CN101727996A - Method for detecting deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant and implementation device thereof - Google Patents

Method for detecting deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant and implementation device thereof Download PDF

Info

Publication number
CN101727996A
CN101727996A CN200810172214A CN200810172214A CN101727996A CN 101727996 A CN101727996 A CN 101727996A CN 200810172214 A CN200810172214 A CN 200810172214A CN 200810172214 A CN200810172214 A CN 200810172214A CN 101727996 A CN101727996 A CN 101727996A
Authority
CN
China
Prior art keywords
fuel assembly
fuel
irradiation
power plant
nuclear power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200810172214A
Other languages
Chinese (zh)
Other versions
CN101727996B (en
Inventor
万志坚
唐月明
杨波
高三杰
张晓川
柴玉琨
朱金海
王晓敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Power Institute of China
Original Assignee
Nuclear Power Institute of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Power Institute of China filed Critical Nuclear Power Institute of China
Priority to CN2008101722141A priority Critical patent/CN101727996B/en
Publication of CN101727996A publication Critical patent/CN101727996A/en
Application granted granted Critical
Publication of CN101727996B publication Critical patent/CN101727996B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

The invention belongs to the technical field of detection, and in particular relates to a device and a method for detecting deformation size of a fuel assembly after irradiation of a pressurized-water reactor nuclear power plant, which solve the problem of low precision and poor insurance in the prior art. The detecting device mainly comprises an annular base (1) and detection sets (2), wherein a plurality of detection sets (2) are evenly distributed on the annular base (1); each detection set (2) comprises a pair of detection units (3) placed reversely in parallel; the number of the detection units (3) is the same as the edge number of the fuel assembly (10); and the detecting method adopts the detection set (2) consisting of the two detection units (3) to measure the width of an opposite side of the fuel assembly, the diameter of fuel rods and the clearance between the fuel rods. The method and the device can inspect the curve and torsion of the fuel assembly after the irradiation of the nuclear power plant, the opposite side distance of a grillwork and the clearance between the fuel rods; and edges of the fuel assembly can be inspected at the same time by adopting the arrangement of a plurality of units, and the detection efficiency is high.

Description

Method for detecting deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant and implement device thereof
Technical field
The present invention relates to the pick-up unit and the detection method of s Nuclear Plant, concrete a kind of method for detecting deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant and implement device thereof.
Background technology
The pressurized-water reactor nuclear power plant fuel assembly generally adopts square or hexagonal design, and fuel rod, control rod guide pipe and neutron measurement pipe are arranged, and long 3~4 meters of assembly is made up of last base, fuel rod, screen work and bottom nozzle respectively from top to bottom.Screen work is total a plurality of, equidistantly distributes in the length component direction, and fuel rod and control rod guide pipe are fixed together, and the structure of hexagonal assembly as shown in Figure 1.Assembly behind the irradiation generally leaves in the storage screen work of the fuel pit that is full of boron water, as shown in Figure 2.
Because the pressurized-water reactor nuclear power plant fuel assembly is operated in high temperature, high pressure, the high radiation environment, fuel rod can be because void swelling produces local deformation, be subjected to the influence of factors such as erection stress and thermal stress simultaneously, fuel assembly integral body also can bend and torsional deformation, will influence the water channel gap of fuel assembly when serious, influence the normal insertion of control rod simultaneously, the safe operation of reactor is constituted a threat to.Because nuclear safety is the life of nuclear power station, according to of the requirement of State Bureau of Nuclear Safety's relevant regulations with relevant nuclear safety file, in order to guarantee the safe operation of reactor, in a period of time interval, must regularly detect assembly, this detection is the whole assembly of complete detection, comprises the distortion of local burnup's rod and whole distortion, bending etc., to guarantee the safe operation of reactor.
But because fuel assembly has very strong radioactivity behind the irradiation, also having surplus heat simultaneously constantly discharges, and need leave in the water of boracic, can't close-in measurement, and general measuring equipment also can't be used.The method of general at present employing video is checked, but this method precision is low, can only observe the distortion situation of assembly roughly.
Summary of the invention
The purpose of this invention is to provide a kind of the deficiencies in the prior art that overcome, be implemented in the pressurized-water reactor nuclear power plant reactor fuel pond, under high irradiation dose and the deep water conditions, finish irradiation after the distortion dimension inspection of fuel assembly, the method for detecting deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant and the implement device thereof that provide safeguard for the safe operation of reactor.
The present invention is achieved in that
A kind of deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant size detecting method, it is characterized in that: the test set that adopts two detecting units to form is measured width and the diameter of fuel rod and the gap between the fuel rod of an opposite side of fuel assembly, the profile of based on fuel assembly is arranged many group test set, and the width of each opposite side of fuel assembly is measured simultaneously.
A kind of deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant size detecting device is made up of test section, switch board, positioning shooting head and cable under water, and switch board comprises controller and monitor, and controller is connected with test section under water by cable; The positioning shooting head is connected with monitor by cable; It is characterized in that: the test section comprises annular base and test set under water; Test set has many groups, is evenly distributed on the annular base platform; Test set comprises the detecting unit of a pair of antiparallel placement, 2 seal boxs and 2 master bars; The quantity of detecting unit is identical with the limit number of fuel assembly; Described detecting unit comprises signal transmitting terminal, signal receiving end; The signal transmitting terminal comprises: laser generation part, diversing lens, and signal receiving end comprises: plus lens and photoelectricity receiving-member; The central axis of diversing lens and plus lens point-blank; The laser generation part sends the position of laser on the focus of diversing lens, and the receiving unit of photoelectricity receiving-member is positioned on the focus of plus lens; Be positioned at signal transmitting terminal of test set the same side and the seal box that signal receiving end is installed in; 2 master bars are fixed on the annular base, lay respectively on the line of diversing lens and plus lens normal direction outer ledge in 2 detecting units; Two locating pieces have been installed below the described annular base; The positioning shooting head is installed in the locating piece.
The seal box of going up is as mentioned above made by stainless steel, has shielding.
Diversing lens and plus lens and barrier bed thereof adopt the optical glass that adds zinc telluridse to make as mentioned above.
Aforesaid detecting unit quantity is 6.
A kind of using method of pick-up unit of deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant size mainly comprises the steps:
(1) erecting device
(a) install
The pick-up unit of deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant size is installed; Suspender is installed, test section under water is placed on the fuel storage screen work in the fuel pit, test section under water is put into the fuel screen work position of regulation;
(b) start preheating
Opening power, whether check system is normal, preheating 15 minutes;
(2) get material
Fuel assembly is inserted the middle screen work of annular base; After assembly is put into the end, fuel assembly (10) is slowly risen to the detection position;
(3) detect
Slowly promote fuel assembly, test set is finished the inspection to each opposite side data of fuel assembly, finishes the flexibility of fuel assembly, the calculating and the storage of torsion resistance;
After detection is finished, with the former stored position of the fuel assembly handling that detected.
The invention has the beneficial effects as follows: can check bending, distortion, the opposite side distance of screen work and the gap of fuel rod of the fuel assembly behind the nuclear power irradiation; The many covers of employing detecting units are arranged, can check each limit of fuel assembly simultaneously, and the scope of examination is detailed, comprehensive, and the supervision time is short, the detection efficiency height.
Description of drawings
Fig. 1 is the fuel assembly structure synoptic diagram;
Fig. 2 is fuel pit and fuel assembly storage screen work;
Fig. 3 is a kind of deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant size detecting method of the present invention synoptic diagram
Fig. 4 is the synoptic diagram of a kind of deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant size detecting device of the present invention;
Fig. 5 is the synoptic diagram of test section under water of a kind of deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant size detecting device of the present invention;
Among the figure: 1. annular base, 2. test set, 3. detecting unit, 4. signal transmitting terminal, 5. signal receiving end, 6. laser generation part, 7. diversing lens, 8. plus lens, 9. photoelectricity receiving-member, 10. fuel assembly, 11. cables, 12. switch board, 13. locating pieces, 14. refueling machines, 15. master bars.
Embodiment
Be described below in conjunction with the pick-up unit and the method for drawings and Examples a kind of deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant size of the present invention:
As shown in Figure 3, a kind of deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant size detecting method, the test set 2 that adopts two detecting units 3 to form is measured width and the diameter of fuel rod and the gap between the fuel rod of an opposite side of fuel assembly 10, the profile of based on fuel assembly 10 is arranged many group test set 2, and the width of fuel assembly 10 each opposite side is measured simultaneously.
As Fig. 4, shown in Figure 5, a kind of pick-up unit of deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant size comprises: test section, switch board 12, positioning shooting machine and cable 11 under water, and switch board 12 is connected with test section under water by cable 11; Wherein, the test section comprises annular base 1, test set 2 and locating piece 13 under water, overlaps test set 2 more and is evenly distributed on the annular base 1; Test set 2 comprises 3,2 seal boxs of detecting unit and 2 master bars 15 of a pair of antiparallel placement, and the quantity of detecting unit 3 is identical with the limit number of fuel assembly 10, and in the present embodiment, detecting unit 3 is 3 pairs.Detecting unit 3 comprises signal transmitting terminal 4, signal receiving end 5, and wherein, signal transmitting terminal 4 comprises: laser generation part 6, diversing lens 7; Signal receiving end 5 comprises: plus lens 8 and photoelectricity receiving-member 9.Diversing lens 7 and plus lens 8 central axis are point-blank, laser generation part 6 sends the position of laser on the focus of diversing lens 7 away from plus lens 8 one sides, and the receiving unit of photoelectricity receiving-member 9 is positioned on the focus of plus lens 8 away from diversing lens 7 one sides; The signal transmitting terminal and the signal receiving end that are positioned at test set 2 the same sides are installed in waterproof of being made by stainless steel and the seal box of being with shielding, by optimal design to laser optical path, reduce the radioactive dose of the electron device of casing as far as possible, alleviate the weight of casing simultaneously; 2 master bars 15 are fixed on the annular base 1, lay respectively on the line of diversing lens in 2 detecting units 37 and plus lens 8 normal direction outer ledges.Totally 2 of locating pieces 13, it be installed in above-mentioned annular base 1 below, its position distribution will guarantee that after two locating pieces 13 enter screen work the center of the circular hole in the middle of the annular base 1 overlaps with the center of following screen work, so that tested fuel assembly 10 inserts and proposes; Behind the refueling machine 14 clamping fuel assemblies 10, earlier fuel assembly 10 is inserted the screen work that annular base 1 center hole faces toward, promote fuel assembly 10 again, six faces of 2 pairs of fuel assemblies 10 of test set scan simultaneously, finish whole detections.Because ordinary optical glass is subjected to behind the irradiation causing laser not transmit variable color, adopts the optical glass development diversing lens 7, plus lens 8 and the barrier bed thereof that add zinc telluridse, can bear the irradiation of higher dosage for this reason.
Switch board 12 comprises controller and monitor, controller accepts to accept from photoelectricity the detection signal of parts 9, the width c of the testee that obtains according to detection in conjunction with the design width of known fuel assembly 10, calculates flexibility, the torsion resistance of fuel assembly 10 and stores; Monitor is accepted the information from 3 positioning shooting heads, shows the image that camera is taken in real time, makes things convenient for the pond installing and locating.
In the positioning shooting head is installed in annular base 1 time, locating piece 13, carry infrared ray, can not have normal photographing under the situation of light source.
When fuel assembly 10 detects, one group of across flats of fuel assembly 10 is detected by a test set 2, distance L between the master bar 15 is a fixed value, one side the scanning of 3 pairs of fuel assemblies 10 of a detecting unit of test set 2, measure this limit and homonymy master bar 15 apart from a; Simultaneously, 3 pairs of fuel assemblies of another detecting unit, 10 another limits are scanned, and measure the distance b of this back gauge homonymy master bar 15, and then the width of 10 1 opposite side of fuel assembly is: c=L-a-b.
The detection signal that cable 11 is gathered the photoelectricity receiving-member in the seal box 9, handle sends to controller in the switch board 12 with digital signal, realize the long-distance transmissions of signal, promptly overcome the problem of simulating signal long-distance transmissions decay, also overcome and detected on-the-spot various interference.
A kind of using method of pick-up unit of deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant size, the test set that adopts two detecting units to form is measured width and the diameter of fuel rod and the gap between the fuel rod of an opposite side of fuel assembly, the based on fuel assembly profile arrange many group test set, the width of each opposite side of fuel assembly is measured simultaneously.The step of described using method is as follows:
(1) erecting device
(a) install
The pick-up unit of deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant size is installed, photoelectricity in the test set 2 in the detection part is under water accepted parts 9 be connected with controller in the switch board 12, positioning shooting head and the monitor in the switch board are crossed cable 11 be connected by cable 11;
Suspender is installed, is adopted prior art utilization ring to hang test section under water is placed on the fuel storage screen work in the fuel pit, note observing the positioning shooting machine in the hoisting process, utilize auxiliary stay cord to be put into the fuel screen work position of regulation in the test section under water;
(b) start preheating
Open all power supplys, whether check system is normal, preheating 15 minutes.
(2) get material
Utilize refueling machine 14 that the fuel assembly 10 of appointment is hung position directly over the annular base 1, under the monitoring of refueling machine 14 and positioning shooting machine, by locating piece 13 center of annular base 1 and its corresponding screen work center are overlapped, with the screen work in the middle of the fuel assembly 10 insertion annular bases 1; After assembly is put into the end, utilizes refueling machine 14 that fuel assembly 10 is slowly risen to and detect the position.
(3) detect
Refueling machine 14 slowly promotes fuel assembly 10 with certain speed, and test set 2 is finished the detection to fuel assembly 10 each opposite side data, and the information that will gather, handle by photoelectricity receiving-member 9 sends to controller in the switch board 12 by cable 11; Controller in the switch board 12 is finished the flexibility of fuel assembly 10, the calculating and the storage of torsion resistance;
After detection is finished, utilize the former stored position of fuel assembly 10 handlings that refueling machine 14 will detect.

Claims (6)

1. deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant size detecting method, it is characterized in that: the test set (2) that adopts two detecting units (3) to form is measured width and the diameter of fuel rod and the gap between the fuel rod of an opposite side of fuel assembly (10), the profile of based on fuel assembly (10) is arranged many group test set (2), and the width of each opposite side of fuel assembly (10) is measured simultaneously.
2. deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant size detecting device, comprise test section, switch board (12), positioning shooting head and cable (11) under water, switch board (12) comprises controller and monitor, and controller is connected with test section under water by cable (11); The positioning shooting head is connected with monitor by cable (11); It is characterized in that: the test section comprises annular base (1) and test set (2) under water; Test set (2) has many groups, is evenly distributed on the annular base platform; Test set (2) comprises the detecting unit (3) of a pair of antiparallel placement, 2 seal boxs and 2 master bars (15); The quantity of detecting unit (3) is identical with the limit number of fuel assembly; Described detecting unit (3) comprises signal transmitting terminal (4), signal receiving end (5); Signal transmitting terminal (4) comprising: laser generation part (6), diversing lens (7), and signal receiving end (5) comprising: plus lens (8) and photoelectricity receiving-member (9); The central axis of diversing lens (7) and plus lens (8) point-blank; Laser generation part (6) sends the position of laser on the focus of diversing lens (7), and the receiving unit of photoelectricity receiving-member (9) is positioned on the focus of plus lens (8); Be positioned at signal transmitting terminal (4) of test set (2) the same side and the seal box that signal receiving end (5) is installed in; 2 master bars (15) are fixed on the annular base (1), lay respectively on the line of middle diversing lens (7) of 2 detecting units (3) and plus lens (8) normal direction outer ledge; Two locating pieces (13) have been installed below the described annular base (1); The positioning shooting head is installed in the locating piece (13).
3. a kind of deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant size detecting device according to claim 2, it is characterized in that: the seal box on described is made by stainless steel, has shielding.
4. according to claim 2 or 3 described a kind of deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant size detecting devices, it is characterized in that: described diversing lens (7) and plus lens (8) and barrier bed thereof adopt the optical glass that adds zinc telluridse to make.
5. a kind of deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant size detecting device according to claim 1 is characterized in that: described detecting unit (3) quantity is 6.
6. the using method of the pick-up unit of a deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant size mainly comprises the steps:
(1) erecting device
(a) install
The pick-up unit of deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant size is installed; Suspender is installed, test section under water is placed on the fuel storage screen work in the fuel pit, test section under water is put into the fuel screen work position of regulation;
(b) start preheating
Opening power, whether check system is normal, preheating 15 minutes;
(2) get material
Fuel assembly (10) is inserted the middle screen work of annular base (1); After assembly is put into the end, fuel assembly (10) is slowly risen to the detection position;
(3) detect
Slowly promote fuel assembly (10), test set (2) is finished the inspection to each opposite side data of fuel assembly (10), finishes the flexibility of fuel assembly (10), the calculating and the storage of torsion resistance;
After detection is finished, with the former stored position of fuel assembly (10) handling that detected.
CN2008101722141A 2008-10-31 2008-10-31 Method for detecting deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant and implementation device thereof Active CN101727996B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101722141A CN101727996B (en) 2008-10-31 2008-10-31 Method for detecting deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant and implementation device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101722141A CN101727996B (en) 2008-10-31 2008-10-31 Method for detecting deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant and implementation device thereof

Publications (2)

Publication Number Publication Date
CN101727996A true CN101727996A (en) 2010-06-09
CN101727996B CN101727996B (en) 2012-06-27

Family

ID=42448730

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101722141A Active CN101727996B (en) 2008-10-31 2008-10-31 Method for detecting deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant and implementation device thereof

Country Status (1)

Country Link
CN (1) CN101727996B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102867553A (en) * 2011-07-08 2013-01-09 韩电原子力燃料株式会社 Apparatus for measuring outer diameters of fuel rods of nuclear fuel assembly
CN104347128A (en) * 2013-08-07 2015-02-11 原子能和能源替代品委员会 Method of analysing changes in geometry of irradiated fuel
CN104655438A (en) * 2014-12-17 2015-05-27 中广核核电运营有限公司 Detection system and detection method for nuclear fuel loading, unloading and storage system
CN105632572A (en) * 2014-11-13 2016-06-01 大亚湾核电运营管理有限责任公司 Prediction method for possible swelling or jamming generation time of nuclear reactor control rod
CN106782705A (en) * 2016-11-25 2017-05-31 福建福清核电有限公司 A kind of method for adjusting fuel four sides check device and peripheral equipment interference distance
CN106782685A (en) * 2016-12-09 2017-05-31 中广核工程有限公司 A kind of fuel for nuclear power plant screen work positioner and method
CN106813603A (en) * 2015-11-30 2017-06-09 江苏核电有限公司 A kind of fuel assembly deflection bilayer supersonic detection method
CN106935291A (en) * 2015-12-30 2017-07-07 江苏核电有限公司 A kind of fuel assembly deflection bilayer measuring system and measuring method
CN109451283A (en) * 2018-12-21 2019-03-08 核动力运行研究所 A kind of steam generator water chamber ambient image acquisition system
CN110490491A (en) * 2019-09-06 2019-11-22 福建福清核电有限公司 A kind of nuclear power plant's burnup calculation method based on single-precision floating-point data
CN111750782A (en) * 2019-03-29 2020-10-09 国核电站运行服务技术有限公司 Underwater non-contact measurement system and method for nuclear power station fuel assembly grid width
CN113042599A (en) * 2021-03-29 2021-06-29 成都腾达模具有限公司 Processing method of qualified grid cell tube
CN113063358A (en) * 2021-03-23 2021-07-02 中国核动力研究设计院 System and method for measuring length of irradiated fuel assembly
CN114999688A (en) * 2022-06-14 2022-09-02 中国核动力研究设计院 Scaling simulation fuel assembly
CN116189938B (en) * 2022-12-23 2024-02-27 中国核动力研究设计院 Image method measuring system and method for measuring bending and twisting of nuclear fuel assembly

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9309238D0 (en) * 1993-05-05 1993-06-16 British Nuclear Fuels Plc Apparatus for detection of surface defects
CN1108512C (en) * 1999-11-18 2003-05-14 中国核动力研究设计院 Underwater displacement measuring method and equipment
JP2008145368A (en) * 2006-12-13 2008-06-26 Global Nuclear Fuel-Japan Co Ltd Fuel rod spacing measuring method and device

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102867553B (en) * 2011-07-08 2016-09-21 韩电原子力燃料株式会社 The nuclear fuel rod external diameter measuring device of nuclear fuel assembly
CN102867553A (en) * 2011-07-08 2013-01-09 韩电原子力燃料株式会社 Apparatus for measuring outer diameters of fuel rods of nuclear fuel assembly
CN104347128A (en) * 2013-08-07 2015-02-11 原子能和能源替代品委员会 Method of analysing changes in geometry of irradiated fuel
CN105632572A (en) * 2014-11-13 2016-06-01 大亚湾核电运营管理有限责任公司 Prediction method for possible swelling or jamming generation time of nuclear reactor control rod
CN105632572B (en) * 2014-11-13 2017-07-28 大亚湾核电运营管理有限责任公司 The Forecasting Methodology of swelling or bite possible time occur for command bundle rods for nuclear reactors
CN104655438A (en) * 2014-12-17 2015-05-27 中广核核电运营有限公司 Detection system and detection method for nuclear fuel loading, unloading and storage system
CN104655438B (en) * 2014-12-17 2017-08-29 中广核核电运营有限公司 Nuclear fuel loads and unloads the detecting system and method for storage system
CN106813603B (en) * 2015-11-30 2019-05-17 江苏核电有限公司 A kind of fuel assembly deflection bilayer supersonic detection method
CN106813603A (en) * 2015-11-30 2017-06-09 江苏核电有限公司 A kind of fuel assembly deflection bilayer supersonic detection method
CN106935291B (en) * 2015-12-30 2018-07-27 江苏核电有限公司 A kind of fuel assembly deflection bilayer measuring system and measurement method
CN106935291A (en) * 2015-12-30 2017-07-07 江苏核电有限公司 A kind of fuel assembly deflection bilayer measuring system and measuring method
CN106782705A (en) * 2016-11-25 2017-05-31 福建福清核电有限公司 A kind of method for adjusting fuel four sides check device and peripheral equipment interference distance
CN106782685A (en) * 2016-12-09 2017-05-31 中广核工程有限公司 A kind of fuel for nuclear power plant screen work positioner and method
CN109451283A (en) * 2018-12-21 2019-03-08 核动力运行研究所 A kind of steam generator water chamber ambient image acquisition system
CN111750782A (en) * 2019-03-29 2020-10-09 国核电站运行服务技术有限公司 Underwater non-contact measurement system and method for nuclear power station fuel assembly grid width
CN110490491A (en) * 2019-09-06 2019-11-22 福建福清核电有限公司 A kind of nuclear power plant's burnup calculation method based on single-precision floating-point data
CN110490491B (en) * 2019-09-06 2022-06-28 福建福清核电有限公司 Nuclear power plant fuel consumption calculation method based on single-precision floating point data
CN113063358A (en) * 2021-03-23 2021-07-02 中国核动力研究设计院 System and method for measuring length of irradiated fuel assembly
CN113063358B (en) * 2021-03-23 2022-07-29 中国核动力研究设计院 System and method for measuring length of irradiated fuel assembly
CN113042599A (en) * 2021-03-29 2021-06-29 成都腾达模具有限公司 Processing method of qualified grid cell tube
CN114999688A (en) * 2022-06-14 2022-09-02 中国核动力研究设计院 Scaling simulation fuel assembly
CN114999688B (en) * 2022-06-14 2024-04-26 中国核动力研究设计院 Scaling simulation fuel assembly
CN116189938B (en) * 2022-12-23 2024-02-27 中国核动力研究设计院 Image method measuring system and method for measuring bending and twisting of nuclear fuel assembly

Also Published As

Publication number Publication date
CN101727996B (en) 2012-06-27

Similar Documents

Publication Publication Date Title
CN101727996B (en) Method for detecting deformation of fuel assembly after irradiation of pressurized-water reactor nuclear power plant and implementation device thereof
US5754611A (en) Method and device for measuring at least one characteristic length on a fuel rod arranged at the periphery of a nuclear fuel assembly
US8804893B2 (en) Method of and an apparatus for monitoring the operation of a nuclear reactor
US20190362862A1 (en) Device and method for seal verification by penetrant inspection of a nuclear fuel assembly
CN104991141B (en) Irradiation evenness Real-time and On-line in a kind of irradiation industry
CN104517659B (en) Underwater radiation-resistant laser measuring equipment
KR100977290B1 (en) An apparatus for identifying the defect of nuclear spent fuel assembly and the identification method
CN106229019A (en) A kind of irradiation after-burning charge bar Diameter Measurement System under water and measuring method thereof
KR102229251B1 (en) PWR Nuclear Fuel Rod Loading Force Measurement DevicA tester for nuclear fuel rod input measurement
KR102332240B1 (en) RADIATION PROBE SYSTEM FOR SPENT FUEL VERIFICATION, Nuclear Fuel Visual Detection Device, Spent Fuel Monitoring System
CN205451788U (en) Neutron temperature measurement passageway and loop cable junction verification of correctness instrument
Höglund et al. Performance of the Westinghouse WWER-1000 fuel design
Lehtinen Poolside inspections at Loviisa NPP
CN218513185U (en) Reactor core neutron flux continuous measurement system for bottom entering of pressure vessel
Rinard et al. BWR spent-fuel measurements with the ION-1/fork detector and a calorimeter
CN203631139U (en) Device for judging source of fission product in reactor drainage pipeline of nuclear power plant
JP2011107105A (en) Nuclear instrumentation system
CN211742662U (en) Height measuring device for fuel assembly repairing guide mechanism
Hu et al. Fork Experiments in the Hot Cell Using Spent Fuel Rods for International Nuclear Safeguards
Choi et al. Optimization for the prediction using results of gap measurements between fuel channels and liss nozzles in phwr
Ham et al. Partial defect testing of pressurized water reactor spent fuel assemblies
Park et al. KNFC fuel service technology development
Ruggirello et al. Applied monitoring methods for the control of fuel elements and reactor internals in Argentine nuclear power plants poolside facilities
KR200339313Y1 (en) The probe fixture for eddy current testing of the RCCA of nuclear fuel type
Park Application of National Safeguards Instruments for Spent Fuel Verifications to the IAEA Inspections

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant