CN101760702A - 高强度抗疲劳耐大气腐蚀热轧钢带及其制造方法 - Google Patents
高强度抗疲劳耐大气腐蚀热轧钢带及其制造方法 Download PDFInfo
- Publication number
- CN101760702A CN101760702A CN201010033398A CN201010033398A CN101760702A CN 101760702 A CN101760702 A CN 101760702A CN 201010033398 A CN201010033398 A CN 201010033398A CN 201010033398 A CN201010033398 A CN 201010033398A CN 101760702 A CN101760702 A CN 101760702A
- Authority
- CN
- China
- Prior art keywords
- hot
- rolled steel
- fatigue
- atmospheric corrosion
- percent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
本发明涉及一种高强度抗疲劳耐大气腐蚀热轧钢带及其制造方法,热轧钢带的化学成分的质量百分配比为:0<C≤0.10,0.25≤Si≤0.60,0.80≤Mn≤1.45,0<P≤0.020,0<S≤0.008,0.35≤Cr≤1.00,0.15≤Ni≤0.55,0.25≤Cu≤0.50,0<Nb+V+Ti≤0.22。其余为Fe和不可避免的杂质。钢带的制造方法的步骤为:A制备连铸坯是通过铁水预处理脱硫、顶底复合吹炼转炉冶炼、LF精炼和厚板坯连铸;B采用TMCP工艺将连铸坯加工成热轧钢带,终轧温度790-890℃,快速水冷至450-650℃卷取,然后冷却到室温。用本高强度抗疲劳耐大气腐蚀热轧钢带制造方法加工的钢带,耐大气腐蚀性能优良,以此为原料生产的焊接结构件具有良好的抗疲劳性能。
Description
技术领域
本发明涉及一种高强度抗疲劳耐大气腐蚀热轧钢带及其制造方法。
背景技术
耐大气腐蚀钢主要用于制造集装箱、铁路车辆、电站锅炉耐腐蚀件、石油井架以及工程机械等要求耐大气腐蚀性能的结构件,其中铁路行业是耐大气腐蚀钢最重要的应用领域之一。铁路车辆最主要的发展趋势是高速与重载,提高钢材强度以减轻车辆自重是达此目标的重要手段,除要求高强度外,还要求铁路车辆用耐大气腐蚀钢具有高韧性以及良好的耐大气腐蚀性能、成型性能、焊接性能、抗疲劳性能等。疲劳是金属材料在交变应力作用下经过多次循环而破坏的现象,承受动载荷的铁路车辆焊接结构件的疲劳特性是最复杂的工程问题之一。由于焊接接头中不仅有应力集中,而且在焊缝中易产生缺陷,因此与其它结构件相比,焊接结构件的疲劳性能要差些。进一步提高焊接接头的疲劳性能对保障高速重载铁路车辆的安全运行意义重大。
迄今为止,虽然已经公开了多项有关耐大气腐蚀钢的发明专利,但尚无有关耐大气腐蚀钢焊接接头疲劳性能的报道。发表于2005年《宝钢技术》增刊的“高强耐候钢焊接接头性能研究”(以下简称文献①),提供了一种高强度耐大气腐蚀钢焊接接头的疲劳性能,但它在450MPa应力水平下的疲劳寿命为0.6~1.8×106次,在485MPa应力水平下的疲劳寿命仅为0.14~0.31×106次,抗疲劳性较差。
发明内容
为了克服现有高强度抗疲劳耐大气腐蚀热轧钢带的上述不足,本发明提供一种抗疲劳性能较高的高强度抗疲劳耐大气腐蚀热轧钢带,同时提供这种钢带的制造方法。
本高强度抗疲劳耐大气腐蚀热轧钢带的化学成分的质量百分配比为:
0<C≤0.10 Si0.25~0.60 Mn0.80~1.45 0<P≤0.020
0<S≤0.008 Cr0.35~1.00 Ni 0.15~0.55 Cu 0.25~0.50
0<Nb+V+Ti≤0.22。
其余为Fe和不可避免的杂质。
一般宽度为1000~2130mm,厚度4.0~14.0mm。
本发明所述高强度抗疲劳耐大气腐蚀热轧钢带化学成分的限定理由如下。
提高钢的强度既简便又便宜的方法是提高C含量,然而,随着C含量的提高,钢的塑性、冲击韧性、焊接性能和成型性能却明显下降。为了使成品钢材具有良好的综合性能,应尽可能降低C含量,故限定C含量不得高于0.10%。
通过提高钢中Mn含量来弥补因降低C含量导致的热轧钢带强度的下降。Mn在钢中可形成置换式固溶体,起到较强的固溶强化作用,使屈服强度和抗拉强度线性增加。此外,Mn是奥氏体形成元素,具有稳定奥氏体的作用,可降低奥氏体转变温度(Ar3),提高铁素体形核率,降低晶粒长大速度,即具有细化晶粒的作用。但Mn含量提高可使钢的C当量(Ceq)增加,对焊接性能不利。为了综合改善强韧性并兼顾焊接性能,应适当提高Mn含量。因此,将Mn含量限定在0.80-1.45%范围。
Si在铁素体中的固溶强化系数比Mn高,Si对提高强度非常有效,但却降低钢的冲击韧性,采用Si合金化的幅度有限。为此,将Si含量限定在0.25-0.60%范围。
P对钢的冲击韧性、焊接性能和成型性能都是有害的。P在钢中易析出并形成Fe3P,增加钢的脆性,特别是剧烈地降低钢的低温冲击韧性;P会恶化钢的焊接性能;此外P在γ铁和α铁中的扩散速度小,易形成偏析,从而对钢的成型性能造成不利影响。因本发明热轧钢带对焊接性能要求严格,因此将其P含量限制在0.020%以下。
S含量较高时可导致钢产生“热脆”缺陷,加入钢中的Mn可与S形成MnS塑性夹杂物,减轻S的有害影响。但在轧制过程中沿轧制方向延伸的MnS易使钢带形成带状组织,降低钢带的横向冲击韧性和成型性能。S对钢的耐蚀性也十分有害,钢中的硫化物可成为锈蚀的发源地,因此限定S含量不得高于0.008%。
Cr、Ni、Cu元素在钢中可起到不同程度的固溶强化作用,其中Ni还可改善钢的低温冲击韧性,但加入这些元素的主要目的却在于赋予成品热轧钢带良好的耐大气腐蚀性能。Cr、Ni、Cu元素的适量组合,可使钢获得优良的耐大气腐蚀性能,为此对Cr、Ni、Cu元素含量限定如下:0.35%≤Cr≤1.00%,0.15%≤Ni≤0.55%,0.25%≤Cu≤0.50%。
在加热过程中溶解于奥氏体中的Nb、V、Ti的碳化物、氮化物或碳、氮化合物可有效阻止奥氏体晶粒张大,这对改善钢材的焊接性能可起到积极作用。在固溶强化、相变强化、位错强化、析出强化和细晶强化等诸多强化手段中,细晶强化是同时提高材料强度和韧性的唯一方法,是钢铁材料极为重要的强化方式,而加入Nb、V、Ti等微合金化元素则是使这一机制充分发挥作用的重要手段。相变后在铁素体基体上析出的更细小弥散的Nb、V、Ti的碳化物、氮化物或碳、氮化合物则起到了析出强化作用。为使Nb、V、Ti元素有效发挥上述作用,限定Nb+V+Ti总量不高于0.22%。
本高强度抗疲劳耐大气腐蚀热轧钢带及其制造方法包括下述依次的步骤:
A制备连铸坯
通过铁水预处理脱硫、顶底复合吹炼转炉冶炼、LF精炼和板坯连铸,获得的连铸坯的化学成分的质量百分配比为:
0<C≤0.10 Si0.25~0.60 Mn0.80~1.45 0<P≤0.020
0<S≤0.008 Cr0.35~1.00 Ni0.15~0.55 Cu0.25~0.50
0<Nb+V+Ti≤0.22。
其余为Fe和不可避免的杂质。
B采用TMCP工艺将连铸坯加工成热轧钢带
连铸坯在步进式加热炉中加热,加热温度不低于1200℃,保温时间不短于2.5小时,使奥氏体均匀化;连铸坯经过粗轧和精轧两个阶段的热加工,生产出厚度为4.0-14.0mm的成品热轧钢带,热轧钢带终轧温度790-890℃,以实现奥氏体轧制。热轧钢带终轧后快速水冷至450-650℃卷取,以获得细小均匀的铁素体晶粒和弥散的析出物,然后再在空气中冷却到室温。
本高强度抗疲劳耐大气腐蚀热轧钢带及其制造方法,在于通过化学成分和TMCP工艺制度的合理匹配,生产出一种高强度耐大气腐蚀热轧钢带,其强韧性匹配良好,耐大气腐蚀性能优良,非金属夹杂物级别较低,晶粒尺寸较小,以此为原料生产的焊接结构件具有良好的抗疲劳性能。以本发明热轧钢带为原料生产的焊接结构件的疲劳性能与文献①的对比见表1。
表1
应力水平(MPa) | 疲劳寿命(循环次数) | |
文献① | 450 | 0.6×106,1.4×106,1.6×106,1.6×106,1.8×106 |
本发明 | 450 | 3.6×106,3.8×106,3.9×106,4.1×106,4.3×106,4.8×106 |
文献① | 485 | 0.14×106,0.14×106,0.16×106,0.22×106,0.26×106,0.31×106 |
本发明 | 485 | 2.3×106,1.9×106,1.1×106,2.5×106,2.6×106,2.8×106 |
由表1可以看出,在450MPa应力水平下,文献①的疲劳寿命为0.6~1.8×106次,以本发明耐大气腐蚀热轧钢带为原料生产的焊接结构件的疲劳寿命为3.6~4.8×106次;在485MPa应力水平下,文献①的疲劳寿命为0.14~0.31×106次,以本发明耐大气腐蚀热轧钢带为原料生产的焊接结构件的疲劳寿命为1.1~2.8×106次。这说明,以本发明耐大气腐蚀热轧钢带为原料生产的焊接结构件的疲劳寿命较高,抗疲劳性较高,能够更好地保障高速重载铁路车辆的运行安全性。
具体实施方式
下面结合实施例详细说明本高强度抗疲劳耐大气腐蚀热轧钢带及其制造方法的具体实施方式,但本高强度抗疲劳耐大气腐蚀热轧钢带及其制造方法的具体实施方式不局限于下述实施例。
下述实施例的生产条件为铁水预处理设施,180吨顶底复合吹炼转炉,LF精炼装置,板坯连铸机,半连续式热轧钢带生产线。
耐大气腐蚀热轧钢带化学分析方法为GB/T 223,取样方法GB/T 222。
耐大气腐蚀热轧钢带拉伸性能检验方法GB/T 228,取样方法GB/T 2975。
耐大气腐蚀热轧钢带冲击韧性检验方法GB/T 229,取样方法GB/T 2975。
耐大气腐蚀热轧钢带冷弯性能检验方法GB/T 232,取样方法GB/T 2975。
耐大气腐蚀热轧钢带耐大气腐蚀性能检验及取样方法TB/T 2375。
耐大气腐蚀热轧钢带非金属夹杂物评定标准GB/T 10561。
耐大气腐蚀热轧钢带晶粒度评定标准GB/T 6394。
耐大气腐蚀热轧钢带焊接方法为手工电弧焊或气体保护焊或埋弧焊,分别采用J556CrNiCu或TH550-NQ-II或TH550-NQ-III焊丝,焊条或焊丝符合运装货车[2005]67号《铁道车辆用高强度耐大气腐蚀钢焊接材料(焊条、焊丝)订货技术条件》要求。
耐大气腐蚀热轧钢带焊接接头疲劳试验方法GB/T 13816。疲劳试验应用MTS 810疲劳试验机,试验在室温下空气介质中进行,采用脉动拉伸受力方式,循环应力比R=0,试验频率20Hz。
钢带实施例一
本实施例的高强度抗疲劳耐大气腐蚀热轧钢带厚度4.0mm,化学成分的质量百分配比为:
C:0.055Si:0.42Mn:1.10P:0.008S:0.004
Cr:0.70Ni:0.23Cu:0.42Nb+V+Ti:0.08,其余为Fe和不可避免的杂质。
本实施例热轧钢带力学性能和成型性能测试结果见表2,耐大气腐蚀性能测试结果见表3,非金属夹杂物及晶粒度评定结果见表4,焊接接头焊接方法、焊接材料及疲劳性能测试结果见表5。
钢带实施例二
本实施例的高强度抗疲劳耐大气腐蚀热轧钢带厚度8.0mm,化学成分的质量百分配比为:
C:0.061Si:0.45Mn:1.30P:0.009S:0.003
Cr:0.69Ni:0.22Cu:0.40Nb+V+Ti:0.10,其余为Fe和不可避免的杂质。
本实施例热轧钢带力学性能和成型性能测试结果见表2,耐大气腐蚀性能测试结果见表3,非金属夹杂物及晶粒度评定结果见表4,焊接接头焊接方法、焊接材料及疲劳性能测试结果见表5。
表2
表3
表4
表5
钢带实施例三
本实施例的高强度抗疲劳耐大气腐蚀热轧钢带厚度14.0mm,化学成分的质量百分配比为:
C:0.056Si:0.39Mn:1.40P:0.009S:0.003
Cr:0.73Ni:0.21Cu:0.43Nb+V+Ti:0.13,其余为Fe和不可避免的杂质。
制造方法实施例一
本实施例制造的是钢带实施例一,本实施例的制造方法包括下述依次的步骤:
A制备连铸坯
通过铁水预处理脱硫、180吨顶底复合吹炼转炉冶炼、LF精炼和板坯连铸,获得的连铸坯的化学成分的质量百分配比为:
C:0.055Si:0.42Mn:1.10P:0.008S:0.004
Cr:0.70Ni:0.23Cu:0.42Nb+V+Ti:0.08,其余为Fe和不可避免的杂质。
B采用TMCP工艺将连铸坯加工成热轧钢带
连铸坯在步进式加热炉中加热到1230℃,保温时间3小时。连铸坯经过粗轧和精轧两个阶段的热加工,生产出厚度为4.0mm的成品热轧钢带,热轧钢带终轧温度880℃。热轧钢带终轧后快速水冷至610℃卷取,然后再在空气中冷却到室温。
本实施例热轧钢带力学性能和成型性能测试结果见表2,耐大气腐蚀性能测试结果见表3,非金属夹杂物及晶粒度评定结果见表4,焊接接头焊接方法、焊接材料及疲劳性能测试结果见表5。
制造方法实施例二
本实施例制造的是钢带实施例二,本实施例的制造方法包括下述依次的步骤:
A制备连铸坯
通过铁水预处理脱硫、180吨顶底复合吹炼转炉冶炼、LF精炼和厚板坯连铸,获得的连铸坯的化学成分的质量百分配比为:
C:0.061Si:0.45Mn:1.30P:0.009S:0.003
Cr:0.69Ni:0.22Cu:0.40Nb+V+Ti:0.10,其余为Fe和不可避免的杂质。
B采用TMCP工艺将连铸坯加工成热轧钢带
连铸坯在步进式加热炉中加热到1220℃,保温时间3小时。连铸坯经过粗轧和精轧两个阶段的热加工,生产出厚度为8.0mm的成品热轧钢带,热轧钢带终轧温度870℃,热轧钢带终轧后快速水冷至600℃卷取,然后再在空气中冷却到室温。
本实施例热轧钢带力学性能和成型性能测试结果见表2,耐大气腐蚀性能测试结果见表3,非金属夹杂物及晶粒度评定结果见表4,焊接接头焊接方法、焊接材料及疲劳性能测试结果见表5。
制造方法实施例三
本实施例制造的是钢带实施例三,本实施例的制造方法包括下述依次的步骤:
A制备连铸坯
通过铁水预处理脱硫、180吨顶底复合吹炼转炉冶炼、LF精炼和厚板坯连铸,获得的连铸坯的化学成分的质量百分配比为:
C:0.056Si:0.39Mn:1.40P:0.009S:0.003
Cr:0.73Ni:0.21Cu:0.43Nb+V+Ti:0.13,其余为Fe和不可避免的杂质。
B采用TMCP工艺将连铸坯加工成热轧钢带
连铸坯在步进式加热炉中加热到1220℃,保温时间3小时。连铸坯经过粗轧和精轧两个阶段的热加工,生产出厚度为14.0mm的成品热轧钢带,热轧钢带终轧温度860℃,热轧钢带终轧后快速水冷至590℃卷取,然后再在空气中冷却到室温。
本实施例热轧钢带力学性能和成型性能测试结果见表2,耐大气腐蚀性能测试结果见表3,非金属夹杂物及晶粒度评定结果见表4,焊接接头焊接方法、焊接材料及疲劳性能测试结果见表5。
Claims (3)
1.一种高强度抗疲劳耐大气腐蚀热轧钢带,它的化学成分的质量百分配比为:
0<C≤0.10 0.25≤Si≤0.60 0.80≤Mn≤1.45 0<P≤0.020
0<S≤0.008 0.35≤Cr≤1.00 0.15≤Ni≤0.55 0.25≤Cu≤0.50
0<Nb+V+Ti≤0.22。其余为Fe和不可避免的杂质。
2.权利要求1所述的高强度抗疲劳耐大气腐蚀热轧钢带的制造方法,它包括下述依次的步骤:
A制备连铸坯
通过铁水预处理脱硫、顶底复合吹炼转炉冶炼、LF精炼和板坯连铸,获得的连铸坯的化学成分的质量百分配比为:
0<C≤0.10 0.25≤Si≤0.60 0.80≤Mn≤1.45 0<P≤0.020
0<S≤0.008 0.35≤Cr≤1.00 0.15≤Ni≤0.55 0.25≤Cu≤0.50
0<Nb+V+Ti≤0.22;其余为Fe和不可避免的杂质;
B采用TMCP工艺将连铸坯加工成热轧钢带。
3.按照权利要求2所述的高强度抗疲劳耐大气腐蚀热轧钢带的制造方法,其特征是:连铸坯在步进式加热炉中加热,加热温度不低于1200℃,保温时间不短于2.5小时,使奥氏体均匀化;连铸坯经过粗轧和精轧两个阶段的热加工,生产出厚度为4.0-14.0mm的成品热轧钢带,热轧钢带终轧温度790-890℃,以实现奥氏体轧制;热轧钢带终轧后快速水冷至450-650℃卷取,以获得细小均匀的铁素体晶粒和弥散的析出物,然后再在空气中冷却到室温。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010100333980A CN101760702B (zh) | 2010-01-15 | 2010-01-15 | 高强度抗疲劳耐大气腐蚀热轧钢带及其制造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010100333980A CN101760702B (zh) | 2010-01-15 | 2010-01-15 | 高强度抗疲劳耐大气腐蚀热轧钢带及其制造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101760702A true CN101760702A (zh) | 2010-06-30 |
CN101760702B CN101760702B (zh) | 2012-01-18 |
Family
ID=42492078
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010100333980A Active CN101760702B (zh) | 2010-01-15 | 2010-01-15 | 高强度抗疲劳耐大气腐蚀热轧钢带及其制造方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101760702B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105014198A (zh) * | 2015-07-21 | 2015-11-04 | 宝鸡中铁宝桥天元实业发展有限公司 | 耐候钢焊接方法 |
CN110055461A (zh) * | 2019-04-25 | 2019-07-26 | 首钢集团有限公司 | 一种电力塔架用耐候钢及其制备方法 |
CN111793777A (zh) * | 2020-08-20 | 2020-10-20 | 山东华星新材料科技有限公司 | 一种1000MPa级热轧高强耐蚀双相钢板及其制备方法 |
CN113981310A (zh) * | 2021-09-26 | 2022-01-28 | 武汉钢铁有限公司 | 一种列车转向架用高抗疲劳性能高耐蚀钢及其制备方法 |
CN114000035A (zh) * | 2021-11-04 | 2022-02-01 | 南阳汉冶特钢有限公司 | 一种耐大气腐蚀高强特厚q390gnh钢板的生产方法 |
CN114507819A (zh) * | 2022-01-28 | 2022-05-17 | 包头钢铁(集团)有限责任公司 | 一种车辆耐大气腐蚀500MPa级焊丝钢的生产方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100412223C (zh) * | 2006-07-20 | 2008-08-20 | 武汉钢铁(集团)公司 | 具有优良耐蚀性和抗疲劳性的超高强度钢及其制造方法 |
-
2010
- 2010-01-15 CN CN2010100333980A patent/CN101760702B/zh active Active
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105014198A (zh) * | 2015-07-21 | 2015-11-04 | 宝鸡中铁宝桥天元实业发展有限公司 | 耐候钢焊接方法 |
CN110055461A (zh) * | 2019-04-25 | 2019-07-26 | 首钢集团有限公司 | 一种电力塔架用耐候钢及其制备方法 |
CN111793777A (zh) * | 2020-08-20 | 2020-10-20 | 山东华星新材料科技有限公司 | 一种1000MPa级热轧高强耐蚀双相钢板及其制备方法 |
CN113981310A (zh) * | 2021-09-26 | 2022-01-28 | 武汉钢铁有限公司 | 一种列车转向架用高抗疲劳性能高耐蚀钢及其制备方法 |
CN114000035A (zh) * | 2021-11-04 | 2022-02-01 | 南阳汉冶特钢有限公司 | 一种耐大气腐蚀高强特厚q390gnh钢板的生产方法 |
CN114507819A (zh) * | 2022-01-28 | 2022-05-17 | 包头钢铁(集团)有限责任公司 | 一种车辆耐大气腐蚀500MPa级焊丝钢的生产方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101760702B (zh) | 2012-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230235435A1 (en) | Steel for mining chain and manufacturing method thereof | |
WO2016045266A1 (zh) | 一种屈服强度800MPa级高韧性热轧高强钢及其制造方法 | |
WO2016095720A1 (zh) | 一种屈服强度800MPa级别高强钢及其生产方法 | |
CN107868906B (zh) | 一种薄壁高强度方矩形管用热轧带钢及其制造方法 | |
CN101824581B (zh) | 一种屈服强度450MPa级高强耐候钢板及其生产方法 | |
CN111455269A (zh) | 屈服强度960MPa级甚高强度海工钢板及其制造方法 | |
CN101760702B (zh) | 高强度抗疲劳耐大气腐蚀热轧钢带及其制造方法 | |
CN102560284A (zh) | 高强度高韧性x100管线钢热轧钢带及其制造方法 | |
CN110551878A (zh) | 一种超高强度超高韧性低密度双相层状钢板及其制备方法 | |
CN102400036A (zh) | 一种高延伸率和高扩孔率的孪晶诱发塑性钢及其制造方法 | |
CN101413090B (zh) | 一种高强韧性螺旋埋弧焊管用x80热轧卷板及其生产方法 | |
CN101619419B (zh) | 一种低碳高铌高强度焊接结构用钢板及其制造方法 | |
CN102839330A (zh) | 800MPa级高强度大线能量焊接用厚板 | |
CN109097664B (zh) | 一种900MPa级厚规格高韧性热轧钢带及其制备方法 | |
CN101736203B (zh) | 高强度耐大气腐蚀热轧钢带及其制造方法 | |
CN105950984A (zh) | 抗拉强度650MPa级热轧复相钢及其生产方法 | |
CN104018063B (zh) | 低合金高强度q420c中厚钢板的生产方法 | |
CN101775554B (zh) | 高强度抗疲劳耐大气腐蚀中厚板及其制造方法 | |
CN103882301B (zh) | J55级低成本电阻焊石油套管用钢及其制造方法 | |
CN102418047B (zh) | 一种非调质处理耐疲劳的钢板及其制造方法 | |
CN114164374A (zh) | 一种5~60mm厚850MPa级高强度高韧性易焊接纳米钢及其制备方法 | |
CN104561825A (zh) | 一种低成本x80管线用钢及其制造方法 | |
RU2653954C2 (ru) | Способ производства толстолистового проката для изготовления электросварных газонефтепроводных труб большого диаметра категории прочности х42-х56, стойких против индуцированного водородом растрескивания в h2s -содержащих средах | |
CN114875331B (zh) | 一种具有优良心部疲劳性能的610MPa级厚钢板及其生产方法 | |
CN104498827A (zh) | 一种355MPa级大线能量焊接用钢及其制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |