CN101725481A - 风力涡轮机叶片 - Google Patents

风力涡轮机叶片 Download PDF

Info

Publication number
CN101725481A
CN101725481A CN200910205185A CN200910205185A CN101725481A CN 101725481 A CN101725481 A CN 101725481A CN 200910205185 A CN200910205185 A CN 200910205185A CN 200910205185 A CN200910205185 A CN 200910205185A CN 101725481 A CN101725481 A CN 101725481A
Authority
CN
China
Prior art keywords
blade
vinyl ester
prepreg
wind turbine
turbine blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910205185A
Other languages
English (en)
Inventor
米盖比
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN101725481A publication Critical patent/CN101725481A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0025Producing blades or the like, e.g. blades for turbines, propellers, or wings
    • B29D99/0028Producing blades or the like, e.g. blades for turbines, propellers, or wings hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2031/00Use of polyvinylesters or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/748Machines or parts thereof not otherwise provided for
    • B29L2031/7504Turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/60Properties or characteristics given to material by treatment or manufacturing
    • F05B2280/6003Composites; e.g. fibre-reinforced
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2253/00Other material characteristics; Treatment of material
    • F05C2253/04Composite, e.g. fibre-reinforced
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明涉及一种风力涡轮机叶片,具体而言,涉及一种低成本的风力涡轮机叶片。该叶片的临界主要梁和根部区域层压部由乙烯基酯预浸料制备的,由此实现重要的成本降低。而且,本发明叶片的层压部梁耐疲劳性与用环氧树脂制备的灌注的单向层压部的耐疲劳性等同,且远远超过用聚酯制备的灌注的层压体的耐疲劳性。

Description

风力涡轮机叶片
技术领域
本发明涉及一种风力涡轮机叶片,具体而言,涉及一种低成本的风力涡轮机叶片。
背景技术
可通过用环氧树脂、聚酯或乙烯基酯树脂润湿或浸渍的玻璃、碳、或其它纤维的组合而形成风力涡轮机叶片在工业中是已知的操作。这样的浸渍或润湿可通过预浸渍、手层压(hand lamination)或真空灌注而进行。
发明内容
本发明由以下构成,即:
(1)、一种风力涡轮机叶片,其中,叶片的临界主要梁(criticalmain beam)和根部区域层压部(lamination)由乙烯基酯预浸料制备的。
(2)、(1)所述的风力涡轮机叶片,其中只有主要层压部是由乙烯基酯预浸料制备的,而叶片的其它部分是由聚酯树脂的灌注制备的。
(3)、(1)所述的风力涡轮机叶片,其中超过80wt%的乙烯基酯预浸料填料纤维在叶片轴的±5度中被导向。
(4)、(1)所述的风力涡轮机叶片,其中通过首先在第一模具中在超过100℃的高温下将乙烯基酯预浸料主要梁进行固化、和在第二模具中在低于40℃的室温下产生叶片的平衡的方法制备叶片,且所述第一模具小于所述第二模具。
(5)、(1)所述的风力涡轮机叶片,其中乙烯基酯预浸料占整个叶片重量的比例为30-70%。
本发明的新颖性在于使用新的材料、即乙烯基酯预浸料,用于叶片的重载荷的主要层压部。
这样的乙烯基酯预浸料可单独使用。然而,优选实施方案是乙烯基酯预浸料与乙烯基酯或聚酯灌注的组合。这通过空气动力学壳体的灌注而产生乙烯基酯预浸料主要层压部的高耐疲劳性和容易加工。
如果将低成本不饱和聚酯树脂用于空气动力学壳体,通过将价格较高的乙烯基酯预浸料仅用于叶片的临界部分而实现重要的成本降低。
还有,预浸料加工所需要的较贵的模具可以在宽度和总的尺寸上减小,仅用于主要层压部梁的初始加工,而不是整个叶片的制备。
用于低成本叶片设计而开发的新型乙烯基酯预浸料显示出突出的耐疲劳性,这是令人预想不到的结果。实际上,单向乙烯基酯预浸料的耐疲劳性与用环氧树脂制备的灌注的单向层压部的耐疲劳性等同,且远远超过用聚酯制备的灌注的层压体的耐疲劳性。
乙烯基酯预浸料材料的高耐疲劳性在以前没有被发现的原因是因为,这样的材料一直以来没有被考虑用于风力发电厂或其它周期载荷应用中。利用乙烯基酯预浸料单独地用于消费者、休闲和军事产品,它们均不要求疲劳测试。
据认为,乙烯基酯预浸料所改进的耐疲劳性是由于纤维在树脂基质中均匀的分散以及所产生的各纤维被乙烯基酯树脂膜平均涂覆。已经注意到类似的高耐疲劳性能用于单向玻璃/环氧树脂预浸料,然而,这样的玻璃/环氧树脂预浸料远远比玻璃/乙烯基酯预浸料的价格高。
作为增加的优点,发现较低成本的纤维玻璃纤维,其具有为聚酯树脂而设计的纤维涂层“上胶剂(sizing)”,非常适合于乙烯基酯预浸料的制备。其与环氧树脂叶片制备相比,进一步节省成本,而环氧树脂叶片制备要求使用具有“仅环氧树脂的上胶剂(epoxy-only sizing)”特定的玻璃无捻纱,最著名的是Owens Corning SE1500。
作为优选的实施方案而提出的混合叶片制备技术提供一种将现有的环氧树脂灌注的叶片设计进行改良的方式,不需要大规模地改变产品的尺寸或重量。这与通常使用的聚酯灌注的叶片形成对比,所述通常使用的聚酯灌注的叶片虽然成本低,但由于聚酯树脂差的耐疲劳性能而要求增加主要层压部的横截面积,由此增加了重量。
另外,本发明使得使用者获得与灌注的环氧树脂或灌注的环氧树脂结构相比,在叶片层压部中的高重量份的纤维,由此产生比使用环氧树脂灌注技术相比更高的硬度和更低的成本。
本发明的乙烯基酯基预浸料技术也可以用作低成本替代者来替代环氧树脂基预浸料。其提供与环氧树脂基预浸料类似的疲劳和静态性能,且由此消除了对于叶片大规模的重新设计的任何需要。
本领域的技术人员将承认的是,本发明既不是显而易见的,也不是微不足道的。这可由以下的事实而得到证明,即、尽管有大量的风力涡轮机叶片制造商和风力发电厂工业的规模正在增大,但在现有技术中并不能找到任何尝试由乙烯基酯预浸料来制备风力涡轮机叶片的文献。而且,在没有任何的现有技术公开了用于主要层压部的乙烯基酯预浸料和用于叶片平衡的聚酯灌注的特定组合的叶片。尽管制备乙烯基酯预浸料的方法是熟知的,但在已公开的资料和本发明的技术领域中的研究已经表明没有任何用于叶片制备目的的该组合的建议,也没有任何由乙烯基酯预浸料体系来获得的优异的耐疲劳性能的发现。
也许乙烯基酯预浸料由于其主要缺陷、即相当短的有用的储存寿命,通常为约1-2周而很少被人所知。然而,如果将预浸料制备工厂设置在靠近叶片制备工厂附近,这将不会成为主要缺点。
附图说明
图1是根据本发明的风力涡轮机叶片的一例的横界面图。
符号说明
1叶片的后边缘,粘结糊,聚酯灌注区域
2空气动力学壳体部分,聚酯灌注区域
3剪切网,聚酯灌注区域
4主要层压部,乙烯基酯预浸料部分区域
5叶片的前边缘,粘结糊,聚酯灌注区域
实施例
实施例1:通过纤维缠绕(filament winding)到正方形芯轴而制备单向板。该板的厚度为4.2mm,且烧毁试验显示纤维含量为78%w/w。所使用的树脂是Derakane Momentum 470-300,以及纤维是Hengshe 2400tex无碱玻璃无捻纱。将氧化镁作为增稠剂以0.5%加入,将过氧化二异丙苯作为催化剂以0.75%加入。在真空袋成型下在120℃进行固化6小时。在进行预浸渍和进行固化操作的模拟后,使制备的板经受90度拉伸测试。在根据DIN EN ISO 527-5Type B测试10个试样后发现拉伸强度的正常值为33MPA。
实施例2:通过纤维缠绕到正方形芯轴而制备单向板。在真空袋成型下在120℃进行固化6小时。该板的厚度为4.2mm,且烧毁试验显示纤维含量为78%w/w。所使用的树脂是Derakane Momentum 470-300,以及纤维是Hengshe 2400tex无碱玻璃无捻纱。将氧化镁作为增稠剂以0.5%加入,将过氧化二异丙苯作为催化剂以0.75%加入。在进行预浸渍和进行固化操作的模拟后,将制备的板经受0度拉伸测试。在根据DIN EN ISO 527-5Type B测试10个试样后发现拉伸弹性模量的特征值为42,150MPA,具有830MPA的特征强度。
实施例3:通过纤维缠绕到正方形芯轴而制备单向板。该板的厚度为4.2mm,且烧毁试验显示纤维含量为78%w/w。所使用的树脂是Derakane Momentum 470-300,以及纤维是Hengshe 2400tex无碱玻璃无捻纱。将氧化镁作为增稠剂以0.5%加入,将过氧化二异丙苯作为催化剂以0.75%加入。在进行预浸渍和进行固化操作的模拟后(在真空袋成型下在120℃下6小时),将制备的板经受0度交替疲劳测试,且在R=-1、载荷量为+/-600,400和200MPA测试后发现疲劳曲线正常值的斜率为1∶10.3。
实施例4:通过按照实施例3缠绕预浸料而制备单向板,在30℃下熟化24小时,然后从心轴切下并进行堆叠直到达到35层厚度。各层具有单位面积重量为1200+/-50g/m2的纤维。将该板在真空下在120℃固化6小时。然后,该板的厚度为28mm+/-2mm,通过烧毁试验确定纤维体积份数为77%w/w,且该板显示出良好的整体性和不含空气进入。

Claims (5)

1.一种风力涡轮机叶片,其中,叶片的临界主要梁和根部区域层压部由乙烯基酯预浸料制备的。
2.权利要求1的叶片,其中只有主要层压部是由乙烯基酯预浸料制备的,而叶片的其它部分是由聚酯树脂的灌注制备的。
3.权利要求1的叶片,其中超过80wt%的乙烯基酯预浸料填料纤维在叶片轴的±5度中被导向。
4.权利要求1的叶片,其中通过首先在第一模具中在超过100℃的高温下将乙烯基酯预浸料主要梁进行固化、和在第二模具中在低于40℃的室温下产生叶片的平衡的方法制备叶片,且所述第一模具小于所述第二模具。
5.权利要求1的叶片,其中乙烯基酯预浸料占整个叶片重量的比例为30-70%。
CN200910205185A 2008-10-16 2009-10-16 风力涡轮机叶片 Pending CN101725481A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10604908P 2008-10-16 2008-10-16
US61/106,049 2008-10-16

Publications (1)

Publication Number Publication Date
CN101725481A true CN101725481A (zh) 2010-06-09

Family

ID=42108819

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910205185A Pending CN101725481A (zh) 2008-10-16 2009-10-16 风力涡轮机叶片

Country Status (2)

Country Link
US (1) US20100098549A1 (zh)
CN (1) CN101725481A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10072632B2 (en) 2015-06-30 2018-09-11 General Electric Company Spar cap for a wind turbine rotor blade formed from pre-cured laminate plates of varying thicknesses
US10077758B2 (en) 2015-06-30 2018-09-18 General Electric Company Corrugated pre-cured laminate plates for use within wind turbine rotor blades
US10107257B2 (en) 2015-09-23 2018-10-23 General Electric Company Wind turbine rotor blade components formed from pultruded hybrid-resin fiber-reinforced composites
US10113532B2 (en) 2015-10-23 2018-10-30 General Electric Company Pre-cured composites for rotor blade components
US10422316B2 (en) 2016-08-30 2019-09-24 General Electric Company Pre-cured rotor blade components having areas of variable stiffness

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102022254B (zh) * 2009-09-23 2014-12-17 固瑞特模具(太仓)有限公司 风轮机叶片及其生产方法
EP2405130A1 (en) * 2010-07-08 2012-01-11 Lm Glasfiber A/S Notch-reduced composite joint
US8047800B2 (en) * 2010-12-13 2011-11-01 General Electric Company Wind turbine blades with improved bond line and associated method
CN107073756A (zh) * 2014-09-15 2017-08-18 远景能源(江苏)有限公司 可定制弦长的风力涡轮机叶片
US10337490B2 (en) 2015-06-29 2019-07-02 General Electric Company Structural component for a modular rotor blade
US9897065B2 (en) 2015-06-29 2018-02-20 General Electric Company Modular wind turbine rotor blades and methods of assembling same
US10669984B2 (en) 2015-09-22 2020-06-02 General Electric Company Method for manufacturing blade components using pre-cured laminate materials
US10828843B2 (en) 2017-03-16 2020-11-10 General Electric Company Shear webs for wind turbine rotor blades and methods for manufacturing same
US11225943B2 (en) * 2019-04-23 2022-01-18 Best Blade Recycling, Llc System and method for three dimensional positioning a wind turbine blade and a plurality of saw blades with respect to each other for making a plurality of cuts in a wind turbine blades for recycling

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3218273A (en) * 1962-10-22 1965-11-16 Bell Telephone Labor Inc Method of curing epoxy and polyester resins
US5169699A (en) * 1990-05-21 1992-12-08 Avista Industries, Inc. Reinforcing substrate structures with decorative surface layer
US5248242A (en) * 1990-09-28 1993-09-28 The Boeing Company Aerodynamic rotor blade of composite material fabricated in one cure cycle
US5405410A (en) * 1992-08-12 1995-04-11 Ohio Willow Wood Company Adjustable lower limb prosthesis having conical support
US20030146346A1 (en) * 2002-12-09 2003-08-07 Chapman Jr W. Cullen Tubular members integrated to form a structure
US20050186081A1 (en) * 2004-02-24 2005-08-25 Mohamed Mansour H. Wind blade spar cap and method of making
US7438533B2 (en) * 2005-12-15 2008-10-21 General Electric Company Wind turbine rotor blade
US7351040B2 (en) * 2006-01-09 2008-04-01 General Electric Company Methods of making wind turbine rotor blades
US20070251090A1 (en) * 2006-04-28 2007-11-01 General Electric Company Methods and apparatus for fabricating blades
EP1880833A1 (en) * 2006-07-19 2008-01-23 National University of Ireland, Galway Composite articles comprising in-situ-polymerisable thermoplastic material and processes for their construction
US20090116966A1 (en) * 2007-11-06 2009-05-07 Nicholas Keane Althoff Wind turbine blades and methods for forming same
GB0805713D0 (en) * 2008-03-28 2008-04-30 Blade Dynamics Ltd A wind turbine blade
US20090273111A1 (en) * 2008-04-30 2009-11-05 Bha Group, Inc. Method of making a wind turbine rotor blade
US20110221093A1 (en) * 2010-03-12 2011-09-15 Nathaniel Perrow Method and system for manufacturing wind turbine blades

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10072632B2 (en) 2015-06-30 2018-09-11 General Electric Company Spar cap for a wind turbine rotor blade formed from pre-cured laminate plates of varying thicknesses
US10077758B2 (en) 2015-06-30 2018-09-18 General Electric Company Corrugated pre-cured laminate plates for use within wind turbine rotor blades
US10107257B2 (en) 2015-09-23 2018-10-23 General Electric Company Wind turbine rotor blade components formed from pultruded hybrid-resin fiber-reinforced composites
US10113532B2 (en) 2015-10-23 2018-10-30 General Electric Company Pre-cured composites for rotor blade components
US10422316B2 (en) 2016-08-30 2019-09-24 General Electric Company Pre-cured rotor blade components having areas of variable stiffness

Also Published As

Publication number Publication date
US20100098549A1 (en) 2010-04-22

Similar Documents

Publication Publication Date Title
CN101725481A (zh) 风力涡轮机叶片
Liu et al. The fracture behaviour and toughness of woven flax fibre reinforced epoxy composites
JP3735651B2 (ja) カーボンナノファイバー分散樹脂繊維強化複合材料
CN1975152B (zh) 风力涡轮机叶片
JP3894035B2 (ja) 炭素繊維強化基材、それからなるプリフォームおよび複合材料
DK3135473T3 (en) COMPOSITES
CN103153896A (zh) 用于增强应用的低密度和高强度玻璃纤维
CN103338929A (zh) 包含粘弹性夹层的多功能复合材料
CN109952194B (zh) 混杂复合材料
JP2002137307A (ja) 繊維強化樹脂製風車ブレード構造体
JP2018039115A (ja) 繊維強化樹脂複合構造体及び高圧容器、並びにこれらの製造方法
CN112292419A (zh) 预浸料坯及其制造方法、分切带预浸料坯、碳纤维增强复合材料
CN102408678A (zh) 用于兆瓦级风力发电叶片的真空灌注型碳纳米管增强环氧树脂材料及其制备方法
JPH03234506A (ja) 単繊維強化一方向引揃えプリプレグ
Nor et al. Mechanical, thermal and morphological properties of woven kenaf fiber reinforced polylactic acid (PLA) composites
US20210316526A1 (en) Fiber-reinforced composite blank, fiber-reinforced composite component, rotor blade element, rotor blade and wind turbine and method for producing a fiber-reinforced composite blank and method for producing a fiber-reinforced composite component
Milan et al. Mechanical and thermal properties of a novel Spinifex Littoreus fiber reinforced polymer composites as an alternate for synthetic glass fiber composites
CN210622996U (zh) 风力发电机组的叶片的主梁、叶片和风力发电机组
Bouwmeester et al. Carbon/dyneema® intralaminar hybrids: New strategy to increase impact resistance or decrease mass of carbon fiber composites
de Bruyne Plastic materials for aircraft construction
Karaçor et al. Characterization of jute/aramid hybrid composite materials with using different resins
JP2010144646A (ja) 風車翼
Hannibal et al. Flexible matrix composites applied to bearingless rotor systems
US20110129350A1 (en) Fibre-Reinforced Plastic Material
JPH09277389A (ja) テーパ付き中空シャフト

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20100609