CN101736323B - Device for preparing boron-doped diamond composite coating on surface of cutter - Google Patents

Device for preparing boron-doped diamond composite coating on surface of cutter Download PDF

Info

Publication number
CN101736323B
CN101736323B CN2009103118979A CN200910311897A CN101736323B CN 101736323 B CN101736323 B CN 101736323B CN 2009103118979 A CN2009103118979 A CN 2009103118979A CN 200910311897 A CN200910311897 A CN 200910311897A CN 101736323 B CN101736323 B CN 101736323B
Authority
CN
China
Prior art keywords
temperature resistant
resistant spring
cutter
drilling bit
heat wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009103118979A
Other languages
Chinese (zh)
Other versions
CN101736323A (en
Inventor
沈彬
孙方宏
张志明
沈荷生
郭松寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN2009103118979A priority Critical patent/CN101736323B/en
Publication of CN101736323A publication Critical patent/CN101736323A/en
Application granted granted Critical
Publication of CN101736323B publication Critical patent/CN101736323B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

The invention discloses a device for preparing a boron-doped diamond composite coating on the surface of a cutter, belonging to the technical field of cutters. The device comprises a reaction hood, an alloy drilling bit, a supporting table, a cooling device, a direct current voltage bias power supply, a heat wire power source, air pressure control device, a high-temperature resistant spring, a heat wire and a drilling bit bracket, wherein the alloy drilling bit and the high-temperature resistant spring are respectively and vertically arranged on the drilling bit bracket; two ends of the heat wire are respectively connected with the high-temperature resistant spring; the drilling bit bracket is fixed on the supporting table and the cooling device; the reaction device is fixed on the supporting table and the cooling device and the outer part of the drilling bit bracket is connected with the air pressure control device; the direct current voltage bias power source is respectively connected with the heat wire and the shell of the reaction hood; and the heat wire power source is respectively connected with the heat wire and the high-temperature resistant spring. The invention can ensure excellent adhesive strength between a diamond composite film and a matrix and can effectively improve the surface quality and the uniformity of the diamond film, thereby improving the service life and the cutting performance of the cutter with the diamond film coating.

Description

Device for preparing boron-doped diamond composite coating on surface of cutter
Technical field
What the present invention relates to is the device in a kind of cutter manufacturing technology field, specifically is a kind of cemented carbide with complicated shape device for preparing boron-doped diamond composite coating on surface of cutter that is used for.
Background technology
Diamond thin has many excellent properties near natural diamond; High like hardness, Young's modulus is big; Frictional coefficient is low, wear resistance is strong and surface chemistry stable performance etc.; Therefore, diamond thin has broad application prospects at tool and mould and wear resistant appliance field as wear-resisting, antifriction or protective coating material.Chemical Vapor deposition process (Chemical Vapor Deposition; Abbreviation CVD method) the preparation diamond thin does not receive the restriction of base shape; Can directly be deposited on the surface of complicated shape matrix, be suitable for very much preparing complicated shape diamond film coating layer cutter.Yet; The constructional feature of complex shaped cutter self and performance requriements make it to the deposition apparatus and the depositing operation of cutter matrix surface pretreatment technology, CVD diamond thin particular requirement arranged all; And the bonding phase cobalt in the inserted tool has the graphitizing of urging to diamond thin; This CVD diamond thin and adhesion strength between the matrix that has caused being deposited on the cemented carbide with complicated shape tool surface is lower; Film surface is of poor quality, and this has greatly restricted the industrialization of complicated shape diamond film coating layer cutter.
Through the retrieval of document is found, be the adhesion strength that improves between diamond thin and the hard alloy substrate, the pretreatment process that generally adopts comprises that acid etch, plasma arc etching, chemical reaction substitute, hot treat mechanically and add intermediate layer etc.Yet; Though these pretreatment processs can improve the sticking power between diamond thin and the cemented carbide with complicated shape tool matrix to a certain extent; But along with the prolongation of deposition of diamond thin films process, these methods will weaken for the restraining effect of cobalt gradually, and effect is unsatisfactory.People such as F.X.Lu have proposed in " Diamond and Related Materials " the 15th phase in 2006 the 2039th page of " Novel pretreatment of hard metal substrate for better performance of diamond coated cutting tools " literary composition of delivering through the inserted tool matrix being carried out the adhesion strength of the pretreated method raising of boronising diamond thin.This method is in the cemented carbide substrate surfaces boronising; Make the cobalt element generation chemical reaction on boron and matrix top layer generate stable boron cobalt cpd; Thereby stop the diffusion of cobalt element to the matrix top layer; Suppressing its influence to the diamond thin quality, is a kind of novel pretreatment process that improves film-Ji adhesion strength.Yet; This method is before diamond film growth, under the condition of static state, tool matrix is carried out boronising and handles, though it can suppress the inner cobalt element of tool matrix to a certain extent to surface diffusion; But should the static state boronising is pretreated need under hot conditions, carry out; Complicated operating process not only, time consumption and energy consumption, and very easily change the material property of cutter.In addition, this method can't effectively suppress the inner cobalt element of hard alloy substrate equally to the matrix surface thermodiffusion in the process of long-time high temperature deposition diamond thin.
Summary of the invention
The present invention is directed to the above-mentioned deficiency that prior art exists; A kind of device for preparing boron-doped diamond composite coating on surface of cutter is provided; Can security deposit's hard rock laminated film and matrix between have good adhesion strength; And can effectively improve the surface quality and the homogeneity of diamond thin, thereby improve the work-ing life and the cutting ability of diamond film coating layer cutter.
The present invention realizes through following technical scheme, through utilizing the hot-wire chemical gas-phase deposition device, deposited the boron-doped diamond compounded film that the diamond thin by different boron-doping concentration is composited at the cemented carbide with complicated shape matrix surface.Boron-doped diamond compounded film had both had good adhesion strength, had uniform surface quality again.
The present invention includes: reaction hood, alloy bit, brace table and refrigerating unit, dc bias power, heater supply, Pneumatic controller, high temperature resistant spring, heated filament and drill bit support; Wherein: alloy bit and high temperature resistant spring vertically are arranged on the drill bit support respectively; The two ends of heated filament are connected with high temperature resistant spring respectively; The drill bit support is fixedly set on brace table and the refrigerating unit; Reaction unit is fixedly set in the outside of brace table and refrigerating unit and drill bit support and is connected with Pneumatic controller, and dc bias power links to each other respectively at heated filament and reaction hood shell, the linking to each other with heated filament and high temperature resistant spring respectively of heater supply.
Totally two of described heated filaments, the same plane, both sides that these two heated filaments are positioned at alloy bit and become parallel equidistant arrangement, the two ends of two heated filaments are connected;
The Heating temperature of described heater supply is 2000-2400 ℃;
Described reaction hood is provided with gas inlet and viewing window, and wherein: the gas inlet is positioned at the top of reaction hood, and viewing window is positioned at the side of reaction hood.
The present invention carries out work through following steps:
The first step vertically is put in the cemented carbide with complicated shape cutter in the middle of two heated filaments, makes it parallel with two heated filaments and keep equidistantly.In deposition process; The cemented carbide with complicated shape cutter is the rotation around himself axle center under the drive of worktable; Can guarantee that like this each position, tool matrix surface has the consistent temperature field distribution; Can guarantee the homogeneity of carbon source concentration and boron source concentration around the tool matrix again, thereby, guarantee thickness, surface quality and the homogeneity of diamond thin for diamond thin provides good growing environment.
Second step; Adopt above-mentioned improved hot-wire chemical gas-phase deposition device; Mixture with hydrogen, acetone is a reactant gases, is the doped with boron source with the trimethyl borate that is dissolved in the acetone soln, on the cemented carbide with complicated shape tool matrix, deposits boron-doped diamond film.
The 3rd step; Reduce the concentration that is dissolved in the trimethyl borate in the acetone soln; Continue in-situ deposition lower concentration boron-doped diamond film on high density boron-doped diamond film surface, thereby prepared the boron-doped diamond compounded film that is composited by the different concns boron-doped diamond film in cemented carbide substrate surfaces.
The present invention is simple to operate; Convenient in application; Be applicable in cemented carbide with complicated shape tool surface deposition adhesion strength high; The surface is diamond thin uniformly, helps lend some impetus to the application of diamond thin in cemented carbide with complicated shape cutter field, has bright industrialization prospect and remarkable economic efficiency.
Description of drawings
Fig. 1 is a synoptic diagram of the present invention.
Embodiment
Elaborate in the face of embodiments of the invention down, present embodiment provided detailed embodiment and concrete operating process, but protection scope of the present invention is not limited to following embodiment being to implement under the prerequisite with technical scheme of the present invention.
As shown in Figure 1; This enforcement comprises: reaction hood 1, alloy bit 2, brace table and refrigerating unit 3, dc bias power 4, heater supply 5, Pneumatic controller 6, high temperature resistant spring 7, heated filament 8 and drill bit support 9; Wherein: alloy bit 2 vertically is arranged on the drill bit support 9 respectively with high temperature resistant spring 7; The two ends of heated filament 8 are connected with high temperature resistant spring 7 respectively; Drill bit support 9 is fixedly set on brace table and the refrigerating unit 3; Reaction unit is fixedly set in the outside of brace table and refrigerating unit 3 and drill bit support 9 and is connected with Pneumatic controller 6, and dc bias power 4 links to each other respectively at heated filament 8 and reaction hood 1 shell, the linking to each other with heated filament 8 and high temperature resistant spring 7 respectively of heater supply 5.
Totally two of described heated filaments 8, the same plane, both sides that these two heated filaments 8 are positioned at alloy bit 2 and become parallel equidistant arrangement, the two ends of two heated filaments 8 are connected;
The Heating temperature of described heater supply 5 is 2000-2400 ℃;
Described reaction hood 1 is provided with gas inlet 10 and viewing window 11, and wherein: gas inlet 10 is positioned at the top of reaction hood 1, and viewing window 11 is positioned at the side of reaction hood 1.
Present embodiment carries out work through following steps:
The first step: adopt the two-step acid-alkali method that the carbide drill head surface is carried out pre-treatment.At first, inserted drill is immersed in carries out ultrasonic cleaning in 30 minutes in the Murakami solution, this makes that wolfram varbide (WC) particle on wimet top layer is cracked, thereby causes the substrate surface alligatoring.The composition of Murakami solution is Pottasium Hydroxide (KOH), the Tripotassium iron hexacyanide (K 3(Fe (CN) 6)) and water (H 2O), its quality proportioning is KOH: K 3(Fe (CN) 6): H 2O=1: 1: 10.Subsequently, inserted drill is immersed in the etching of carrying out 1 minute in the Caro mixed acid solution to remove the cobalt element (Co) of underlayer surface.The composition of Caro mixed acid solution is the vitriol oil (H 2SO 4) and ydrogen peroxide 50 (H 2O 2), its volume proportion is H 2SO 4: H 2O 2=1: 10.
Second step: the carbide drill head erect is placed on the circular graphite block, and the graphite block center is drilled with circular port with fixed drill bit, and just graphite block places on the sample support frame again.Arrange according to heated filament shown in Figure 1; With two diameters is that φ 0.6mm tantalum wire is vertically placed; And it is stretching fixing with high temperature resistant spring; Keep the axle center of two heated filaments in same plane, to become parallel equidistant arrangement with the axle center of drill bit, apart from about 3-4mm, the heated filament top is higher than drill bit 5-8mm to heated filament apart from bit face.
The 3rd step: adopting hot filament CVD, is reactant gases with the mixture of hydrogen, acetone, is the doped with boron source with the trimethyl borate that is dissolved in the acetone soln, deposition high density boron-doped diamond film on the cemented carbide with complicated shape tool matrix.Deposition process parameters is: pressure 3-5KPa, and reactant gases total flux 250 ml/min, acetone/hydrogen volume is 2% than (carbon source concentration); Acetone soln mesoboric acid methyl esters concentration is 0.5%; 2200 ± 50 ℃ of hot-wire temperatures, 800 ± 50 ℃ of substrate temperatures, bias current is 1A.After 2 hours deposition, can obtain the about 4 microns high density boron-doped diamond film of thickness in cemented carbide with complicated shape bit matrix surface preparation.
In the 4th step, continue in-situ deposition lower concentration boron-doped diamond film on high density boron-doped diamond film surface.The concentration of acetone soln mesoboric acid trimethyl is reduced to 0.1%; All the other deposition parameters remain unchanged; Proceed 3 hours deposition; Can deposit the boron-doped diamond film of the about 6 microns lower concentration of a layer thickness, thereby prepare boron-doped diamond compounded film in cemented carbide substrate surfaces.
The boron-doped diamond compounded film for preparing in this instance, not only and have good adhesion strength between the cemented carbide with complicated shape matrix, and roughness of film is low, and frictional coefficient is little, and unrelieved stress further reduces.

Claims (2)

1. device for preparing boron-doped diamond composite coating on surface of cutter; Comprise: reaction hood, alloy bit, brace table and refrigerating unit, dc bias power, heater supply, Pneumatic controller, high temperature resistant spring, heated filament and drill bit support; It is characterized in that: alloy bit and high temperature resistant spring vertically are arranged on the drill bit support respectively; The two ends of heated filament are connected with high temperature resistant spring respectively; The drill bit support is fixedly set on brace table and the refrigerating unit; Reaction unit is fixedly set in the outside of brace table and refrigerating unit and drill bit support and is connected with Pneumatic controller, and dc bias power links to each other respectively at heated filament and reaction hood shell, the linking to each other with heated filament and high temperature resistant spring respectively of heater supply;
Totally two of described heated filaments, the same plane, both sides that these two heated filaments are positioned at alloy bit and become parallel equidistant arrangement, the two ends of two heated filaments are connected;
Described reaction hood is provided with gas inlet and viewing window, and wherein: the gas inlet is positioned at the top of reaction hood, and viewing window is positioned at the side of reaction hood.
2. device for preparing boron-doped diamond composite coating on surface of cutter according to claim 1 is characterized in that, the Heating temperature of described heater supply is 2000-2400 ℃.
CN2009103118979A 2009-12-21 2009-12-21 Device for preparing boron-doped diamond composite coating on surface of cutter Active CN101736323B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009103118979A CN101736323B (en) 2009-12-21 2009-12-21 Device for preparing boron-doped diamond composite coating on surface of cutter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009103118979A CN101736323B (en) 2009-12-21 2009-12-21 Device for preparing boron-doped diamond composite coating on surface of cutter

Publications (2)

Publication Number Publication Date
CN101736323A CN101736323A (en) 2010-06-16
CN101736323B true CN101736323B (en) 2012-01-04

Family

ID=42460344

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009103118979A Active CN101736323B (en) 2009-12-21 2009-12-21 Device for preparing boron-doped diamond composite coating on surface of cutter

Country Status (1)

Country Link
CN (1) CN101736323B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102586762B (en) * 2012-03-27 2015-08-19 上海交通大学 The method of preparing diamond film through multiple-doped hot filament chemical vapor deposition
CN103628036B (en) * 2013-12-12 2016-02-03 南京航空航天大学 The preparation method of cubic boron nitride coated cutting tool
CN105200391B (en) * 2014-05-29 2018-12-18 上海交友钻石涂层有限公司 Diamond coatings drawing mould preparation method suitable for water lubrication
CN106119808A (en) * 2016-08-24 2016-11-16 张家港合升进出口有限公司 Cutter diamond coatings preparation facilities
CN107513696B (en) * 2017-09-12 2019-08-13 张家港市微纳新材料科技有限公司 Diamond coatings brill/milling cutter grinds pretreated method
CN108559970B (en) * 2017-12-06 2019-11-01 上海交通大学 The HFCVD batch preparation of complicated shape diamond-coated tools
CN108642562A (en) * 2018-04-10 2018-10-12 东莞领杰金属精密制造科技有限公司 A kind of high-accuracy processing method of graphite cutter
CN111304602B (en) * 2018-12-11 2023-07-21 深圳先进技术研究院 Super-hydrophobic diamond-like composite layer structure and preparation method thereof

Also Published As

Publication number Publication date
CN101736323A (en) 2010-06-16

Similar Documents

Publication Publication Date Title
CN101736323B (en) Device for preparing boron-doped diamond composite coating on surface of cutter
CN102061453B (en) Hot-filament chemical vapor deposition batch preparation method of complicated-shape diamond coated cutting tool
May CVD diamond: a new technology for the future?
US6258237B1 (en) Electrophoretic diamond coating and compositions for effecting same
CN109811298B (en) Method and device for pretreating hard alloy cutter before diamond coating deposition
CN102586762B (en) The method of preparing diamond film through multiple-doped hot filament chemical vapor deposition
CN102352512B (en) Method for preparing high-adhesion diamond coating with pulse laser
CN104674186B (en) A kind of method for preparing noncrystalline silicon carbide ceramics-diamond composite coating
CN108220916B (en) A kind of preparation method of the GNCD-cBN nanocomposite laminated coating cutter with toughening mechanisms
CN105543803B (en) A kind of the diamond/carbon boron composite coating and preparation method of cemented carbide substrate
CN111647875B (en) Method for preparing high-finish-degree complex-shape ultra-nano diamond coating cutter in batches
CN102337515B (en) Preparation method for high-temperature high-differential pressure valve of diamond coating
CN105603386A (en) Preparing method of mini-sized milling cutter nanometer diamond coating
CN110885968B (en) Preparation method of diamond coating, diamond coating prepared by preparation method and cutting tool
CN108559970A (en) The HFCVD batch preparations of complicated shape diamond-coated tools
CN109825821B (en) Diamond/CBN composite coating hard alloy cutter, preparation method and device
Wang et al. Effects of deposition parameters on HFCVD diamond films growth on inner hole surfaces of WC–Co substrates
CN1060537C (en) Diamond-coated wire-drawing die
CN102409291A (en) Method and device for preparing diamond film doped with ultrafine nano-structural metal particles
CN102383113B (en) Method and device for improving efficiency of preparing diamond coating on tool surface and coating evenness
CN104419927B (en) Hard alloy cutter and film coating method thereof
CN100465334C (en) Preparation method of diamond film coating layer bearing supporter
TWI353391B (en)
CN113463064A (en) Superhard cutter head for shredding reinforcing steel bars and preparation method
CN107988584B (en) Hard alloy with diamond film and preparation method and application thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant