CN101728082A - 一种柔性染料敏化太阳能电池复合电极制备方法 - Google Patents

一种柔性染料敏化太阳能电池复合电极制备方法 Download PDF

Info

Publication number
CN101728082A
CN101728082A CN200910220073.0A CN200910220073A CN101728082A CN 101728082 A CN101728082 A CN 101728082A CN 200910220073 A CN200910220073 A CN 200910220073A CN 101728082 A CN101728082 A CN 101728082A
Authority
CN
China
Prior art keywords
pedot
conducting polymer
preparation
composite electrode
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910220073.0A
Other languages
English (en)
Other versions
CN101728082B (zh
Inventor
胡志强
巩翠翠
许芳怡
周红茹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Polytechnic University
Original Assignee
Dalian Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Polytechnic University filed Critical Dalian Polytechnic University
Priority to CN200910220073.0A priority Critical patent/CN101728082B/zh
Publication of CN101728082A publication Critical patent/CN101728082A/zh
Application granted granted Critical
Publication of CN101728082B publication Critical patent/CN101728082B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • H10K85/1135Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

柔性染料敏化太阳能电池复合电极及其制备方法。由导电基板上的导电聚合物层(3)以及准固态电解质层(4)构成;导电基底是ITO、FTO柔性塑料片或ITO、FTO玻璃;导电聚合物层(3)是由导电聚合物、有机溶剂和炭黑制备而成,三者比例为4.5∶1∶0.1;准固态电解质层(4)由导电聚合物、有机溶剂、无机纳米粉体和离子液体组成,四者比例为4.5∶1∶0.24∶0.04。其制法为:在导电基底上制备一层导电聚合物层,在80℃热处理;最后在导电聚合物层上涂敷一层由其制备的准固态电解质而成。导电聚合物为1.3%PEDOT:PSS的水溶液。该复合电极,制备方法简单,成本低廉,适合于柔性染料敏化太阳能电池应用。

Description

一种柔性染料敏化太阳能电池复合电极制备方法
技术领域
本发明属于太阳能电池技术领域,涉及染料敏化太阳能电池复合电极制备方法。
背景技术
染料敏化太阳能电池作为一种新型的化学太阳能电池,主要有三部分组成,即工作电极(染料敏化纳米晶膜)、电解质和对电极[1-3]。目前,染料敏化太阳能电池的电解质主要采用含有I-/I3 -氧化还原电对的有机溶液,此种液态电解质存在溶剂挥发和泄露的问题,使电解质的密封成为染料敏化太阳能电池面临的难题之一[1]。另外,染料敏化太阳能电池的对电极主要采用镀铂对电极,铂作为一种稀有金属,其昂贵的价格提高了电池的成本,寻找一种成本低廉、且具有高催化性能的对电极是染料敏化太阳能电池研究的一个方向。
参考文献:
[1]O’Regan B,M.A low-cost,high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J].Nature,1991,353:737-739。
[2]Nazeeruddin M K,Kay A,
Figure G2009102200730D0000012
M,et al.Conversion of light to electricityby CIS-X2Bis(2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II)charge-transfersensitizers(X=Cl-,Br-,I-,CN-and SCN-)on nanocrystalline TiO2 electrodes[J].JAm Chem Soc,1993,115:6382-6390。
[3]Barbe C J,Arendse F,
Figure G2009102200730D0000013
M,et al.Nanocrystalline titanium oxideelectrodes photovoltaic applications[J].J Am Ceram Soc,1995,80(12):3157-3171。
发明内容
针对现有技术存在的缺陷,本发明的目的在于提供一种柔性染料敏化太阳能电池复合电极,解决目前染料敏化太阳能电池面临的两大难题。
本发明的技术解决方案是这样实现的:一种柔性染料敏化太阳能电池复合电极。如附图1所示:包括导电基底上的导电聚合物层3以及准固态电解质层4;其特征在于准固态电解质层及导电聚合物层采用了同一种聚合物;所述导电基底为柔性导电薄膜(PET/ITO、PEN/FTO)或导电ITO玻璃或FTO玻璃(注:掺杂氟的SnO2简称FTO(Fluorum Tin Oxides)或掺杂铟的SnO2简称ITO(IndiumTin Oxides),聚对苯二甲酸乙二醇酯简称PET(Polythylene terephthalate),聚2,6一萘二甲酸乙二醇酯简称PEN(Polyethylene naphthalene));所述的导电聚合物层4固化在柔性导电薄膜(或导电ITO玻璃或FTO玻璃)基底上;所述的准固态电解质涂敷在导电聚合物层3上;所述导电聚合物层是由导电聚合物、有机溶剂和炭黑制备而成,三者质量比例为(4.5∶1∶0.1);所述准固态电解质由导电聚合物、有机溶剂、无机纳米粉体和离子液体组成四者质量比例为(4.5∶1∶0.24∶0.04);所述导电聚合物为PEDOT:PSS[聚(3,4-乙烯二氧噻吩)-聚(苯乙烯磺酸酯)]结构式如下:
Figure G2009102200730D0000021
所述有机溶剂为二甲基亚砜;所述所述无机纳米粉体为CuSCN粉体;所述离子液体为1,2-二甲基-3-丙基-咪唑碘。
本发明染料敏化太阳能电池复合电极的制备方法,其工艺步骤为:
a、在基板的导电层上制备一层导电聚合物,在80℃进行热处理。
b、在导电聚合物上涂敷一层准固态电解质。
其中:
所述步骤a中导电基板上制备导电聚合物层的方法为辊涂法;
所述导电聚合物层的制备方法如下:将PEDOT:PSS溶液(美国Sigma-Aldrich公司,质量浓度1.3%水溶液)与二甲基亚砜混合搅拌6小时,其质量比为4.5∶1,然后加入炭黑继续搅拌,其中炭黑的加入量为前述混合溶液质量的0.3%~0.6%;
所述准固态电解质的制备方法如下:将PEDOT:PSS溶液、CuSCN纳米粉体和二甲基亚砜混合研磨,其中CuSCN与PEDOT:PSS的质量比5~10,PEDOT:PSS与二甲基亚砜的质量比为4~5,然后逐滴加入离子液体,继续研磨1~2小时,直至CuSCN完全混合均匀为止。
本发明以导电聚合物PEDOT:PSS为主体材料,其电导率高、易成膜,而且为一种空穴传输材料。通过加入有机溶剂和炭黑进一步提高了电导率,利用易成膜性制备了导电聚合物层作为对电极;通过加入无机P型半导体CuSCN、离子液体和有机溶剂,共同组成了一种准固态电解质,在PEDOT:PSS内部的无序排列中,CuSCN半导体在相邻的分子链之间起到了一个桥梁的作用,加速了电子的传输。当准固态电解质与对电极组合到一块后,应用到染料敏化太阳能电池中,即可得到较高的光电转化效率,并且使电池的稳定性得到较大的提高(与液态电解质制备的染料敏化太阳能电池相比)。而且本发明复合电极的成本低廉、制备方法简单,可以实现染料敏化太阳能电池的大面积,滚筒涂敷制备。
附图说明
附图1:为本发明复合电极组装的染料敏化太阳能电池的结构示意图。
其中:1、基板,2、导电层(由基板和导电层构成导电基板),3、导电聚合物层,4、准固态电解质,5、染料光敏化剂,6、TiO2多孔电极,7、封装材料。
附图2:伏-安特性曲线分析图
在染料敏化太阳能电池中,描述其光电性能的重要参数有以下几个:
(1)短路光电流(Isc):短路光电流是指染料敏化太阳能电池正负极短路情况下的电流,单位面积的短路光电流用短路电流密度Jsc表示,所用的单位通常是mA/cm2、A/cm2。短路光电流的大小与电子注入效率、吸收光的效率以及电子收集效率有关。因此吸收可见光谱范围较宽的染料、选择最佳膜厚吸附适量的染料、并抑制暗电流的产生以及提高光生电子在电极材料中和电极表面的传输速度可以增大短路光电流,从而提高染料敏化纳晶TiO2薄膜太阳能电池的光电转换效率。
(2)开路光电压(Voc):
V oc = 1 q | ( E Femi ) TiO 2 - E R / R - | (公式3-1)
式中:Voc..........电池的开路光电压,mV
(Efemi)TiO2.....TiO2的费米能级,mV
ER/R-.........电解质溶液中氧化还原电对的电势,mV
q............完成一个氧化还原过程所需要的电子数
(3)光电转换效率η(%):光电转换效率粉是评估太阳能电池好坏的重要因素,表示出射光光强与入射光光强之比,其公式定义为:
η ( % ) = P out I inc × 100 % = J sc × V oc × FF I inc × 100 % (公式3-2)
式中:η..........光电转换效率,%
Pout.........最大输出功率,W
Iinc..........入射光强度,mW/cm2
Jsc..........短路电流密度,mA/cm2
Voc.........开路光电压,mV
FF.........电池的欧姆损失
(4)填充因子(FF):填充因子(FF)表示电池中的欧姆损失,它由半导体内的和电解质溶液中的电压降相加。填充因子主要与电池的内阻有关,内阻越大,填充因子就越小。它可从电池的光电流一电压特征曲线中得出(图3-7),即填充因子:
FF = ( V p × I p ) max I p × V oc (公式3-3)
式中:FF..........填充因子
Ip...........最佳工作电流,mA
Vp..........最佳工作电压,mV
Isc..........短路光电流,mA
Voc.........开路光电压,mV
图中横坐标为开路光电压,纵坐标为短路电流密度。
附图3:为固态电解质在室温下的循环伏安图。
从图中可以看出,第一次的循环电流较小,经过四次循环以后电流增大,而且曲线的重复性较好,说明电解质的电化学稳定性较好。
具体实施方式
实施例1:
称取PEDOT:PSS溶液(美国Sigma-Aldrich公司,浓度1.3%水溶液)、极性溶剂二甲基亚砜,搅拌8h混合,加入适量炭黑粉,放入玛瑙研钵中充分研磨30min,继续搅拌1-4h,原料配比重量按表1称取。使之充分的混合挥发后得到具有一定粘度的浆料(成胶状)。使其易于在基底上成膜。浆料最后搅拌时间受环境温度及搅拌速度影响。将制备好的浆料以滚涂法涂于导电基底上,然后在无尘条件下常温进行干燥,待膜表面干透后,放入80℃烘箱中干燥,即可得到导电聚合物层-PEDOT:PSS薄膜对电极。
表1
实施例2:
实验方法与实施例1同,原料配比重量按表2称取。制备导电聚合物层-PEDOT:PSS薄膜对电极。
表2
Figure G2009102200730D0000052
实施例3:
如实施例2制备制备导电聚合物层-PEDOT:PSS薄膜对电极。在导电聚合物层上涂敷上一层如表3中所列原料经混合均匀而制备的准固态电解质,即可得到本发明复合电极。
表3
Figure G2009102200730D0000053
实施例4:
如实施例2制备制备导电聚合物层-PEDOT:PSS薄膜对电极。在导电聚合物层上涂敷上一层如表4中所列原料经混合均匀而制备的准固态电解质,即可得到本发明复合电极。
表4
Figure G2009102200730D0000061
以上为本发明的实施例,染料敏化太阳能电池使用本领域中技术人员公知的方法制备,以浸过染料的TiO2多孔电极为工作电极,与本发明制备的复合电极组装成电池进行测量。
电池光电性能采用SOLAR SIMULATOR SS50 ABA型太阳能模拟器(AM1.5,100mW/cm2),配合电化学工作站测定DSSC电池的电性能。除非另有说明,本发明中光电性能的测量都是在室温(25℃)下完成的。电池性能测试结果如下:
伏-安特性曲线分析图如附图2。
PEDOT:PSS-CuSCN固态电解质的伏-安特性参数见下表:
Figure G2009102200730D0000062
开路电压0.61V,短路电流2.52mA,填充因子0.50,计算得到转换效率1.50%。循环伏安测试如下:
循环伏安测试图如附图3。
为了研究PEDOT/PSS-CuSCN电解质的电化学稳定性,对其进行了循环伏安测试。附图3为测试的5次循环伏安曲线。横坐标为电压纵坐标为电流。从图中可以看出,第一次的循环电流较小,经过四次循环以后电流增大,而且曲线的重复性较好,说明电解质的电化学稳定性较好。

Claims (5)

1.一种柔性染料敏化太阳能电池复合电极,其特征在于由导电基板上的导电聚合物层(3)以及准固态电解质层(4)构成;
其中:所述导电聚合物层(3)是由导电聚合物、有机溶剂和炭黑制备而成,三者质量比例为4.5∶1∶0.1;所述准固态电解质层(4)由导电聚合物、有机溶剂、无机纳米粉体和离子液体组成,四者质量比例为4.5∶1∶0.24∶0.04;
上述导电基板为PET/ITO或PEN/FTO,导电玻璃为ITO或FTO玻璃;上述导电聚合物为PEDOT∶PSS的1.3%的水溶液;有机溶剂为为二甲基亚砜,无机纳米粉体为CuSCN粉体;离子液体为1,2-二甲基-3-丙基-咪唑碘。
2.如权利要求1所述柔性染料敏化太阳能电池复合电极的制备方法,其特征在于其工艺步骤为:
a、在导电基板上制备一层厚度为1~3微米的导电聚合物,在80℃进行热处理,成为导电聚合物层;
b、在导电聚合物上涂敷一层厚度为1~3微米的准固态电解质。
3.根据权利要求2所述柔性染料敏化太阳能电池复合电极的制备方法,其特征在于在工艺步骤a中所述导电聚合物层用如下方法制备:将PEDOT∶PSS溶液与二甲基亚砜混合搅拌6小时,其质量比为4.5∶1,然后加入炭黑继续搅拌均匀而成;PEDOT∶PSS溶液、二甲基亚砜和炭黑三者质量比例为4.5∶1∶0.1;
所述PEDOT∶PSS溶液为质量浓度1.3%水溶液。
4.根据权利要求2所述柔性染料敏化太阳能电池复合电极的制备方法,其特征在于在工艺步骤a中导电基底上制备导电聚合物层的方法是采用辊涂法。
5.根据权利要求2所述柔性染料敏化太阳能电池复合电极的制备方法,其特征在于在工艺步骤b中的准固态电解质的制备方法为:将PEDOT∶PSS溶液、CuSCN纳米粉体和二甲基亚砜混合研磨,其中CuSCN与PEDOT∶PSS溶液的质量比0.24∶4.5,PEDOT∶PSS溶液与二甲基亚砜的质量比为4.5∶1,然后逐滴加入离子液体,继续研磨1~2小时,直至CuSCN完全混合均匀为止;其中,离子液体与PEDOT∶PSS溶液的质量比为0.24∶4.5;
所述PEDOT∶PSS溶液为质量浓度1.3%水溶液。
CN200910220073.0A 2009-11-20 2009-11-20 一种柔性染料敏化太阳能电池复合电极制备方法 Expired - Fee Related CN101728082B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910220073.0A CN101728082B (zh) 2009-11-20 2009-11-20 一种柔性染料敏化太阳能电池复合电极制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910220073.0A CN101728082B (zh) 2009-11-20 2009-11-20 一种柔性染料敏化太阳能电池复合电极制备方法

Publications (2)

Publication Number Publication Date
CN101728082A true CN101728082A (zh) 2010-06-09
CN101728082B CN101728082B (zh) 2012-05-09

Family

ID=42448799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910220073.0A Expired - Fee Related CN101728082B (zh) 2009-11-20 2009-11-20 一种柔性染料敏化太阳能电池复合电极制备方法

Country Status (1)

Country Link
CN (1) CN101728082B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101840795A (zh) * 2010-05-11 2010-09-22 中国乐凯胶片集团公司 一种柔性染料敏化太阳能电池
CN101944437A (zh) * 2010-08-31 2011-01-12 中国乐凯胶片集团公司 一种用于柔性染料敏化太阳能电池的柔性光阳极及其制备方法
CN103069618A (zh) * 2010-09-22 2013-04-24 原子能与替代能源委员会 用于印刷锂电池的电极的水性油墨
CN103923331A (zh) * 2014-05-08 2014-07-16 郑州大学 一种提高pedot/pss导电薄膜均匀涂布的方法
WO2018090691A1 (zh) * 2016-11-18 2018-05-24 Tcl集团股份有限公司 量子点发光二极管及其制备方法与发光模组、显示装置
CN108630340A (zh) * 2017-03-22 2018-10-09 北京赛特超润界面科技有限公司 一种pedot:pss@离子液体凝胶复合自支撑柔性透明电极的制备方法
CN114798690A (zh) * 2022-04-26 2022-07-29 中国科学院赣江创新研究院 一种废旧晶硅光伏板板间分离回收的方法
CN115512972A (zh) * 2022-08-18 2022-12-23 河北大学 一种用于量子点敏化太阳能电池的准固态电解质的制备方法
CN117038759A (zh) * 2023-09-23 2023-11-10 河北大学 一种以炭黑导电薄膜作为空穴传输层的晶硅太阳能电池
CN117316526A (zh) * 2023-09-14 2023-12-29 河北大学 一种制备自支撑纳米碳基导电宏观体的方法及其应用

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101840795A (zh) * 2010-05-11 2010-09-22 中国乐凯胶片集团公司 一种柔性染料敏化太阳能电池
CN101840795B (zh) * 2010-05-11 2013-03-20 中国乐凯胶片集团公司 一种柔性染料敏化太阳能电池
CN101944437A (zh) * 2010-08-31 2011-01-12 中国乐凯胶片集团公司 一种用于柔性染料敏化太阳能电池的柔性光阳极及其制备方法
CN101944437B (zh) * 2010-08-31 2012-12-12 中国乐凯胶片集团公司 一种用于柔性染料敏化太阳能电池的柔性光阳极及其制备方法
CN103069618A (zh) * 2010-09-22 2013-04-24 原子能与替代能源委员会 用于印刷锂电池的电极的水性油墨
CN103069618B (zh) * 2010-09-22 2015-07-08 原子能与替代能源委员会 用于印刷锂电池的电极的水性油墨
CN103923331A (zh) * 2014-05-08 2014-07-16 郑州大学 一种提高pedot/pss导电薄膜均匀涂布的方法
US10826009B2 (en) 2016-11-18 2020-11-03 Tcl Technology Group Corporation Quantum dot light-emitting diode and display apparatus thereof
WO2018090691A1 (zh) * 2016-11-18 2018-05-24 Tcl集团股份有限公司 量子点发光二极管及其制备方法与发光模组、显示装置
US11398612B2 (en) 2016-11-18 2022-07-26 Tcl Technology Group Corporation Quantum dot light-emitting diode and preparation method therefor, and light-emitting module and display apparatus
CN108630340A (zh) * 2017-03-22 2018-10-09 北京赛特超润界面科技有限公司 一种pedot:pss@离子液体凝胶复合自支撑柔性透明电极的制备方法
CN108630340B (zh) * 2017-03-22 2020-06-26 北京赛特超润界面科技有限公司 一种pedot:pss@离子液体凝胶复合自支撑柔性透明电极的制备方法
CN114798690A (zh) * 2022-04-26 2022-07-29 中国科学院赣江创新研究院 一种废旧晶硅光伏板板间分离回收的方法
CN114798690B (zh) * 2022-04-26 2023-08-04 中国科学院赣江创新研究院 一种废旧晶硅光伏板板间分离回收的方法
CN115512972A (zh) * 2022-08-18 2022-12-23 河北大学 一种用于量子点敏化太阳能电池的准固态电解质的制备方法
CN115512972B (zh) * 2022-08-18 2023-11-03 河北大学 一种用于量子点敏化太阳能电池的准固态电解质的制备方法
CN117316526A (zh) * 2023-09-14 2023-12-29 河北大学 一种制备自支撑纳米碳基导电宏观体的方法及其应用
CN117316526B (zh) * 2023-09-14 2024-05-03 河北大学 一种制备自支撑纳米碳基导电宏观体的方法及其应用
CN117038759A (zh) * 2023-09-23 2023-11-10 河北大学 一种以炭黑导电薄膜作为空穴传输层的晶硅太阳能电池
CN117038759B (zh) * 2023-09-23 2024-04-19 河北大学 一种以炭黑导电薄膜作为空穴传输层的晶硅太阳能电池

Also Published As

Publication number Publication date
CN101728082B (zh) 2012-05-09

Similar Documents

Publication Publication Date Title
CN101728082B (zh) 一种柔性染料敏化太阳能电池复合电极制备方法
Li et al. Facile electropolymerized-PANI as counter electrode for low cost dye-sensitized solar cell
Lee et al. Dye-sensitized solar cells with Pt-and TCO-free counter electrodes
Bu et al. A transparent and stable polypyrrole counter electrode for dye-sensitized solar cell
Wu et al. Gel polymer electrolyte based on poly (acrylonitrile-co-styrene) and a novel organic iodide salt for quasi-solid state dye-sensitized solar cell
Roy et al. Dye-sensitized solar cell based on Rose Bengal dye and nanocrystalline TiO2
Yue et al. Low cost poly (3, 4-ethylenedioxythiophene): polystyrenesulfonate/carbon black counter electrode for dye-sensitized solar cells
Yang et al. Novel agarose polymer electrolyte for quasi-solid state dye-sensitized solar cell
Zhang et al. Electropolymerization of a poly (3, 4-ethylenedioxythiophene) and functionalized, multi-walled, carbon nanotubes counter electrode for dye-sensitized solar cells and characterization of its performance
Wu et al. A polyblend electrolyte (PVP/PEG+ KI+ I2) for dye-sensitized nanocrystalline TiO2 solar cells
Zhang et al. A novel TCO-and Pt-free counter electrode for high efficiency dye-sensitized solar cells
Fan et al. Quasi-solid state dye-sensitized solar cells based on polyvinylpyrrolidone with ionic liquid
Lin et al. Poly (ionic liquid)/ionic liquid/graphene oxide composite quasi solid-state electrolytes for dye sensitized solar cells
Yue et al. Enhanced performance of flexible dye-sensitized solar cell based on nickel sulfide/polyaniline/titanium counter electrode
Lin et al. Characterization of polyaniline counter electrodes for dye-sensitized solar cells
Sakurai et al. Enhanced performance of a dye-sensitized solar cell with a modified poly (3, 4-ethylenedioxythiophene)/TiO2/FTO counter electrode
Cha et al. Correlation between ionic conductivity and cell performance in solid-state dye-sensitized solar cells employing polymer electrolyte
Zhou et al. Printable fabrication of Pt-and-ITO free counter electrodes for completely flexible quasi-solid dye-sensitized solar cells
Guo et al. A long-term stable Pt counter electrode modified by POM-based multilayer film for high conversion efficiency dye-sensitized solar cells
Rong et al. Monolithic quasi-solid-state dye-sensitized solar cells based on graphene-modified mesoscopic carbon-counter electrodes
CN104465113A (zh) 一种氮掺杂石墨烯对电极制备方法及其在染料敏化太阳能电池中的应用
Cui et al. Enhanced photovoltaic performance of quasi-solid-state dye-sensitized solar cells by incorporating a quaternized ammonium salt into poly (ethylene oxide)/poly (vinylidene fluoride-hexafluoropropylene) composite polymer electrolyte
CN101777430B (zh) 一种染料敏化太阳能电池光阳极用二氧化钛膜的制备方法
Zhang et al. Carbon/polymer composite counter‐electrode application in dye‐sensitized solar cells
Chen et al. An efficient binary ionic liquid based quasi solid-state electrolyte for dye-sensitized solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120509

Termination date: 20151120

EXPY Termination of patent right or utility model