CN101726485B - 三维光学传感器和用于燃烧传感及控制的系统 - Google Patents

三维光学传感器和用于燃烧传感及控制的系统 Download PDF

Info

Publication number
CN101726485B
CN101726485B CN200910208645.3A CN200910208645A CN101726485B CN 101726485 B CN101726485 B CN 101726485B CN 200910208645 A CN200910208645 A CN 200910208645A CN 101726485 B CN101726485 B CN 101726485B
Authority
CN
China
Prior art keywords
burner
chemical species
flame
parameter
described burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200910208645.3A
Other languages
English (en)
Other versions
CN101726485A (zh
Inventor
L·B·小戴维斯
K·R·麦马努斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co PLC
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN101726485A publication Critical patent/CN101726485A/zh
Application granted granted Critical
Publication of CN101726485B publication Critical patent/CN101726485B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/72Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using flame burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames
    • G01J5/0018Flames, plasma or welding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0801Means for wavelength selection or discrimination
    • G01J5/0802Optical filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/02Constructional details
    • G01J5/08Optical arrangements
    • G01J5/0806Focusing or collimating elements, e.g. lenses or concave mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/20Gas turbines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/178Methods for obtaining spatial resolution of the property being measured
    • G01N2021/1785Three dimensional
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8411Application to online plant, process monitoring
    • G01N2021/8416Application to online plant, process monitoring and process controlling, not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Plasma & Fusion (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Control Of Combustion (AREA)
  • Radiation Pyrometers (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及三维光学传感器和用于燃烧传感及控制的系统。一种系统包括:光学传感器(100,200),该光学传感器(100,200)以三维的方式光学地测量和空间地分辨由装置(300)所产生的火焰(106)内的至少一种化学物类;以及部件(400),该部件(400)使三维地测量的至少一种化学物类与装置(300)的至少一个参数相关联。

Description

三维光学传感器和用于燃烧传感及控制的系统
技术领域
本文所公开的主题涉及光的光学测量,并且更具体地说,涉及一种光学传感器,该光学传感器执行对燃气涡轮发动机的燃烧器火焰的三维的、空间分辨的(spatially-resolved)光学测量,并且涉及一种系统,该系统利用光学测量来更好地控制燃烧过程。
背景技术
按照惯例,在燃气涡轮发动机中的预混合气体燃烧器中使用对火焰化学发光的光发射的光学测量来测定这样的燃烧器中的各种参数,诸如能量或热量释放率和燃料空气比。将波长滤波器设置在光学探测器的前面典型地用于识别来自诸如OH*、CH*、C2*以及CO2*的各个特定激发态物类(species)的总的光发射的部分贡献率。然后,可以使这些物类中的一个或多个物类的信号比以已知的方式与各种燃烧器参数相关联,诸如燃料空气比、热量释放率以及气体温度。这种测量技术的先前的应用已使用了简单的光学传感器布置和摄象机系统。这些技术和系统的问题是其固有的有限的空间分辨率。在复杂的燃烧流中,以三维的方式进行空间分辨测量的能力是通过对燃烧过程的改进的控制来优化系统性能的关键。
使用排气温度分布作为用于燃烧器的燃烧室之间的燃料空气比、热量释放率以及气体温度的变动的替代是足够的。但是,通过使用光学技术来观察各个燃烧器罐中的火焰可改进结果。在这些情形下,使用光学方法的主要问题是:当优选需要的是关于各个燃烧器罐中的整个火焰的三维的、空间分辨的信息时,这些光学方法典型地提供有限的视线信息。
发明内容
根据本发明的一个方面,一种系统包括:以三维的方式光学地测量和空间地分辨由某装置所产生的火焰内的至少一种化学物类的光学传感器;以及使三维地测量的至少一种化学物类与该装置的至少一个参数相关联的部件。
根据本发明的另一个方面,一种方法包括以三维的方式光学地测量和空间地分辨由某装置所产生的火焰内的至少一种化学物类,以及使三维地测量的至少一种化学物类与该装置的至少一个参数相关联。
根据本发明的又一个方面,一种系统包括:以三维的方式光学地测量和空间地分辨由燃烧器所产生的火焰内的至少一种化学物类的光学传感器;以及使三维地测量的至少一种化学物类与该燃烧器的至少一个参数相关联的装置。
根据下文的描述(结合附图),这些及其它优点和特征将变得更加明显。
附图说明
在说明书的结论处的权利要求书中特别地指出和明确地要求保护了被视为本发明的主题。从下文的详细描述中(结合附图),本发明的前述及其它优点和特征显而易见。
图1示出了根据本发明的一个实施例的、用于在燃气涡轮发动机的燃烧器部分中以三维的方式测量燃烧火焰的光学传感器和附随的光学器件;
图2,包括图2A和图2B,分别是本发明的用于在燃气涡轮发动机的燃烧器部分中以三维的方式测量燃烧火焰的另一实施例的侧视图和主视图;
图3是图1或图2的、定位于燃气涡轮发动机的燃烧器中的传感器的局部剖开的侧视图;以及
图4是图1或图2的、定位于燃气涡轮发动机的燃烧器中的传感器连同相关联的控制器和燃料控制阀的局部剖开的侧视图。
借助于参考附图的示例,详细描述解释了本发明的实施例以及优点和特征。部件列表
  100,200   图象传感器
  102,202   阵列
  104,204   孔
  106   区
  108   透镜
  110   平面
  112   光学过滤器
  206   过滤器
  208   表面
  300   燃烧器
  302   涡轮发动机
  400   控制器
  402   喷嘴
  404   线路
  406   阀
具体实施方式
参看图1,根据本发明一实施例的图象传感器100包括单个传感器阵列102,其具有用于传感处于特定波长的发射光的多个孔(aperture)104。图象传感器100可是单一波长的颜色传感器,其提供由以下单一化学物类所发射的火焰化学发光强度的三维映射:该单一化学物类来自燃气涡轮发动机的燃烧器(图3-4)的燃烧区106内的火焰的、许多不同的这样的物类(例如,OH*、CH*、C2*、CO2*,其中,分子名之后的星号“*”表示分子处于激发态)之中。燃烧区106内的火焰的光学图象不直接地聚焦在传感器阵列102中的孔104上,而是利用成像透镜108聚焦至定位于孔104上方的焦平面110。之后,图象由具有单一波长的光学过滤器112重新成象到孔104上,以在孔104之间形成燃烧区106的部分重叠的图象或视场。可使用折射性的微透镜或呈金属层的型式的衍射性的光栅将光学过滤器112(即,局部光学器件)实施在集成电路的电介质叠层中。之后可组合化学物类的传感图象以形成燃烧区106内的火焰的三维的、空间分辨的表示。燃烧区106内的火焰的图象的多个透视图允许以比孔104本身的数量更大的空间分辨率来合成三维图象。
在本发明的一个备选实施例中,可利用多于一个的传感器阵列102,其中在各个阵列102上提供了不同波长过滤能力。这允许对燃烧区106内的火焰的若干不同的化学物类(例如,OH*、CH*、C2*、CO2*)进行同时测量,其中,这些不同的化学物类处在不同的波长。这就允许执行多个物类之间的比率度量的测量。然后,可以已知的方式使这些物类中的至少两个不同物类的比率关联,以得出或导出各种燃烧器参数,诸如燃料空气比、热量释放率以及气体温度。与此相反,如果单一传感器阵列102拥有单一波长过滤能力,则典型地热量释放率和气体温度可从所测量的单一化学物类中关联或导出。
参看图2A和图2B,在根据本发明的图象传感器200的另一实施例中,可提供孔204的两维阵列202。在本实施例中,多个不同的过滤元件206可直接设置到成象阵列202的孔204上,以允许执行多种不同颜色的测量。在图2B的俯视图(即,面对阵列)中最佳地看到了阵列200。可使用例如硅或碳化硅的薄膜沉积,以便在图象传感器200的表面208上形成滤色器。可被沉积的其它材料包括氟化镁、氟化钙以及各种金属氧化物。在图2中所示的示例中,存在布置成正方形(2×2)的四个不同的滤色器206,并且,在传感器200的整个上表面208上重复该正方形型式。四个不同的滤色器206代表关于所期望被测量的化学物类(例如,OH*、CH*、C2*、CO2*)中的各个的主导颜色。各个过滤元件206可具有定位在该元件上方的微透镜,并且各组四个滤色元件提供燃烧区106(图1)上的火焰的多个波长强度图。
图3示出了图1或图2的三维燃烧图象传感器100,200,该图象传感器100,200配置在作为燃气涡轮发动机302的一部分的典型的燃烧器300中。在本示例中,图象传感器100,200可定位在主燃烧区域下游的过渡管道中。燃气涡轮发动机302的典型的燃烧器300中的各个罐可具有定位在其中的图象传感器100,200,以测量各个罐中的火焰的特性。图象传感器100,200可与空气或液体冷却的安装架相集成,以使得能够经受住通常恶劣的热环境。如所提及的,图象传感器100,200提供所测量的化学物类(例如,OH*、CH*、C2*、CO2*)的三维的、空间分辨的图,并且,从所测量的化学物类中,可以已知的方式关联或导出各种特定的燃烧参数,例如燃料空气比、热量释放率或气体温度。可将图象传感器的输出提供给控制器400(图4),该控制器400使所测量的化学物类与特定的燃烧参数相关联。响应于关联的或导出的燃烧参数,控制器可针对燃烧器300中的燃料喷嘴402(图4)改变流动参数,以直接影响和平衡或改进燃气涡轮发动机302内的燃烧过程。
图4示出与燃气轮机控制器400相集成的图1或图2的三维图象传感器100,200。线路(line)404上的来自传感器100,200的输出信号通过电缆或适当的光纤连接件(fiber optic connection)馈送给控制器400。控制器400处理来自传感器100,200的图象信息,并且在探测到燃烧器300的非最佳运行时采取控制措施。在本示例中,控制措施可包括对单独的燃料供应阀406的调节,燃料供应阀406为发动机302的燃料喷射系统内的燃料喷嘴402提供供给。这样,可以在反馈控制系统中使用图象传感器100,200的输出来改进燃烧过程。类似地,为了达到最佳运行,控制器400可自动地改变其它参数。这些参数可包括例如气流分布、稀释剂喷射以及燃料喷嘴几何形状。
本发明的图象传感器100,200的实施例通常提供反应流中的燃烧参数的三维的、空间分辨的图。图象传感器100,200允许对来自燃烧器300的火焰中的各种特定化学物类的直接测得的浓度的各种燃烧参数(诸如热量释放率、燃料空气比以及气体温度)进行间接的三维测量或者关联。传感器100,200包括多孔成象装置,该多孔成象装置耦接到光学过滤器上,以收集来自火焰化学发光发射的光。来自激发态物类(诸如OH*、CH*、C2*以及CO2*)的光发射被收集在单个或多个的多孔阵列上,从而获得了这些物类的这些浓度的三维的、空间分辨的图。所测量的三维的、空间分辨的图可与同燃烧器300有关的参数相关联,诸如各个燃烧器罐中的热量释放率、燃料空气比以及气体温度。这可用于燃烧器健康监控,以及给定的燃烧器设计的性能的工程评估。
用于监控这些各种燃烧参数(燃料空气比、热量释放率、温度等)的方法是燃烧监控包(combustion monitoring package)的一部分,该燃烧器监控包对于燃气涡轮燃烧器300的闭环的或基于模型的控制来说是必需的。这样的包包括用于燃气涡轮发动机302中的各个燃烧室或罐的关于燃烧动力学、排放以及燃料空气比、热量释放率和气体温度的监控。备选地,本发明的实施例适用于环形(即,非罐形)燃烧器或后燃器,以测量这些装置中的火焰的特性。燃烧监控是用于高性能燃气轮机燃烧器的高级控制包的组成部分。被监控的要素包括燃烧动态压力波动,排放,燃料空气比,热量释放率及气体温度。本发明的实施例在监控燃烧器之间的燃料空气比,热量释放率及气体温度的实时变动时提供相对较高的保真度,以使得可针对各个燃烧器调节燃料和空气流,以减小这些变动。这就导致在更宽的燃气轮机运行范围上有相对更低的排放和更高的耐久性和可操作性。
虽然已结合仅有限数目的实施例详细描述本发明,但将容易理解的是,本发明不局限于这样的所公开的实施例。而是本发明可修改为结合任意数量的、此前未进行描述但是与本发明的精神和范围相当的变型、改型、替代或等同布置。此外,虽然已描述了本发明的各种实施例,但是将理解的是,本发明的方面可仅包括所述实施例的一些。因此,本发明不应视为受前述描述所限制,而是仅受所附权利要求的范围所限制。

Claims (1)

1.一种用于燃烧传感的系统,包括:
构造成设置在燃气涡轮发动机内的光学传感器,其以三维的方式光学地测量和空间地分辨由所述燃气涡轮发动机中的燃烧器所产生的火焰内的至少一种化学物类;和
部件,其使三维地测量的所述至少一种化学物类与所述燃烧器的至少一个参数相关联。
2. 根据权利要求1所述的系统,其特征在于,所述至少一种化学物类来自包括OH*、CH*、C2*以及CO2*的组。
3. 根据权利要求1所述的系统,其特征在于,所述燃烧器的所述至少一个参数来自包括燃料空气比、热量释放率以及气体温度的组。
4. 根据权利要求1所述的系统,其特征在于,所述系统进一步包括利用所述燃烧器的所述至少一个参数来控制所述燃烧器的运行的控制器。
5. 根据权利要求4所述的系统,其特征在于,所述控制器可运行,以通过调节为燃料喷射系统提供供给的至少一个燃料供应阀来控制所述燃烧器的运行。
6. 根据权利要求1所述的系统,其特征在于,所述光学传感器通过从来自火焰的化学发光发射中收集光,以三维的方式光学地测量和空间地分辨由所述燃烧器所产生的所述火焰内的至少一种化学物类。
7. 一种用于燃烧传感的方法,包括:
以三维的方式光学地测量和空间地分辨由燃气涡轮发动机中的燃烧器所产生的火焰内的至少一种化学物类;和
使三维地测量的所述至少一种化学物类与所述燃烧器的至少一个参数相关联。
8. 根据权利要求7所述的方法,其特征在于,所述方法进一步包括从包括OH*、CH*、C2*以及CO2*的组中选择所述至少一种化学物类。
9. 根据权利要求7所述的方法,其特征在于,所述方法进一步包括从包括燃料空气比、热量释放率以及气体温度的组中选择所述燃烧器的至少一个参数。
10. 根据权利要求7所述的方法,其特征在于,所述方法进一步包括通过使用所述燃烧器的所述至少一个参数来控制所述燃烧器的操作。
11. 根据权利要求7所述的方法,其特征在于,所述方法进一步包括通过调节为燃料喷射系统提供供给的至少一个燃料供应阀来控制所述燃烧器的运行。
12. 根据权利要求7所述的方法,其特征在于,所述方法进一步包括通过从来自火焰的化学发光发射中收集光,以三维的方式光学地测量和空间地分辨由所述燃烧器所产生的所述火焰内的至少一种化学物类。
13. 一种用于燃烧传感的系统,包括:
包括燃烧器的燃气涡轮发动机;
设置在所述燃气涡轮发动机内的光学传感器,其以三维的方式光学地测量和空间地分辨由所述燃烧器所产生的火焰内的至少一种化学物类;和
装置,其使三维地测量的所述至少一种化学物类与所述燃烧器的至少一个参数相关联。
14. 根据权利要求13所述的系统,其特征在于,所述至少一种化学物类来自包括OH*、CH*、C2*以及CO2*的组。
15. 根据权利要求13所述的系统,其特征在于,所述燃烧器的所述至少一个参数来自包括燃料空气比、热量释放率以及气体温度的组。
16. 根据权利要求13所述的系统,其特征在于,所述系统进一步包括通过利用所述燃烧器的所述至少一个参数来控制所述燃烧器的运行的控制器。
17. 根据权利要求13所述的系统,其特征在于,所述系统进一步包括通过调节为燃料喷射系统提供供给的至少一个燃料供应阀来控制所述燃烧器的运行的控制器。
18. 根据权利要求13所述的系统,其特征在于,所述光学传感器通过从来自火焰的化学发光发射中收集光,以三维的方式光学地测量和空间地分辨由所述燃烧器所产生的所述火焰内的至少一种化学物类。
CN200910208645.3A 2008-10-23 2009-10-23 三维光学传感器和用于燃烧传感及控制的系统 Active CN101726485B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/256754 2008-10-23
US12/256,754 2008-10-23
US12/256,754 US8018590B2 (en) 2008-10-23 2008-10-23 Three-dimensional optical sensor and system for combustion sensing and control

Publications (2)

Publication Number Publication Date
CN101726485A CN101726485A (zh) 2010-06-09
CN101726485B true CN101726485B (zh) 2014-04-09

Family

ID=41394912

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910208645.3A Active CN101726485B (zh) 2008-10-23 2009-10-23 三维光学传感器和用于燃烧传感及控制的系统

Country Status (4)

Country Link
US (1) US8018590B2 (zh)
EP (1) EP2180311B1 (zh)
JP (1) JP5798292B2 (zh)
CN (1) CN101726485B (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8432440B2 (en) * 2009-02-27 2013-04-30 General Electric Company System and method for adjusting engine parameters based on flame visualization
US9354618B2 (en) 2009-05-08 2016-05-31 Gas Turbine Efficiency Sweden Ab Automated tuning of multiple fuel gas turbine combustion systems
US9267443B2 (en) 2009-05-08 2016-02-23 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
US9671797B2 (en) 2009-05-08 2017-06-06 Gas Turbine Efficiency Sweden Ab Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications
US8437941B2 (en) 2009-05-08 2013-05-07 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
US20110008737A1 (en) * 2009-06-15 2011-01-13 General Electric Company Optical sensors for combustion control
US8151571B2 (en) * 2009-09-18 2012-04-10 General Electric Company Systems and methods for closed loop emissions control
MY156099A (en) * 2010-07-02 2016-01-15 Exxonmobil Upstream Res Co Systems and methods for controlling combustion of a fuel
US8625098B2 (en) 2010-12-17 2014-01-07 General Electric Company System and method for real-time measurement of equivalence ratio of gas fuel mixture
US9777637B2 (en) 2012-03-08 2017-10-03 General Electric Company Gas turbine fuel flow measurement using inert gas
US20130247579A1 (en) * 2012-03-26 2013-09-26 General Electric Company Method of startup control for a gas turbine system operating in a fired deceleration shutdown process mode
US9863813B2 (en) * 2012-04-13 2018-01-09 General Electric Company Flame sensor
US9335216B2 (en) * 2013-06-24 2016-05-10 General Electric Company System and method for on-line optical monitoring and control of a gas turbine engine
US9494086B2 (en) 2014-02-28 2016-11-15 General Electric Company Systems and methods for improved combined cycle control
US10088426B2 (en) * 2014-05-06 2018-10-02 United Technologies Corporation Chemiluminescence imaging system and method of monitoring a combustor flame of a turbine engine
US9885609B2 (en) * 2014-05-23 2018-02-06 United Technologies Corporation Gas turbine engine optical system
US9196032B1 (en) 2014-06-04 2015-11-24 Honeywell International Inc. Equipment and method for three-dimensional radiance and gas species field estimation
FR3023584B1 (fr) * 2014-07-08 2016-08-12 Snecma Turbomachine a double flux equipee de moyens de mesure d'un parametre
KR101759217B1 (ko) * 2014-10-31 2017-08-01 한국생산기술연구원 복합센서를 이용한 공연비 제어 시스템 및 제어 방법
CN105938101B (zh) * 2016-04-14 2020-12-11 中国科学院力学研究所 一种基于化学发光的用于火焰三维重建的成像系统及方法
US10619107B2 (en) 2017-06-22 2020-04-14 Honeywell International Inc. Heater coil
JP7394617B2 (ja) * 2019-12-24 2023-12-08 中部電力株式会社 空気比推定システム、空気比制御システム、並びに未燃検知システム又は失火検知システム
CN113864815A (zh) * 2021-09-30 2021-12-31 陕西岱南新能源工程有限公司 一种基于光学原理的锅炉测温装置
CN117168627B (zh) * 2023-11-03 2024-01-23 北京航空航天大学 热释放率脉动测量装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5249954A (en) * 1992-07-07 1993-10-05 Electric Power Research Institute, Inc. Integrated imaging sensor/neural network controller for combustion systems
CN1096370A (zh) * 1993-02-24 1994-12-14 Rwe安束根股份有限公司 测定自由基形成过程的特征的方法
US5797736A (en) * 1996-12-03 1998-08-25 University Of Kentucky Research Foundation Radiation modulator system
DE19710206A1 (de) * 1997-03-12 1998-09-17 Siemens Ag Verfahren und Vorrichtung zur Verbrennungsanalyse sowie Flammenüberwachung in einem Verbrennungsraum
US6251679B1 (en) * 1998-10-26 2001-06-26 Aerodyne Research, Inc. Method for measuring pollutant formation
US6551094B2 (en) * 1998-09-11 2003-04-22 Siemens Aktiengesellschaft Method and device for determining a soot charge in a combustion chamber
US6640199B1 (en) * 2001-10-24 2003-10-28 Spectral Sciences, Inc. System and method for optically determining properties of hot fluids from the spectral structure of emitted radiation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08166127A (ja) * 1994-12-13 1996-06-25 Hitachi Ltd 燃焼状態判定方法、装置及びボイラ火炉燃焼装置
DE19509412C2 (de) * 1995-03-15 1997-01-30 Siemens Ag Verfahren und Vorrichtung zur Feuerungsregelung einer Dampferzeugeranlage
JP3852051B2 (ja) * 2004-02-12 2006-11-29 川崎重工業株式会社 燃焼診断方法および燃焼診断装置
US7966834B2 (en) * 2004-05-07 2011-06-28 Rosemount Aerospace Inc. Apparatus for observing combustion conditions in a gas turbine engine
AU2008226060B2 (en) * 2007-03-13 2011-04-21 Thomas Merklein Method for the camera-assisted detection of the radiation intensity of a gaseous chemical reaction product and uses of said method and corresponding device
US20090122148A1 (en) * 2007-09-14 2009-05-14 Fife Keith G Disjoint light sensing arrangements and methods therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5249954A (en) * 1992-07-07 1993-10-05 Electric Power Research Institute, Inc. Integrated imaging sensor/neural network controller for combustion systems
CN1096370A (zh) * 1993-02-24 1994-12-14 Rwe安束根股份有限公司 测定自由基形成过程的特征的方法
US5797736A (en) * 1996-12-03 1998-08-25 University Of Kentucky Research Foundation Radiation modulator system
DE19710206A1 (de) * 1997-03-12 1998-09-17 Siemens Ag Verfahren und Vorrichtung zur Verbrennungsanalyse sowie Flammenüberwachung in einem Verbrennungsraum
US6551094B2 (en) * 1998-09-11 2003-04-22 Siemens Aktiengesellschaft Method and device for determining a soot charge in a combustion chamber
US6251679B1 (en) * 1998-10-26 2001-06-26 Aerodyne Research, Inc. Method for measuring pollutant formation
US6640199B1 (en) * 2001-10-24 2003-10-28 Spectral Sciences, Inc. System and method for optically determining properties of hot fluids from the spectral structure of emitted radiation

Also Published As

Publication number Publication date
US8018590B2 (en) 2011-09-13
JP5798292B2 (ja) 2015-10-21
EP2180311A1 (en) 2010-04-28
JP2010101615A (ja) 2010-05-06
EP2180311B1 (en) 2018-10-03
CN101726485A (zh) 2010-06-09
US20100103424A1 (en) 2010-04-29

Similar Documents

Publication Publication Date Title
CN101726485B (zh) 三维光学传感器和用于燃烧传感及控制的系统
Hardalupas et al. Spatial resolution of a chemiluminescence sensor for local heat-release rate and equivalence ratio measurements in a model gas turbine combustor
CN101641581B (zh) 用于摄像机支持地检测气态的化学反应产物的辐射强度的方法以及该方法的应用和相应的设备
US20110008737A1 (en) Optical sensors for combustion control
US7765856B2 (en) Monitoring of a flame existence and a flame temperature
Arndt et al. Auto-ignition and flame stabilization of pulsed methane jets in a hot vitiated coflow studied with high-speed laser and imaging techniques
CN102495473A (zh) 一种可见光与红外光分光系统
CN102620839A (zh) 涡轮机引擎热成像系统
Meier et al. Mixing and reaction progress in a confined swirl flame undergoing thermo-acoustic oscillations studied with laser Raman scattering
Migliorini et al. Analysis of chemiluminescence measurements by grey-scale ICCD and colour digital cameras
EP2568219B1 (en) Arrangement comprising a combustor assembly and a system for controlling the combustor assembly and method for controlling a combustor assembly
JP2011241753A (ja) 火花点火式内燃機関の筒内状態モニタリング装置及び制御装置
CN111473864B (zh) 基于均匀光源的火焰激发态粒子辐射速率测量方法
Yi et al. Flame spectra of a turbulent liquid-fueled swirl-stabilized lean-direct injection combustor
JPH03207912A (ja) ガスタービン燃焼器の火炎分光映像装置
Andracher et al. Progress on combined optic-acoustic monitoring of combustion in a gas turbine
Chorey et al. Simultaneous imaging of CH*, C2∗, and temperature in flames using a DSLR camera and structured illumination
Witzel et al. Application of endoscopic OH*-chemiluminescence measurements at a full-scale high-pressure gas turbine combustion test rig
Goers et al. Endoscopic chemiluminescence measurements as a robust experimental tool in high-pressure gas turbine combustion tests
Yokomori et al. Simultaneous measurements of phosphor thermometry and PIV for high-temperature gas flows
Willert et al. High-speed PIV at the exit of a lean-burn combustion chamber operated at elevated pressure
Inozemtsev et al. Development and application of noninvasive technology for study of combustion in a combustion chamber of gas turbine engine
Abdel-Al et al. Effect of fuel and air injection pattern on combustion dynamics in confined and free diffusion flame
Ferrante et al. Innovative tools for investigation on flame dynamics by means of fast imaging
Hardalupas et al. Spatial resolution of a chemiluminescence sensor in a model gas turbine combustor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231227

Address after: Swiss Baden

Patentee after: GENERAL ELECTRIC CO. LTD.

Address before: New York, United States

Patentee before: General Electric Co.