CN101739020A - Virtual test method of large-scale transitional sprinkling machine and system thereof - Google Patents
Virtual test method of large-scale transitional sprinkling machine and system thereof Download PDFInfo
- Publication number
- CN101739020A CN101739020A CN200810226265A CN200810226265A CN101739020A CN 101739020 A CN101739020 A CN 101739020A CN 200810226265 A CN200810226265 A CN 200810226265A CN 200810226265 A CN200810226265 A CN 200810226265A CN 101739020 A CN101739020 A CN 101739020A
- Authority
- CN
- China
- Prior art keywords
- sprinkler
- scale
- virtual
- simulation
- translational
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003973 irrigation Methods 0.000 claims abstract description 139
- 230000002262 irrigation Effects 0.000 claims abstract description 139
- 238000004088 simulation Methods 0.000 claims abstract description 89
- 230000000694 effects Effects 0.000 claims abstract description 44
- 238000011156 evaluation Methods 0.000 claims abstract description 30
- 238000012360 testing method Methods 0.000 claims abstract description 27
- 238000005457 optimization Methods 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 10
- 238000013519 translation Methods 0.000 claims description 42
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 35
- 239000002245 particle Substances 0.000 claims description 20
- 230000033001 locomotion Effects 0.000 claims description 19
- 230000008859 change Effects 0.000 claims description 12
- 238000013507 mapping Methods 0.000 claims description 12
- 238000005516 engineering process Methods 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 238000011897 real-time detection Methods 0.000 claims description 6
- 230000008676 import Effects 0.000 claims description 5
- 230000008020 evaporation Effects 0.000 claims description 4
- 238000001704 evaporation Methods 0.000 claims description 4
- 230000005484 gravity Effects 0.000 claims description 4
- 230000000007 visual effect Effects 0.000 claims description 4
- 125000000174 L-prolyl group Chemical group [H]N1C([H])([H])C([H])([H])C([H])([H])[C@@]1([H])C(*)=O 0.000 claims description 3
- 238000010223 real-time analysis Methods 0.000 claims description 2
- 239000007921 spray Substances 0.000 abstract description 3
- 238000011161 development Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000003621 irrigation water Substances 0.000 description 7
- 229940098006 multigen Drugs 0.000 description 7
- 238000010998 test method Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- 238000012271 agricultural production Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000013102 re-test Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种大型农业机械的仿真方法与装置,尤其是涉及一种大型平移式喷灌机的虚拟试验方法与其系统。The invention relates to a simulation method and device for large-scale agricultural machinery, in particular to a virtual test method and system for a large-scale translation sprinkler irrigation machine.
背景技术Background technique
大型喷灌机是指工作功率大于37.3kw,控制灌溉面积超过26.7hm2的机型。其自动化程度高,单位资源量(电、水、人力)消耗少,生产效益高,代表了现代科学技术水平的喷灌机。Large-scale sprinkler irrigation machines refer to models with a working power greater than 37.3kw and a controlled irrigation area exceeding 26.7hm 2 . It has a high degree of automation, less consumption of unit resources (electricity, water, manpower), and high production efficiency, which represents a sprinkler irrigation machine at the level of modern science and technology.
我国在2000年大型喷灌机保有量为2000多台,到2010年我国节水灌溉面积将达到5411万公顷,对于发展喷灌机产业是一个很好的机遇。In 2000, my country had more than 2,000 large-scale sprinkler irrigation machines. By 2010, my country's water-saving irrigation area will reach 54.11 million hectares, which is a good opportunity for the development of sprinkler irrigation machine industry.
大型喷灌机的市场优势主要表现在改造治理我国262.2万公顷已荒漠化的土地(其中包括55万公顷沙漠)和3.6亿公顷不同程度沙化、碱化和退化的天然草场。荒漠、沙漠和已“三化”的草场主要都集中在我国西部,随着我国西部开发的深入,西部人均收入不断增长,生态环境保护意识不断增强,大型喷灌机技术在西部一定会有用武之地。The market advantages of large sprinklers are mainly reflected in the transformation and management of 2.622 million hectares of desertified land in my country (including 550,000 hectares of desert) and 360 million hectares of natural grasslands that have been desertified, alkalized and degraded to varying degrees. Deserts, deserts and pastures that have been "three modernizations" are mainly concentrated in the west of my country. With the deepening of the development of the west of my country, the per capita income in the west continues to increase, and the awareness of ecological and environmental protection continues to increase. Large-scale sprinkler technology will definitely be useful in the west .
此外,对于粮、棉、油的产业基地,为了增强国际竞争能力,必须提高农业的工业化水平和适度规模经营的程度。所以大型喷灌机在农业生产上的国内市场前景也是非常可观的。In addition, for the industrial bases of grain, cotton and oil, in order to enhance the international competitiveness, it is necessary to improve the industrialization level of agriculture and the degree of moderate scale operation. Therefore, the domestic market prospect of large sprinkler irrigation machines in agricultural production is also very impressive.
平移式喷灌机又称直线连续自走式喷灌机。大型平移式喷灌机是大型喷灌机中应用最广的一种机型。它的结构包括桁架、塔架、尾部的悬架,传动部件及行走部件,基本实现通用化。平移式喷灌机呈矩形喷洒,喷灌覆盖率比其他类型喷灌机高,但构造比较复杂,需要导向控制系统,对塔架同步性的精度要求高,需要完善的电器控制系统。Translational sprinkler irrigation machine is also called linear continuous self-propelled sprinkler irrigation machine. The large translational sprinkler is the most widely used type of large sprinkler. Its structure includes trusses, towers, tail suspensions, transmission parts and walking parts, which are basically universal. The translational sprinkler sprays in a rectangular shape, and the coverage rate of sprinkler irrigation is higher than other types of sprinklers, but the structure is more complicated, and a guiding control system is required. The precision of the synchronization of the tower is high, and a complete electrical control system is required.
例如,本申请人拥有的发明专利(ZL200410009502.7)公开了一种大型喷灌机的喷灌作业系统及其控制方法,该喷灌作用系统包括喷头、地轮、多个跨、机载电脑、控制接口、变频调速装置、角度传感装置、GPS定位装置;机载电脑通过控制接口连接GPS定位装置,利用接收到接收GPS信号及差分信号进行计算以定位喷灌机、确定喷灌机的行走速度及喷灌机的偏航距离,对比给定航线与实际航线及给定行走速度与实际行走速度,并通过控制接口发出控制指令调整变频调速装置以使喷灌机按给定的航线和速度行走;角度传感装置用于测量各跨的同步摆角;机载电脑用于检测各跨的同步摆角,并通过控制变频调速装置调整同步摆角趋近为零度。该作业系统及其控制方法可实现喷灌机的均匀变量喷洒。For example, the invention patent (ZL200410009502.7) owned by the applicant discloses a large sprinkler irrigation system and its control method. , frequency conversion speed control device, angle sensor device, GPS positioning device; the onboard computer is connected to the GPS positioning device through the control interface, and uses the received GPS signal and differential signal to calculate to locate the sprinkler, determine the walking speed of the sprinkler and spray irrigation The yaw distance of the sprinkler is compared with the given route and the actual route and the given walking speed and the actual walking speed, and the control command is issued through the control interface to adjust the frequency conversion speed regulating device so that the sprinkler can walk according to the given route and speed; the angle transmission The sensing device is used to measure the synchronous swing angle of each span; the onboard computer is used to detect the synchronous swing angle of each span, and adjust the synchronous swing angle to approach zero by controlling the frequency conversion speed regulating device. The operation system and its control method can realize the uniform variable spraying of the sprinkling irrigation machine.
传统的控制系统试验方法需要对大型平移式喷灌机整机机器控制系统进行大量的田间试验,通过参数给定和行走状态数据的记录,改进控制参数,然后再进行试验,如此多次反复,才能得到较好的控制效果,参见图1所示试验流程。这种反复的试验、记录、计算和改进到再试验,浪费大量的人力财力,导致设备开发生产周期长,成本高,加上灌溉试验受作物生长季节影响大,使得大型平移式喷灌机的传统的试验成为一项巨大的工程。The traditional control system test method requires a large number of field tests on the machine control system of the large-scale translational sprinkler irrigation machine. Through the parameter setting and the record of the walking state data, the control parameters are improved, and then the test is repeated. To obtain a better control effect, see the test flow shown in Figure 1. This repeated test, record, calculation and improvement to re-test wastes a lot of human and financial resources, resulting in long equipment development and production cycle and high cost. In addition, the irrigation test is greatly affected by the crop growing season, making the traditional large-scale horizontal sprinkler irrigation. The experiment has become a huge project.
发明内容Contents of the invention
本发明所要解决的技术问题是提供一种大型平移式喷灌机虚拟试验方法及其系统,解决现有大型平移式喷灌机的现场试验受农作物季节以及试验设备和场地的制约,浪费大量的时间、人力、经费和水资源的问题。The technical problem to be solved by the present invention is to provide a virtual test method and system for a large-scale translational sprinkler irrigation machine, which solves the problem that the field test of the existing large-scale translational sprinkler irrigation machine is restricted by crop seasons, test equipment and sites, and wastes a lot of time. Human, financial and water resource issues.
为了实现上述的目的,本发明提供一种大型平移式喷灌机的虚拟试验方法,包括如下步骤:In order to achieve the above-mentioned purpose, the present invention provides a kind of virtual test method of large translation sprinkler irrigation machine, comprising the following steps:
步骤一,对大型平移式喷灌机进行测绘,采用制图软件建立所述大型平移式喷灌机的仿真模型;Step 1, surveying and mapping the large-scale translational sprinkler, adopting drawing software to establish a simulation model of the large-scale translational sprinkler;
步骤二,建立所述大型平移式喷灌机试验所需要的农田场景虚拟环境;Step 2, establishing the farmland scene virtual environment required for the test of the large-scale translational sprinkler;
步骤三,执行对所述虚拟场景下的大型平移式喷灌机机电多系统协同仿真操作,实现对所述大型平移式喷灌机各跨的行走速度、相邻跨之间的摆角进行实时检测和控制;Step 3: Execute the cooperative simulation operation of the electromechanical multi-system of the large-scale translational sprinkler in the virtual scene, and realize the real-time detection and analysis of the walking speed of each span of the large-scale translational sprinkler and the swing angle between adjacent spans. control;
步骤四,根据作业操作指令,控制所述大型平移式喷灌机各跨行走速度以及改变各喷头的开度,在所述虚拟环境中实现变量灌溉,完成所述大型平移式喷灌机控制参数对灌溉效果影响情况的模拟与评价;Step 4, according to the operation instruction, control the walking speed of each span of the large-scale translational sprinkler and change the opening of each sprinkler, realize variable irrigation in the virtual environment, and complete the adjustment of the control parameters of the large-scale translational sprinkler. Simulation and evaluation of effects and impacts;
步骤五,根据评价的结果,对所述大型平移式喷灌机控制系统的参数进行优化。Step five, optimize the parameters of the control system of the large translational sprinkler according to the evaluation results.
上述的大型平移式喷灌机的虚拟试验方法,其中,所述制图软件为三维制图软件,所述仿真模型为三维仿真模型,所述农田场景为三维虚拟农田场景。In the above-mentioned virtual test method for a large translational sprinkler, the drawing software is a three-dimensional drawing software, the simulation model is a three-dimensional simulation model, and the farmland scene is a three-dimensional virtual farmland scene.
上述的大型平移式喷灌机的虚拟试验方法,其中,所述步骤一中的三维仿真模型的建立,又包含:The virtual test method of the above-mentioned large-scale translation sprinkler, wherein, the establishment of the three-dimensional simulation model in the first step includes:
步骤11,对所述大型平移式喷灌机实体进行拆卸和实体测绘;Step 11, dismantling and physical mapping of the large-scale translational sprinkler entity;
步骤12,利用所述三维制图软件,根据测绘得到的各零部件结构尺寸对部件进行三维建模;Step 12, using the three-dimensional drawing software to carry out three-dimensional modeling of the parts according to the structural dimensions of each part obtained by surveying and mapping;
步骤13,将得到的三维零部件模型转换成后缀为.obj的模型文件;Step 13, converting the obtained three-dimensional component model into a model file with a suffix of .obj;
步骤14,将obj格式的三维模型导入三维建模软件,导出为.flt格式的三维零部件模型;Step 14, import the 3D model in obj format into 3D modeling software, and export it as a 3D part model in .flt format;
步骤15,利用三维建模软件对所述.flt格式的三维零部件模型进行装配,形成后缀为.flt格式的大型平移式喷灌机的整机三维仿真模型。Step 15, use the 3D modeling software to assemble the 3D component models in the .flt format to form a 3D simulation model of the large translational sprinkler irrigation machine with the suffix .flt format.
上述的大型平移式喷灌机的虚拟试验方法,其中,所述步骤二中虚拟农田场景的建立,又包括:The virtual test method of the above-mentioned large-scale translation sprinkler, wherein, the establishment of the virtual farmland scene in the step 2 also includes:
步骤21,获取需要试验地区的地形海拔数据;Step 21, obtaining the terrain altitude data of the test area;
步骤22,将所述地区的海拔数据转换成所述三维建模软件支持的特定格式;Step 22, converting the altitude data of the region into a specific format supported by the 3D modeling software;
步骤23,把转化得到的所述特定格式文件导入到三维建模软件中,设定转换参数,生成三维的地形模型;Step 23, importing the converted specific format file into the 3D modeling software, setting conversion parameters, and generating a 3D terrain model;
步骤24,加载地形纹理数据,得到逼真的虚拟场景。Step 24, loading terrain texture data to obtain a realistic virtual scene.
上述的大型平移式喷灌机虚拟试验方法,其中,在虚拟农田场景下的大型平移式喷灌机机电多系统协同仿真步骤,是通过在执行应用程序过程中调用三维虚拟农田场景,同时加载大型平移式喷灌机三维模型来实现的。In the above-mentioned virtual test method for large-scale translational sprinkler irrigation machines, the electromechanical multi-system co-simulation step of large-scale translational sprinkler irrigation machines in the virtual farmland scene is to call the 3D virtual farmland scene during the execution of the application program, and simultaneously load the large-scale translational sprinkler The 3D model of the sprinkler is realized.
上述的大型平移式喷灌机虚拟试验方法,其中,所述作业操作指令是根据给定的农田含水量处方图,结合地形特征和大型平移式喷灌机结构特点来形成的。In the above-mentioned virtual test method for a large-scale translational sprinkler, the operation instruction is formed according to a given farmland water content prescription map, combined with terrain features and structural characteristics of a large-scale translational sprinkler.
上述的大型平移式喷灌机虚拟试验方法,其中,在建立所述大型平移式喷灌机的仿真模型的步骤中,包括整机三维仿真模型的建立步骤,又进一步包括:The above-mentioned large-scale translational sprinkler virtual test method, wherein, in the step of establishing the simulation model of the large-scale translational sprinkler, it includes the establishment of a three-dimensional simulation model of the whole machine, and further includes:
将所述大型平移式喷灌机模型的各个地轮置于不同的动态节点下,均赋以绕X轴旋转的运动模式;Place each ground wheel of the large-scale translational sprinkler model under different dynamic nodes, all endowed with a motion pattern that rotates around the X axis;
将所述大型平移式喷灌机各跨视为刚体,分别置于不同的动态节点下,赋以沿Y轴方向平移的运动模式;Each span of the large-scale translational sprinkler is regarded as a rigid body, placed under different dynamic nodes, and endowed with a motion mode of translation along the Y-axis direction;
对各跨赋以以端点为支点,以Z轴为轴的转动运动模式,以实现各跨的转动。Each span is endowed with a rotation movement mode with the end point as the fulcrum and the Z axis as the axis, so as to realize the rotation of each span.
上述的大型平移式喷灌机虚拟试验方法,其中,所述步骤四中,所述大型平移式喷灌机灌溉效果的模拟与评价步骤,是根据测量所得的大型平移式喷灌机出喷头的开度,模拟水珠喷出时的初始速度,同时考虑水珠受重力和空气阻力的影响,以及水珠破碎和蒸发因素,通过模拟水珠的运动轨迹以及落地点的位置,统计各微小区域内所落水珠的数量,从而计算农田各小区域的灌溉量,进而对灌溉效果进行评价。The above-mentioned virtual test method for large-scale translational sprinkler, wherein, in the step 4, the simulation and evaluation step of the irrigation effect of the large-scale translational sprinkler is based on the measured opening of the nozzle of the large-scale translational sprinkler, Simulate the initial velocity of water droplets when they are ejected, and consider the influence of water droplets by gravity and air resistance, as well as the factors of water droplet breakage and evaporation. By simulating the trajectory of water droplets and the position of the landing point, the statistics of water falling in each small area The number of beads can be used to calculate the amount of irrigation in each small area of the farmland, and then evaluate the irrigation effect.
上述的大型平移式喷灌机虚拟试验方法,其中,所述步骤五中进行优化的控制参数,包括:所述大型平移式喷灌机各跨的控制电机转速、相邻跨间的摆角、各跨的行进速度以及各喷头的开度。In the above-mentioned virtual test method for large-scale translational sprinkler irrigation machines, the control parameters optimized in step 5 include: the speed of the control motor of each span of the large-scale translational sprinkler irrigation machine, the swing angle between adjacent spans, the The speed of travel and the opening of each nozzle.
为更好地实现上述目的,本发明还提供一种大型平移式喷灌机的虚拟试验系统,其特征在于,包括:In order to better achieve the above object, the present invention also provides a virtual test system for a large-scale translation sprinkler irrigation machine, which is characterized in that it includes:
喷灌机仿真模型生成模块,用于对大型平移式喷灌机进行测绘,采用制图软件建立所述大型平移式喷灌机的仿真模型;The sprinkler simulation model generation module is used for surveying and mapping the large-scale translational sprinkler, and adopts drawing software to establish the simulation model of the large-scale translational sprinkler;
农田场景虚拟环境生成模块,用于建立所述大型平移式喷灌机试验所需要的农田场景虚拟环境;A farmland scene virtual environment generation module, used to establish the farmland scene virtual environment required for the large-scale translational sprinkler test;
整机机电多系统协同仿真操作模块,用于执行对所述虚拟场景下的大型平移式喷灌机机电多系统协同仿真操作,实现对所述大型平移式喷灌机各跨的行走速度、相邻跨之间的摆角进行实时检测和控制;The electromechanical multi-system collaborative simulation operation module of the whole machine is used to perform the electromechanical multi-system cooperative simulation operation of the large translational sprinkler irrigation machine in the virtual scene, and realize the walking speed of each span of the large translational sprinkler irrigation machine, the adjacent span Real-time detection and control of the swing angle between them;
灌溉效果模拟与评价模块,用于根据作业操作指令,控制所述大型平移式喷灌机各跨行走速度以及改变各喷头的开度,在所述虚拟环境中实现变量灌溉,完成所述大型平移式喷灌机控制参数对灌溉效果影响情况的模拟与评价;The irrigation effect simulation and evaluation module is used to control the walking speed of each span of the large-scale translation sprinkler and change the opening of each nozzle according to the operation instruction, so as to realize variable irrigation in the virtual environment and complete the large-scale translation irrigation. Simulation and evaluation of the influence of sprinkler control parameters on irrigation effect;
喷灌机控制系统参数优化模块,用于根据所述灌溉效果模拟与评价模块的评价结果,对所述大型平移式喷灌机控制系统的参数进行优化。The parameter optimization module of the sprinkler control system is used to optimize the parameters of the large-scale translational sprinkler control system according to the evaluation results of the irrigation effect simulation and evaluation module.
上述的大型平移式喷灌机的虚拟试验系统,其中,所述制图软件为三维制图软件,所述仿真模型为三维仿真模型,所述农田场景为三维虚拟农田场景。In the above-mentioned virtual test system for a large translational sprinkler, the drawing software is a three-dimensional drawing software, the simulation model is a three-dimensional simulation model, and the farmland scene is a three-dimensional virtual farmland scene.
上述大型平移式喷灌机的虚拟试验系统,其中,包括:所述制图软件为Pro/ENGINEER,所述三维建模软件为Multigen Creator。The virtual test system of the above-mentioned large-scale translation sprinkler includes: the drawing software is Pro/ENGINEER, and the three-dimensional modeling software is Multigen Creator.
上述的大型平移式喷灌机的虚拟试验系统,其中,所述喷灌机仿真模型生成模块进一步包括整机三维仿真模型生成模块,用于将所述大型平移式喷灌机模型的各个地轮置于不同的动态节点下,均赋以绕X轴旋转的运动模式;将所述大型平移式喷灌机各跨视为刚体,分别置于不同的动态节点下,赋以沿Y轴方向平移的运动模式;对各跨赋以以端点为支点,以Z轴为轴的转动运动模式,以实现各跨的转动。The virtual test system of the above-mentioned large-scale translational sprinkler, wherein, the simulation model generation module of the sprinkler further includes a three-dimensional simulation model generation module of the whole machine, which is used to place each ground wheel of the large-scale translational sprinkler model in different positions. Each span of the large-scale translation sprinkler is regarded as a rigid body, which is respectively placed under different dynamic nodes, and is assigned a motion mode of translation along the Y-axis direction; Each span is endowed with a rotation movement mode with the end point as the fulcrum and the Z axis as the axis, so as to realize the rotation of each span.
上述的大型平移式喷灌机的虚拟试验系统,其中,在所述灌溉效果模拟与评价模块中,通过采用虚拟现实技术中的粒子系统来模拟水珠的运动轨迹以及落地点的位置。In the virtual test system of the above-mentioned large-scale translational sprinkler, in the irrigation effect simulation and evaluation module, the particle system in virtual reality technology is used to simulate the trajectory of water droplets and the location of the landing point.
上述的大型平移式喷灌机的虚拟试验系统,其中,所述参数优化模块,通过改变所述大型平移式喷灌机各跨的控制电机的转速,保证大型平移式喷灌机相邻跨间的摆角在允许的范围内,同时调整各跨的行进速度,并改变各喷头的开度,使灌溉效果达到优化。The virtual test system of the above-mentioned large-scale translational sprinkler, wherein, the parameter optimization module, by changing the speed of the control motor of each span of the large-scale translational sprinkler, ensures that the swing angle between adjacent spans of the large-scale translational sprinkler Within the allowable range, adjust the traveling speed of each span at the same time, and change the opening of each nozzle to optimize the irrigation effect.
上述的大型平移式喷灌机的虚拟试验系统,其中,所述整机机电多系统协同仿真操作模块,是通过执行一应用程序,调用三维虚拟农田场景,同时加载大型平移式喷灌机三维模型来实现大型平移式喷灌机机电多系统协同仿真操作。The virtual test system of the above-mentioned large-scale translational sprinkler, wherein, the co-simulation operation module of the electromechanical multi-system of the whole machine is realized by executing an application program, calling the 3D virtual farmland scene, and loading the 3D model of the large-scale translational sprinkler at the same time Co-simulation operation of electromechanical multi-system of large-scale translational sprinkler irrigation machine.
上述的大型平移式喷灌机的虚拟试验系统,其中,所述应用程序是在Windows操作系统上,利用Visual C++,结合Multigen Vega提供的API接口,而编写生成的。The virtual test system of the above-mentioned large-scale translation sprinkler, wherein, the application program is written and generated on the Windows operating system using Visual C++ in combination with the API interface provided by Multigen Vega.
本发明的有益功效在于,本发明针对大型平移式喷灌机的传统试验方法与装置的弊端,提出了一种虚拟试验的方法和仿真系统,能够随时方便地进行仿真试验,做到通过动态跟踪某一参数变化,考察其对整机喷灌效果的影响的目的,从而对大型平移式喷灌机控制参数进行优化,解除传统试验受作物生长季节制约,避免传统试验需要大型的设备和场地、开发周期长、成本高等弊端。The beneficial effects of the present invention are that, aiming at the disadvantages of the traditional test methods and devices of large translational sprinkler irrigation machines, the present invention proposes a virtual test method and a simulation system, which can conveniently carry out simulation tests at any time, so as to realize the dynamic tracking of a certain One parameter change, the purpose of investigating its influence on the sprinkler irrigation effect of the whole machine, so as to optimize the control parameters of the large-scale translational sprinkler irrigation machine, relieve the traditional experiment from being restricted by the crop growing season, and avoid the traditional experiment requiring large-scale equipment and sites, and long development cycle , high cost and other disadvantages.
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments, but not as a limitation of the present invention.
附图说明Description of drawings
图1是现有喷灌机控制系统试验的方法示意图;Fig. 1 is the method schematic diagram of existing sprinkler control system test;
图2是本发明大型平移式喷灌机虚拟仿真试验方法流程图;Fig. 2 is the flow chart of virtual simulation test method of large-scale translation sprinkler irrigation machine of the present invention;
图3是本发明所揭示的三维虚拟农田场景建立流程图;Fig. 3 is a flow chart of establishing a three-dimensional virtual farmland scene disclosed by the present invention;
图4是本发明虚拟仿真环境运行流程图;Fig. 4 is a flow chart of the operation of the virtual simulation environment of the present invention;
图5是本发明灌溉水流模型模拟流程图;Fig. 5 is the simulation flowchart of irrigation water flow model of the present invention;
图6是本发明灌溉水流轨迹效果图;Fig. 6 is an effect diagram of the irrigation water flow trajectory of the present invention;
图7是本发明大型平移式喷灌机三维模型示意图;Fig. 7 is a schematic diagram of a three-dimensional model of a large translation sprinkler irrigation machine of the present invention;
图8是本发明虚拟农田效果图。Fig. 8 is an effect diagram of virtual farmland in the present invention.
具体实施方式Detailed ways
下面结合附图对本发明的结构原理和工作原理作具体的描述:Below in conjunction with accompanying drawing, structural principle and working principle of the present invention are specifically described:
本发明所采用的基于虚拟现实技术的大型平移式喷灌机虚拟试验模式,其特点是在不进行实际喷灌试验以前,就可以对平移式喷灌机的控制系统进行过程分析、性能分析、控制效果分析和控制参数优化以及灌溉效果评价等。由于采用虚拟试验代替物理样机的实际试验,控制系统的反复运行、优化和测试以及灌溉效果的评价等也是在虚拟样机上进行,出现问题时,只需在虚拟环境中改进,大大缩短了试验周期,节约了成本。The virtual test mode of the large-scale translational sprinkler irrigation machine based on virtual reality technology adopted in the present invention is characterized in that the process analysis, performance analysis, and control effect analysis of the control system of the translational sprinkler irrigation machine can be carried out before the actual sprinkler irrigation test is performed. And control parameter optimization and irrigation effect evaluation. Since the virtual test is used instead of the actual test of the physical prototype, the repeated operation, optimization and testing of the control system and the evaluation of the irrigation effect are also carried out on the virtual prototype. When there is a problem, it only needs to be improved in the virtual environment, which greatly shortens the test period. , saving costs.
在图2所示的具体实施方案中,为达到上述目的,本发明揭示了一种大型平移式喷灌机的三维建模和虚拟试验的方法,包括如下步骤:In the specific embodiment shown in Fig. 2, in order to achieve the above object, the present invention discloses a method for three-dimensional modeling and virtual testing of a large translation sprinkler, comprising the following steps:
一、对大型平移式喷灌机进行测绘,采用制图软件建立大型平移式喷灌机的仿真模型,(步骤201);One, carry out surveying and mapping to large-scale translation sprinkler irrigation machine, adopt drawing software to set up the simulation model of large-scale translation sprinkler irrigation machine, (step 201);
二、建立大型平移式喷灌机试验所需要的农田场景虚拟环境(步骤202);Two, set up the farmland scene virtual environment (step 202) needed for the test of large-scale translation sprinkler irrigation machine;
三、执行对虚拟场景下的大型平移式喷灌机机电多系统协同仿真操作,实现对大型平移式喷灌机各跨的行走速度、相邻跨之间的摆角进行实时检测和控制(步骤203);3. Execute the cooperative simulation operation of the electromechanical multi-system of the large-scale translational sprinkler irrigation machine in the virtual scene, and realize real-time detection and control of the walking speed of each span of the large-scale translational sprinkler irrigation machine and the swing angle between adjacent spans (step 203) ;
四、根据作业操作指令,控制大型平移式喷灌机各跨行走速度以及改变各喷头的开度,在虚拟环境中实现变量灌溉,完成大型平移式喷灌机控制参数对灌溉效果影响情况的模拟与评价(步骤204);4. According to the operation instructions, control the walking speed of each span of the large-scale translational sprinkler irrigation machine and change the opening of each nozzle, realize variable irrigation in the virtual environment, and complete the simulation and evaluation of the influence of the control parameters of the large-scale translational sprinkler irrigation machine on the irrigation effect (step 204);
五、根据评价的结果,对大型平移式喷灌机控制系统的参数进行优化(步骤205)。5. According to the evaluation result, optimize the parameters of the control system of the large translational sprinkler irrigation machine (step 205).
其中,in,
步骤201中的三维仿真模型的建立,又包含:The establishment of the three-dimensional simulation model in
步骤11,对现有大型平移式喷灌机实体进行拆卸和实体测绘;Step 11, dismantling and mapping the entity of the existing large-scale translational sprinkler;
步骤12,利用三维制图软件Pro/ENGINEER,根据测绘得到的各零部件结构尺寸对部件进行三维建模;Step 12, using the 3D drawing software Pro/ENGINEER to carry out 3D modeling of the parts according to the structural dimensions of each part obtained by surveying and mapping;
步骤13,将得到的三维零部件模型转换成后缀为.obj的模型文件;Step 13, converting the obtained three-dimensional component model into a model file with a suffix of .obj;
步骤14,将obj格式的三维模型导入三维建模软件Multigen Creator,导出为flt格式的三维零部件模型;Step 14, import the 3D model in obj format into 3D modeling software Multigen Creator, and export it as a 3D component model in flt format;
步骤15,利用Multigen Creator软件对零部件模型进行装配,形成后缀为.flt格式的大型平移式喷灌机的整机三维模型。Step 15, use the Multigen Creator software to assemble the component models to form a 3D model of the large translational sprinkler with the suffix .flt format.
步骤202中三维虚拟农田场景的建立,如图3所示又包括:The establishment of the three-dimensional virtual farmland scene in
获取需要试验地区的地形海拔数据(步骤301);Obtain the terrain altitude data of the test area (step 301);
将该地区的海拔数据转换成三维建模软件Multigen creator支持的DED格式(步骤302);The altitude data in this area is converted into the DED format (step 302) that three-dimensional modeling software Multigen creator supports;
把转化得到的DED文件导入到creator软件中,设定转换参数,生成三维的地形模型(步骤303);Import the DED file that is converted into creator software, set conversion parameters, and generate a three-dimensional terrain model (step 303);
加载地形纹理数据,得到逼真的虚拟场景(步骤304)。Load terrain texture data to obtain a realistic virtual scene (step 304).
步骤203虚拟场景下的大型平移式喷灌机机电多系统协同仿真,是在Windows操作系统下,利用Visual C++6.0,结合Multigen Vega提供的API,编写应用程序,在程序中调用三维虚拟农田场景,同时加载大型平移式喷灌机三维模型。Step 203 The electromechanical multi-system co-simulation of the large-scale translation sprinkler irrigation machine in the virtual scene is based on the Windows operating system, using Visual C++6.0, combined with the API provided by Multigen Vega, to write an application program, and call the 3D virtual farmland scene in the program , while loading the 3D model of the large translational sprinkler.
机电多系统协同仿真操作,是根据给定的农田含水量处方图,结合地形特征和大型平移式喷灌机结构特点,实时调整各控制电机的输出功率,控制大型平移式喷灌机各跨的行进速度,从而实现大型平移式喷灌机整机的平稳运行,以及根据农田含水量进行变量灌溉的目的。动态效果的模拟,是根据计算的参数,对动态模型中DOF节点进行控制来实现的。The electromechanical multi-system collaborative simulation operation is to adjust the output power of each control motor in real time and control the travel speed of each span of the large translational sprinkler irrigation machine according to the given farmland water content prescription map, combined with the terrain characteristics and the structural characteristics of the large translational sprinkler irrigation machine , so as to realize the smooth operation of the large-scale translation sprinkler irrigation machine and the purpose of variable irrigation according to the water content of the farmland. The simulation of the dynamic effect is realized by controlling the DOF nodes in the dynamic model according to the calculated parameters.
步骤204中,大型平移式喷灌机灌溉效果的模拟和评价,是根据测量所得的大型平移式喷灌机出水龙头的开度,模拟水珠喷出时的初始速度,同时考虑水珠受重力和空气阻力的影响,以及水珠破碎和蒸发等因素,用虚拟现实技术中的粒子系统来模拟水珠的运动轨迹以及落地点的位置,统计各微小区域内所落水珠的数量,从而计算农田各小区域的灌溉量,进而对灌溉效果进行评价。In
步骤205中对大型平移式喷灌机的控制参数进行优化,是根据步骤204中评价的结果,比较农田各点的实际灌溉量和处方图上各坐标点的需水量,评价灌溉效果,改变大型平移式喷灌机各跨的控制电机的转速,保证大型平移式喷灌机相邻跨间的摆角在允许的范围内,同时调整各跨的行进速度,同时改变各喷头的开度,使灌溉效果达到最优。In
本发明还揭示了一种大型平移式喷灌机的虚拟试验系统,包括喷灌机仿真模型生成模块、农田场景虚拟环境生成模块、整机机电多系统协同仿真操作模块、灌溉效果模拟与评价模块以及喷灌机控制系统参数优化模块,其中,The invention also discloses a virtual test system for a large translational sprinkler irrigation machine, which includes a sprinkler irrigation machine simulation model generation module, a farmland scene virtual environment generation module, an electromechanical multi-system cooperative simulation operation module for the whole machine, an irrigation effect simulation and evaluation module, and a sprinkler irrigation system. Machine control system parameter optimization module, in which,
喷灌机仿真模型生成模块,用于对大型平移式喷灌机进行测绘,采用制图软件建立大型平移式喷灌机的仿真模型,制图软件为三维制图软件,仿真模型为三维仿真模型;The sprinkler simulation model generation module is used for surveying and mapping the large-scale translational sprinkler, and the simulation model of the large-scale translational sprinkler is established by using drawing software. The drawing software is a three-dimensional drawing software, and the simulation model is a three-dimensional simulation model;
农田场景虚拟环境生成模块,用于建立大型平移式喷灌机试验所需要的农田场景虚拟环境,农田场景为三维虚拟农田场景;The farmland scene virtual environment generation module is used to establish the farmland scene virtual environment required for the large-scale translation sprinkler test, and the farmland scene is a three-dimensional virtual farmland scene;
整机机电多系统协同仿真操作模块,用于执行对虚拟场景下的大型平移式喷灌机机电多系统协同仿真操作,实现对大型平移式喷灌机各跨的行走速度、相邻跨之间的摆角进行实时检测和控制;The electromechanical multi-system collaborative simulation operation module of the whole machine is used to perform the co-simulation operation of the electromechanical multi-system of the large-scale translational sprinkler irrigation machine in the virtual scene, and realize the walking speed of each span of the large-scale translational sprinkler irrigation machine and the swing between adjacent spans. corner for real-time detection and control;
灌溉效果模拟与评价模块,用于根据作业操作指令,控制大型平移式喷灌机各跨行走速度以及改变各喷头的开度,在虚拟环境中实现变量灌溉,完成大型平移式喷灌机控制参数对灌溉效果影响情况的模拟与评价,在灌溉效果模拟与评价模块中,通过采用虚拟现实技术中的粒子系统来模拟水珠的运动轨迹以及落地点的位置;The irrigation effect simulation and evaluation module is used to control the walking speed of each span of the large-scale translational sprinkler irrigation machine and change the opening of each nozzle according to the operation instructions, realize variable irrigation in the virtual environment, and complete the control parameters of the large-scale translational sprinkler irrigation machine. Simulation and evaluation of the impact of the effect. In the irrigation effect simulation and evaluation module, the particle system in the virtual reality technology is used to simulate the trajectory of the water drop and the location of the landing point;
喷灌机控制系统参数优化模块,用于根据灌溉效果模拟与评价模块的评价结果,对大型平移式喷灌机控制系统的参数进行优化,参数优化模块,通过改变大型平移式喷灌机各跨的控制电机的转速,保证大型平移式喷灌机相邻跨间的摆角在允许的范围内,同时调整各跨的行进速度,并改变各喷头的开度,使灌溉效果达到优化。The parameter optimization module of the sprinkler control system is used to optimize the parameters of the control system of the large-scale translational sprinkler according to the evaluation results of the irrigation effect simulation and evaluation module. The parameter optimization module changes the control motor of each span of the large-scale translational sprinkler The speed of rotation ensures that the swing angle between adjacent spans of the large-scale translational sprinkler irrigation machine is within the allowable range, and at the same time adjusts the travel speed of each span and changes the opening of each nozzle to optimize the irrigation effect.
本发明采用的制图软件为Pro/ENGINEER,三维建模软件为MultigenCreator。The drawing software adopted in the present invention is Pro/ENGINEER, and the three-dimensional modeling software is MultigenCreator.
三维建模软件还可采用AutoCAD,3DS Max,允许用户借助灵活的体、面、边编辑技术完成所需设计。The 3D modeling software can also use AutoCAD, 3DS Max, which allows users to complete the required design with the help of flexible body, surface and edge editing technology.
喷灌机仿真模型生成模块进一步包括整机三维仿真模型生成模块,用于将大型平移式喷灌机模型的各个地轮置于不同的动态节点下,均赋以绕X轴旋转的运动模式;将大型平移式喷灌机各跨视为刚体,分别置于不同的动态节点下,赋以沿Y轴方向平移的运动模式;对各跨赋以以端点为支点,以Z轴为轴的转动运动模式,以实现各跨的转动。The simulation model generation module of the sprinkler further includes a 3D simulation model generation module of the whole machine, which is used to place each ground wheel of the large-scale translational sprinkler model under different dynamic nodes, and is given a motion mode of rotating around the X axis; the large-scale Each span of the translational sprinkler irrigation machine is regarded as a rigid body, which is placed under different dynamic nodes, and is assigned a motion mode of translation along the Y-axis direction; each span is assigned a rotational motion mode with the endpoint as the fulcrum and the Z-axis as the axis. To realize the rotation of each span.
整机机电多系统协同仿真操作模块,是通过执行一应用程序,调用三维虚拟农田场景,同时加载大型平移式喷灌机三维模型来实现大型平移式喷灌机机电多系统协同仿真操作。The electromechanical multi-system cooperative simulation operation module of the whole machine is to realize the cooperative simulation operation of the electromechanical multi-system of the large-scale translational sprinkler irrigation machine by executing an application program, calling the 3D virtual farmland scene, and loading the 3D model of the large-scale translational sprinkler irrigation machine at the same time.
本发明大型平移式喷灌机虚拟协同仿真环境系统的功能就是通过计算机生成虚拟环境,通过输入设备(如鼠标、鼠标)等,根据场景中地形特征和参数设置情况,实现人机交互。系统基于Windows平台,采用实时仿真工具Multigen Vega并结合0penGL库函数,在Visual C++开发环境下实现,如图4所示本发明揭示的系统运行流程包括:The function of the virtual collaborative simulation environment system of the large-scale translational sprinkler irrigation machine of the present invention is to generate a virtual environment through a computer, and realize human-computer interaction through input devices (such as a mouse, a mouse), etc., according to the terrain characteristics and parameter settings in the scene. System is based on Windows platform, adopts real-time simulation tool Multigen Vega and in conjunction with OpenGL library function, realizes under Visual C++ development environment, as shown in Figure 4, the system operating process disclosed by the present invention comprises:
系统初始开始(步骤400);System initial start (step 400);
调入场景(步骤401);Call in the scene (step 401);
渲染场景(步骤402);Render the scene (step 402);
调入3D模型(步骤403);Import 3D model (step 403);
设立一个定时器(步骤410);Set up a timer (step 410);
产生一个WM TIMER消息(步骤420);Generate a WM TIMER message (step 420);
视点调整(步骤430);Viewpoint adjustment (step 430);
响应控制命令(步骤440);Response to the control command (step 440);
检测3D模型姿态以及在虚拟场景中的位置(步骤450);Detect the pose of the 3D model and its position in the virtual scene (step 450);
碰撞检测(步骤460);collision detection (step 460);
给出反馈信号,控制模型运动(步骤470);Give a feedback signal to control the movement of the model (step 470);
是否结束指令(步骤480);Whether to end instruction (step 480);
若是即结束,若否则重复步骤420及之后步骤,可多次反复直至达到优化。If yes, end. Otherwise,
图5所示为本发明灌溉水流模型模拟流程图。包括步骤:Fig. 5 is a simulation flowchart of the irrigation water flow model of the present invention. Include steps:
绘制水珠粒子(步骤501);Drawing water droplet particles (step 501);
根据随粒子初速度和受力改变其位置(步骤502);Change its position (step 502) according to the initial velocity and the force of the particle;
随机产生水珠粒子的淡化值(步骤503);Randomly generate the desalination value of water droplet particle (step 503);
根据淡化值改变粒子生命值(步骤504);Change the particle health according to the fade value (step 504);
粒子是否到达地面(步骤505);若是,粒子停在地面着地点含水量增加(步骤5051);若否,则判断粒子生命值是否等于零(步骤506);若粒子生命值等于零,删除该粒子(步骤507);若粒子生命值不等于零,则进入下一步骤;Whether the particle reaches the ground (step 505); if so, the water content of the particle stops on the ground and increases (step 5051); if not, then judge whether the particle life value is equal to zero (step 506); if the particle life value is equal to zero, delete the particle ( Step 507); if the particle life value is not equal to zero, enter the next step;
判断所有粒子是否绘制完成(步骤508);若是,结束;若否,则返回步骤501。Judging whether all the particles have been drawn (step 508); if yes, end; if not, return to step 501.
灌溉水流从喷头喷出的运动模式,对灌溉效果有很大的影响。对不同的水流模型和喷头在大型平移式喷灌机上的不同分布情况进行动态模拟,能对喷灌效果进行优化。针对目前传统试验方法中存在的工程量大、实际称量受环境以及检测设备影响而不准确等问题,本发明提出了一种虚拟环境下基于粒子模型的灌溉水量统计方法。包括如下步骤:The movement pattern of the irrigation water sprayed from the nozzle has a great influence on the irrigation effect. Dynamic simulation of different water flow models and different distributions of nozzles on large translational sprinkler irrigation machines can optimize the sprinkler irrigation effect. Aiming at the problems existing in the current traditional test methods, such as large engineering quantity and inaccurate actual weighing affected by the environment and detection equipment, the present invention proposes a particle model-based irrigation water statistical method in a virtual environment. Including the following steps:
步骤51,借助OpenGL库函数,在程序中产生粒子效果;Step 51, generate particle effects in the program by means of OpenGL library functions;
步骤52,根据虚拟环境下喷头压力,计算喷出瞬间水珠的初速度的大小和方向;Step 52, according to the nozzle pressure in the virtual environment, calculate the size and direction of the initial velocity of the water droplets at the moment of spraying;
步骤53:考虑水珠所受的重力和空气阻力影响,运用物理学原理模拟水珠的运动轨迹。考虑水珠破碎以及水分蒸发等因素,给喷出的水珠赋以寿命因子;Step 53: Consider the influence of gravity and air resistance on the water drops, and use physics principles to simulate the trajectory of the water drops. Consider factors such as water droplet breakage and water evaporation, and assign a life factor to the sprayed water droplets;
步骤54,结合等加速运动来简化粒子运动状态,并采用纹理色彩融合绘制粒子;Step 54, combining iso-accelerated motion to simplify particle motion state, and use texture color fusion to draw particles;
步骤55,运用VC++6.0和OpenGL开发工具实现灌溉水流特效的模拟,结合大型平移式喷灌机的平移运动速度,统计各落地点粒子的数目,进而对灌溉量及其分布情况进行统计。Step 55, use VC++6.0 and OpenGL development tools to realize the simulation of irrigation water flow special effects, combine the translational motion speed of the large translational sprinkler, count the number of particles at each landing point, and then make statistics on the irrigation amount and its distribution.
请参阅图6本发明灌溉水流轨迹效果图;图7本发明大型平移式喷灌机三维模型示意图;图8本发明虚拟农田效果图。Please refer to Fig. 6 the effect diagram of the irrigation water flow trajectory of the present invention; Fig. 7 the schematic diagram of the three-dimensional model of the large-scale translation sprinkler irrigation machine of the present invention; Fig. 8 the effect diagram of the virtual farmland of the present invention.
本发明针对大型平移式喷灌机的传统试验方法与装置的弊端,提出了一种虚拟试验的方法和仿真系统,能够随时方便地进行仿真试验,做到通过动态跟踪某一参数变化,考察其对整机喷灌效果的影响的目的,从而对大型平移式喷灌机控制参数进行优化,解除传统试验受作物生长季节制约,避免传统试验需要大型的设备和场地、开发周期长、成本高等弊端。Aiming at the disadvantages of the traditional test method and device of the large-scale translational sprinkler irrigation machine, the present invention proposes a virtual test method and a simulation system, which can conveniently carry out the simulation test at any time, so as to dynamically track the change of a certain parameter and investigate its effect on In order to optimize the control parameters of the large-scale translational sprinkler irrigation machine, the control parameters of the large-scale translational sprinkler irrigation machine can be optimized, and the traditional test is restricted by the crop growth season, avoiding the disadvantages of traditional tests that require large-scale equipment and sites, long development cycles, and high costs.
当然,本发明还可有其它多种实施例,在不背离本实用新型精神及其实质的情况下,熟悉本领域的技术人员当可根据本实用新型作出各种相应的改变和变形,但这些相应的改变和变形都应属于本实用新型所附的权利要求的保护范围。Certainly, the present invention also can have other various embodiments, without departing from the spirit and essence of the utility model, those skilled in the art should make various corresponding changes and deformations according to the utility model, but these Corresponding changes and deformations should all belong to the scope of protection of the appended claims of the utility model.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102262658A CN101739020B (en) | 2008-11-11 | 2008-11-11 | Virtual test method of large-scale transitional sprinkling machine and system thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2008102262658A CN101739020B (en) | 2008-11-11 | 2008-11-11 | Virtual test method of large-scale transitional sprinkling machine and system thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101739020A true CN101739020A (en) | 2010-06-16 |
CN101739020B CN101739020B (en) | 2011-12-28 |
Family
ID=42462588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008102262658A Active CN101739020B (en) | 2008-11-11 | 2008-11-11 | Virtual test method of large-scale transitional sprinkling machine and system thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101739020B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104521699A (en) * | 2014-11-18 | 2015-04-22 | 华北水利水电大学 | Field intelligent irrigation on-line control management method |
CN107624627A (en) * | 2017-08-11 | 2018-01-26 | 骆秀菊 | A kind of agricultural irrigation systems based on virtual reality |
CN115471024A (en) * | 2021-06-11 | 2022-12-13 | 云南中商正晓农业科技有限公司 | Automatic water supply system and method for plant planting |
CN115500244A (en) * | 2022-10-12 | 2022-12-23 | 中国水利水电科学研究院 | Variable irrigation prescription map generation method and system for large-scale sprinkler |
-
2008
- 2008-11-11 CN CN2008102262658A patent/CN101739020B/en active Active
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104521699A (en) * | 2014-11-18 | 2015-04-22 | 华北水利水电大学 | Field intelligent irrigation on-line control management method |
CN107624627A (en) * | 2017-08-11 | 2018-01-26 | 骆秀菊 | A kind of agricultural irrigation systems based on virtual reality |
CN115471024A (en) * | 2021-06-11 | 2022-12-13 | 云南中商正晓农业科技有限公司 | Automatic water supply system and method for plant planting |
CN115500244A (en) * | 2022-10-12 | 2022-12-23 | 中国水利水电科学研究院 | Variable irrigation prescription map generation method and system for large-scale sprinkler |
CN115500244B (en) * | 2022-10-12 | 2023-11-10 | 中国水利水电科学研究院 | Large-scale sprinkler variable irrigation prescription chart generation method and system |
Also Published As
Publication number | Publication date |
---|---|
CN101739020B (en) | 2011-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101793591B (en) | Aircraft aerodynamic servo elastic ground simulation test system | |
CN108287933A (en) | Assembled architecture intelligence Lift-on/Lift-off System and method based on BIM and virtual reality technology | |
CN101739020B (en) | Virtual test method of large-scale transitional sprinkling machine and system thereof | |
CN110531640A (en) | A kind of comprehensive simulating method and system of robot | |
Zhang et al. | Near ground platform development to simulate UAV aerial spraying and its spraying test under different conditions | |
CN102194022A (en) | Motion simulation and control method and device for agricultural equipment in virtual scene | |
Monajjemi et al. | grsim–robocup small size robot soccer simulator | |
CN102323996A (en) | Three-dimensional GIS (Geographic Information System) technology based visual state monitoring system for power transmission lines | |
CN101916311A (en) | Rail Transit Automatic Driving System Model Development and Simulation Test System and Method | |
CN116227373A (en) | A DEM-CFD-based simulation optimization method and system for concrete manipulator operation | |
CN107908907A (en) | A kind of complicated communal space assembling building decoration construction method based on BIM | |
CN109102208A (en) | A kind of three-dimension visible sysem based on garden | |
CN118643679A (en) | A visual engineering monitoring method | |
CN104794309A (en) | Farming machine design method based on emulation technique | |
CN115329922A (en) | Multifunctional quadruped robot digital twin system in coal mine and its operation method | |
CN114924555B (en) | Path planning method based on full-automatic tunnel guniting robot | |
CN112287557B (en) | Radar point cloud data loop playback method and system for assisting driving simulation test | |
CN112461123B (en) | Method and device for realizing multiple transmitting stations of space positioning system | |
CN109635317A (en) | A kind of high altitude localities CFD artificially generated terrain topological method | |
CN109011516B (en) | Interactive virtual roaming exercise bicycle | |
CN102128570A (en) | Carrier rocket tail flame simulation method based on particle system | |
US8170813B2 (en) | Determining effects of turbine blades on fluid motion | |
CN115906698A (en) | Crop inter-row air supply spraying simulation method based on CFD theory | |
CN104680568A (en) | Dynamic generation method for vehicle ruts in three-dimensional virtual scene | |
CN112090619B (en) | Off-line simulation machining method and system for spraying robot of high-speed rail car body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |