Bayer process or combination method.Separate the resource that to utilize these " dull " so must carry out ferro-aluminum earlier.Iron in China's high-iron bauxite mainly exists with the form of bloodstone and goethite, the magnetic that these two kinds of mineral have very a little less than, and the embedding cloth of iron mineral and bauxite relation is very tight in high-iron bauxite, and crystallization is very thin, can't carry out conventional magnetic separation or flotation and separate.At present, the iron and the aluminium that adopt several different methods to separate in the bauxite are both at home and abroad obtained certain achievement, but all fail to obtain aborning large-scale application.At present, do not see pair high-iron bauxite magnetizing roast is arranged-magnetic separation separation ferro-aluminum comprehensive utilization method.
Summary of the invention
The objective of the invention is at the deficiencies in the prior art, a kind of technical feasibility, economical rationality have been proposed, can effectively separate aluminium in the high-iron bauxite and iron and can fully utilize wherein aluminium oxide and iron oxide utilize high-iron bauxite production method of alumina.
Above-mentioned purpose of the present invention is achieved through the following technical solutions:
A kind of method that aluminium in the high-iron bauxite is separated with iron phase may further comprise the steps:
(1) broken high-iron bauxite; (2) high-iron bauxite after the fragmentation carries out magnetizing roast; (3) ore grinding; (4) by low intensity magnetic separation bauxite and iron mineral are separated, obtain bauxite and iron mineral respectively;
Wherein, the fragmentation described in the step (1) is preferably high-iron bauxite is crushed to whole particle diameters less than 5mm.
Described magnetizing roast is preferably carried out under the following conditions: add the 8%-50% that amount of coke is the mineral gross weight (more preferably 25%) during roasting, sintering temperature is 900 ℃-1150 ℃ (more preferably 1030 ℃), and roasting time is 1.5-6 hour (more preferably 4.5 hours).Illustrate: so-called magnetizing roast is meant that mainly the iron mineral that do not have magnetic or weak magnetic becomes ferromagnetic magnetic iron ore or metallic iron through reduction, adds the carbon main purpose among the present invention and is used for the reduced iron mineral.
Described ore grinding is that the high-iron bauxite after the magnetizing roast is milled to fineness for account for the 60%-100% of gross weight less than 200 purpose ore content, and is preferred, accounts for 90% of gross weight less than 200 purpose ore content;
Described low intensity magnetic separation is to carry out magnetic separation under magnetic field intensity is the magnetic field intensity of 110 kilo-ampere/rice~160 kilo-ampere/rice; Preferred, described low intensity magnetic separation is to carry out magnetic separation under magnetic field intensity is the magnetic field intensity of 127.4 kilo-ampere/rice.
The total content that aluminium oxide in the described high-iron bauxite adds iron oxide preferably reaches more than 60%; Aluminium oxide wherein can be diaspore, gibbsite, boehmite and mixed ore thereof.
In the said method, in order to reach better effect, can also finally obtain the bauxite of full lattice with the bauxite that obtains that separated again through the high intensity magnetic separation deironing; Wherein, the magnetic field intensity of described high intensity magnetic separation is preferably 550 kilo-ampere/rice-1100 kilo-ampere/rice, more preferably 717 kilo-ampere/rice; The bauxite of low intensity magnetic separation gained is carried out one section high intensity magnetic separation again, can reduce the iron content in the bauxite greatly.
In the said method, also can with to separate the iron mineral that obtains be that (140mm more preferably) obtains qualified iron ore concentrate again through 1-3 magnetic separation under the 80mm-160mm condition at yoke distance preferably through the magnetic field screening machine; Adopt the magnetic field screening machine to carry out selectedly can improving concentrate grade greatly, made that most iron oxide transforms metallic iron in the high-iron bauxite because sintering temperature is higher, so the full iron grade of final concentrate can reach more than 80%.
The embedding cloth of iron mineral and bauxite relation is very tight in China's high-iron bauxite, crystallization is very thin, the magnetic of iron mineral very a little less than, magnetizing roast not only can make the weak magnetism mineral be converted into ferromagnetic iron mineral Huo and metallic iron, the crystallization of iron mineral is increased, help magnetic separation and separate.The inventive method is before the high-iron bauxite stripping, adopt technical feasibility, magnetizing roast-the magnetic separation process of economical rationality, make the bauxite that contains high ferro select wherein iron by magnetizing roast-magnetic separation process, so bauxite after the magnetic separation obtains qualified alum clay after by the high intensity magnetic separation deironing concentrate, high-iron bauxite is well utilized, and can fully utilize wherein bauxite and iron mineral, have advantages such as technology is simple and direct, cost is low, productive rate is high, good product quality, safety and environmental protection.
Description of drawings
The process flow diagram of Fig. 1 the inventive method.
The specific embodiment
Further describe the present invention below in conjunction with specific embodiment, advantage of the present invention and characteristics will be more clear along with description.But these embodiment only are exemplary, scope of the present invention are not constituted any restriction.It will be understood by those skilled in the art that and down can make amendment or replace without departing from the spirit and scope of the present invention, but these modifications and replacing all fall within the scope of protection of the present invention the details of technical solution of the present invention and form.
Embodiment 1
Certain economizes high-iron bauxite: Al China 2O 3Content 49.76%, SiO 2Content 4.9%, A/S=10.16, Fe 2O 3Content 28.23%;
Whole particle diameters that this high-iron bauxite is crushed to ore carry out magnetizing roast after less than 5mm, and the condition of magnetizing roast is: the weight that adds coke is to account for 25% of gross weight, and sintering temperature is 1030 ℃, roasting time 4.5 hours; High-iron bauxite after the magnetizing roast accounts for 90% of its gross weight through ore grinding to ore particle diameter less than 200 purpose weight; The magnetic field intensity of one stages of magnetic separation is 127.4 kilo-ampere/rice, isolates bauxite and iron mineral; Separate and carry out high intensity magnetic separation under the high intensity magnetic separation condition that the bauxite that obtains is 717 kilo-ampere/rice in magnetic field intensity, thoroughly iron mineral is selected, obtain qualified bauxite; Is 140mm condition under selected through the magnetic field screening machine at yoke distance with the iron ore concentrate that is separated, and obtains qualified iron ore concentrate.
Obtain Al 2O 3Content is 60.28%, Fe 2O 3Content is 6.89% bauxite, and the alumina recovery rate is 77.85%, and productive rate is 65.24%; Obtain Al 2O 3Content 4.31%, the iron mineral of full Fe content 85.26%, the iron oxide rate of recovery 42.56%, productive rate 11.87%; Obtain Al 2O 3Content is 23.78%, Fe 2O 3Content is 40.28% high ferro high aluminum mineral, and productive rate is 22.89%.
Embodiment 2
Certain economizes high-iron bauxite: Al China 2O 3Content 51.06%, SiO 2Content 4.15%, A/S=12.30, Fe 2O 3Content 29.01%;
Whole particle diameters that this high-iron bauxite is crushed to ore carry out magnetizing roast after less than 5mm, and it is 25% that the condition of magnetizing roast adds amount of coke, 1030 ℃ of sintering temperatures, roasting time 4.5 hours; High-iron bauxite after the magnetizing roast accounts for 90% of its gross weight through ore grinding to ore particle diameter less than 200 purpose weight; The magnetic field intensity of one stages of magnetic separation is 160 kilo-ampere/rice, isolates bauxite and iron mineral; Separate and carry out high intensity magnetic separation under the high intensity magnetic separation condition that the bauxite that obtains is 1095 kilo-ampere/rice in magnetic field intensity, the iron mineral with remnants selects once more, obtains qualified bauxite; Is 160mm condition under selected through the magnetic field screening machine at yoke distance with the iron ore concentrate that is separated, and obtains qualified iron ore concentrate.
Obtain Al 2O 3Content is 61.76%, Fe 2O 3Content is 6.96% bauxite, alumina recovery rate 76.95%, productive rate 64.82%; Obtain Al 2O 3Content 5.23%, the iron mineral of full Fe content 85.85%, the iron oxide rate of recovery 43.20%, productive rate 11.96%; Obtain Al 2O 3Content 24.53%, Fe 2O 3The high ferro high aluminum mineral of content 41.65%, productive rate 23.22%.
The comparative example 1
Certain economizes high-iron bauxite: Al China 2O 3Content 49.76%, SiO 2Content 4.9%, A/S=10.16, Fe 2O 3Content 28.23%;
Whole particle diameters that this high-iron bauxite is crushed to ore carry out magnetizing roast after less than 5mm, and the condition of magnetizing roast is 25% for adding amount of coke, 780 ℃ of sintering temperatures, roasting time 4.5 hours; High-iron bauxite after the magnetizing roast accounts for 90% of its gross weight through ore grinding to ore particle diameter less than 200 purpose weight; The magnetic field intensity of one stages of magnetic separation is 127.4 kilo-ampere/rice, isolates bauxite and iron mineral; Separate and carry out high intensity magnetic separation under the high intensity magnetic separation condition that the bauxite that obtains is 717 kilo-ampere/rice in magnetic field intensity, the iron mineral with remnants selects once more, obtains bauxite; Is 140mm condition under selected through the magnetic field screening machine at yoke distance with the iron ore concentrate that is separated, and obtains iron ore concentrate.
Obtain Al 2O 3Content is 60.28%, Fe 2O 3Content is 14.25% bauxite, alumina recovery rate 70.26%, and productive rate 59.53%, iron content still exceeds standard in this bauxite; Obtain Al 2O 3Content 12.68%, the iron mineral of full Fe content 56.35%, the iron oxide rate of recovery 42.89%, productive rate 15.26%, iron content is not high in this iron mineral, and alumina content also exceeds standard; Obtain Al 2O 3Content 48.21%, Fe 2O 3The high ferro high aluminum mineral of content 30.45%, productive rate 25.21%.
The comparative example 2
Certain economizes high-iron bauxite: Al China 2O 3Content 51.06%, SiO 2Content 4.15%, A/S=12.30, Fe 2O 3Content 29.01%;
Whole particle diameters that this high-iron bauxite is crushed to ore carry out magnetizing roast after less than 5mm, and the condition of magnetizing roast is 25% for adding amount of coke, 1030 ℃ of sintering temperatures, roasting time 1 hour.Magnetizing roast is after ore grinding to ore particle diameter accounts for 90% of its gross weight less than 200 purpose weight; The magnetic field intensity of one stages of magnetic separation is 127.4 kilo-ampere/rice, isolates bauxite and iron mineral; Separate under the condition of high intensity magnetic separation that the bauxite that obtains is 717 kilo-ampere/rice in magnetic field intensity and carry out high intensity magnetic separation, obtain bauxite; Final iron ore concentrate is selected under the 140mm condition through the magnetic field screening machine at yoke distance, obtains iron ore concentrate.
Obtain Al 2O 3Content 57.86%, Fe 2O 3The bauxite of content 15.86%, alumina recovery rate 68.36%, productive rate 58.24%, this bauxite iron content still exceeds standard; Obtain Al 2O 3Content 14.12%, the iron mineral of full Fe content 57.25%, the iron oxide rate of recovery 43.82%, productive rate 12.13%, iron content is not high in this iron mineral, and alumina content also exceeds standard; Obtain Al 2O 3Content 49.24%, Fe 2O 3The high ferro high aluminum mineral of content 39.89%, productive rate are 29.63%.

Claims (10)

1. method that aluminium in the high-iron bauxite is separated with iron phase may further comprise the steps:
(1) broken high-iron bauxite; (2) high-iron bauxite after the fragmentation carries out magnetizing roast; (3) ore grinding; (4) by low intensity magnetic separation bauxite and iron mineral are separated, obtain bauxite and iron mineral respectively.
2. it is characterized in that in accordance with the method for claim 1: being broken for described in the step (1) is crushed to whole particle diameters less than 5mm with high-iron bauxite.
3. it is characterized in that in accordance with the method for claim 1: described magnetizing roast is carried out under the following conditions: add the 8%-50% that amount of coke is the mineral gross weight during roasting; Sintering temperature is 900 ℃-1150 ℃; Roasting time is 1.5-6 hour.
4. in accordance with the method for claim 3, it is characterized in that: described magnetizing roast is carried out under the following conditions: adding amount of coke during roasting is 25% of mineral gross weight, and sintering temperature is 1030 ℃, and roasting time is 4.5 hours.
5. it is characterized in that in accordance with the method for claim 1: described ore grinding is that the high-iron bauxite after the magnetizing roast is milled to fineness for account for the 60%-100% of gross weight less than 200 purpose ore content; Preferred, account for 90% of gross weight less than 200 purpose ore content.
6. it is characterized in that in accordance with the method for claim 1: described low intensity magnetic separation is to carry out magnetic separation under magnetic field intensity is the magnetic field intensity of 110 kilo-ampere/rice~160 kilo-ampere/rice.
7. it is characterized in that in accordance with the method for claim 6: described low intensity magnetic separation is to carry out magnetic separation under magnetic field intensity is the magnetic field intensity of 127.4 kilo-ampere/rice.
8. it is characterized in that in accordance with the method for claim 1: the total content that the aluminium oxide in the described high-iron bauxite adds iron oxide reaches more than 60%; Wherein aluminium oxide is diaspore, gibbsite, boehmite or their mixed ore.
9. it is characterized in that in accordance with the method for claim 1: be with the bauxite that obtains that is separated under the condition of 550 kilo-ampere/rice-1100 kilo-ampere/rice (being preferably 717 kilo-ampere/rice) through the high intensity magnetic separation deironing in magnetic field intensity.
10. in accordance with the method for claim 1, it is characterized in that: with to separate the iron mineral that obtains be (to be preferably 140mm) under the 80mm-160mm condition again through 1-3 magnetic separation at yoke distance preferably through the magnetic field screening machine, obtain qualified iron ore concentrate.
CN2008101908028A 2008-12-30 2008-12-30 Method for separating aluminum and iron in high-iron bauxite Expired - Fee Related CN101767057B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101908028A CN101767057B (en) 2008-12-30 2008-12-30 Method for separating aluminum and iron in high-iron bauxite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101908028A CN101767057B (en) 2008-12-30 2008-12-30 Method for separating aluminum and iron in high-iron bauxite

Publications (2)

Publication Number Publication Date
CN101767057A true CN101767057A (en) 2010-07-07
CN101767057B CN101767057B (en) 2012-04-25

Family

ID=42500247

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101908028A Expired - Fee Related CN101767057B (en) 2008-12-30 2008-12-30 Method for separating aluminum and iron in high-iron bauxite

Country Status (1)

Country Link
CN (1) CN101767057B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925665A (en) * 2011-08-11 2013-02-13 张祥麟 Ore separation method for industrial production of above 65 iron concentrate powder through cluster analysis of low-grade hematite
CN103614547A (en) * 2013-11-28 2014-03-05 中南大学 Method for separating iron, aluminum and silicon from diasporic bauxite
CN103752403A (en) * 2014-01-10 2014-04-30 中钢集团马鞍山矿山研究院有限公司 Beneficiation method applicable to composite high-aluminum, high-mud and high-quality iron ores
CN104163445A (en) * 2014-07-25 2014-11-26 中国铝业股份有限公司 Bauxite comprehensive utilization method
CN105689126A (en) * 2016-05-11 2016-06-22 河北省地矿中心实验室 Mineral processing process for oolitic hematite
CN105837162A (en) * 2016-03-22 2016-08-10 深圳市瑞成世代实业有限公司 Method for preparation of kaolin from coal slime flotation tailings
CN108097448A (en) * 2017-11-28 2018-06-01 甘肃酒钢集团宏兴钢铁股份有限公司 A kind of shaft roasting ore deposit wet type quality grading ore-dressing technique
CN108405179A (en) * 2018-03-07 2018-08-17 鞍钢集团矿业有限公司 A kind of method of magnetic separation-roasting-magnetic separation process recycling magnetic tailing
CN110369124A (en) * 2019-08-28 2019-10-25 山西惟泰安全环保工程技术有限公司 A kind of deironing apparatus that refractory material is novel and technique
CN110918253A (en) * 2019-11-26 2020-03-27 西南科技大学 Mineral separation method for basalt

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935094A (en) * 1974-10-10 1976-01-27 Quebec Iron And Titanium Corporation - Fer Et Titane Du Quebec, Incorporated Magnetic separation of ilmenite
CN100493724C (en) * 2005-11-29 2009-06-03 武汉理工大学 Cyclone suspension flash magnetization roasting-magnetic separation method for refractory iron oxide ore
CN100490981C (en) * 2006-05-30 2009-05-27 长沙矿冶研究院 Beneficiation method for weak magnetic iron ores such as siderite, limonite and siderite paragenetic ore
CN1920064B (en) * 2006-09-14 2010-05-12 中南大学 Method of producing magnetic iron concentrate from limonite
CN101020157A (en) * 2007-03-09 2007-08-22 广东省大宝山矿业有限公司 Limonite beneficiating process
CN101204681B (en) * 2007-09-03 2010-12-08 沈阳鑫博工业技术发展有限公司 Method of refining iron ore from alkaline red mud and making gangue neutral
CN101293220B (en) * 2008-06-16 2010-04-14 中南大学 Additive agent for iron-aluminum separation for high-alumina iron ore
CN101293281B (en) * 2008-06-16 2010-11-10 中南大学 Method for directly producing metallic iron powder with high-alumina iron ore

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925665A (en) * 2011-08-11 2013-02-13 张祥麟 Ore separation method for industrial production of above 65 iron concentrate powder through cluster analysis of low-grade hematite
CN103614547A (en) * 2013-11-28 2014-03-05 中南大学 Method for separating iron, aluminum and silicon from diasporic bauxite
CN103752403A (en) * 2014-01-10 2014-04-30 中钢集团马鞍山矿山研究院有限公司 Beneficiation method applicable to composite high-aluminum, high-mud and high-quality iron ores
CN103752403B (en) * 2014-01-10 2016-01-20 中钢集团马鞍山矿山研究院有限公司 A kind of beneficiation method being suitable for high alumina, high mud, high-grade Complex iron ore
CN104163445A (en) * 2014-07-25 2014-11-26 中国铝业股份有限公司 Bauxite comprehensive utilization method
CN105837162A (en) * 2016-03-22 2016-08-10 深圳市瑞成世代实业有限公司 Method for preparation of kaolin from coal slime flotation tailings
CN105689126A (en) * 2016-05-11 2016-06-22 河北省地矿中心实验室 Mineral processing process for oolitic hematite
CN105689126B (en) * 2016-05-11 2018-01-09 河北省地矿中心实验室 A kind of oolitic hematite ore-dressing technique
CN108097448A (en) * 2017-11-28 2018-06-01 甘肃酒钢集团宏兴钢铁股份有限公司 A kind of shaft roasting ore deposit wet type quality grading ore-dressing technique
CN108405179A (en) * 2018-03-07 2018-08-17 鞍钢集团矿业有限公司 A kind of method of magnetic separation-roasting-magnetic separation process recycling magnetic tailing
CN110369124A (en) * 2019-08-28 2019-10-25 山西惟泰安全环保工程技术有限公司 A kind of deironing apparatus that refractory material is novel and technique
CN110918253A (en) * 2019-11-26 2020-03-27 西南科技大学 Mineral separation method for basalt

Also Published As

Publication number Publication date
CN101767057B (en) 2012-04-25

Similar Documents

Publication Publication Date Title
CN101767057B (en) Method for separating aluminum and iron in high-iron bauxite
CN107555426B (en) Low-energy-consumption large-batch preparation process of high-purity microcrystalline graphite and high-purity microcrystalline graphite prepared by same
CN101862703B (en) Separation-smelting combined method for producing iron ore concentrate from oolitic lean hematite
CN101875129B (en) Method for comprehensive utilization of high-iron bauxite
CN103614547B (en) Method for separating iron, aluminum and silicon from diasporic bauxite
AU2015252121A1 (en) Systems and methodologies for direct acid leaching of scandium-bearing ores
CN102851489B (en) Method for comprehensively recovering valuable metals in limonite type laterite-nickel ore
CN109003798B (en) Recycling method of sintered neodymium iron boron mixed waste
CN104195328A (en) Method for preparing iron oxide ore reduction roasting green ball by using iron selection tailings
CN1986846A (en) Magnesite hot enriching process
CN104229896A (en) Alkaline leaching silicon removal method of manganese ore
CN103938008A (en) Efficient refining agent for smelting aluminum alloy and preparation method thereof
CN102515216B (en) Technology for producing alumina and simultaneously recovering iron and aluminum by using high-iron bauxite
CN103643033A (en) Method for reducing titanium in direct reduction iron of seashore titanomagnetite by utilizing composite additive
CN102994756A (en) Method for enriching rare earth elements from red mud
CN101293220B (en) Additive agent for iron-aluminum separation for high-alumina iron ore
CN102978401A (en) Method for recovering rare earth and other metals from neodymium iron boron and samarium cobalt magnetic material waste
CN103952533A (en) Method for recleaning vanadium-titanium magnetite concentrate by calcining, alkaline leaching and desliming
CN113979655A (en) Modified steel slag based on steel dust mud and red mud, and preparation method and application thereof
CN102000630B (en) Technology for preparing iron ore concentrate
CN110510646B (en) Method for recovering iron and aluminum by high-iron bauxite suspension state prereduction-electric furnace smelting separation
CN102605174B (en) Process method for respectively recovering nickel and iron from low-nickel high-iron laterite
CN108707746B (en) Method for increasing iron and reducing phosphorus of high-phosphorus oolitic hematite by two-stage roasting, magnetic separation and leaching
CN101985114A (en) Andalusite ore dressing method
CN113751187B (en) Quartz refined sand and preparation method and application thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120425

Termination date: 20151230

EXPY Termination of patent right or utility model