CN101724855B - 基于高压质子交换膜的水电解器系统 - Google Patents

基于高压质子交换膜的水电解器系统 Download PDF

Info

Publication number
CN101724855B
CN101724855B CN2009102063945A CN200910206394A CN101724855B CN 101724855 B CN101724855 B CN 101724855B CN 2009102063945 A CN2009102063945 A CN 2009102063945A CN 200910206394 A CN200910206394 A CN 200910206394A CN 101724855 B CN101724855 B CN 101724855B
Authority
CN
China
Prior art keywords
electrode
pem
proton exchange
exchange membrane
outer electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009102063945A
Other languages
English (en)
Other versions
CN101724855A (zh
Inventor
D·B·欧威尔克尔克
N·A·凯利
T·L·吉布森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN101724855A publication Critical patent/CN101724855A/zh
Application granted granted Critical
Publication of CN101724855B publication Critical patent/CN101724855B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/05Pressure cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

本发明涉及一种基于高压质子交换膜的水电解器系统,所述水电解器系统可以包括一系列质子交换膜(PEM)电池,所述质子交换膜(PEM)电池可以电联接到一起且联接到质子交换膜以形成螺旋缠绕在传导的中心柱上的膜电极组件(MEA),其中MEA的最内侧PEM电池可以与传导的中心柱或中心电极电连接,且其中MEA的最外侧的PEM电池可以电联接到压力容器缸或外电极。每个PEM电池可以包括由PEM膜的部分分开的阳极部分和阴极部分。另外,不可渗透的分隔件层也可以围绕传导的中心柱螺旋缠绕且分开PEM芯的缠绕部分。

Description

基于高压质子交换膜的水电解器系统
技术领域
本发明总的涉及电解器的领域,且更特定地涉及基于高压质子交换膜的电解器系统。
背景技术
电解器借助电的通过,通常通过将化合物分解为元素或更简单的产物,而将丰富量的化学物转化为更珍贵的物质。基于质子交换膜的水电解器(或基于PEM的水电解器)是这样的系统,其中水在氧化电极或电池阳极处被氧化以产生氧气,从而释放氢离子或质子,和电子。氢离子在跨过电池施加的电场的作用下通过固体聚合物电解质从电池阳极迁移到电池阴极,或氢电极,而电子由直流(DC)电源转移到阴极。质子和电子在电池阴极处再组合以产生氢。氧和氢以与施加的电池电流成比例的速度按化学计量比而生成,即每一体积单位的氧对应两体积单位的氢。高压水电解器可以在足以用于存储的压力(高达或超过10000磅每平方英寸)下生成氢气和氧气,无需机械压缩。
发明内容
根据一个示例性实施例的基于高压质子交换膜的水电解器系统可以包括:具有内部区域和水入口的外电极;联接在外电极的另一个部分内的气体出口;联接在内部区域内且通过直流电源电联接到外电极的中心电极;具有多个质子交换膜电池的在内部区域内围绕中心电极螺旋缠绕的膜电极组件,其中所述多个质子交换膜电池的最内部的一个可以电联接到中心电极且其中多个质子交换膜电池的最外部的一个可以电联接到外电极;和围绕中心电极缠绕且联接到中心电极和外电极的非导体分隔件,非导体隔膜防止多个质子交换膜电池之间的电接触。当外电极是阴极时中心电极可以是阳极,或替代地中心电极可以是阴极而外电极是阳极。
在另一个示例性的实施例中,大体上如上所述的基于高压质子交换膜的水电解器系统也可以包括另外的结构,所述另外的结构通过重力分层将基于高压质子交换膜的水电解器内所生成的氢气和氧气在其离开系统前分离。
本发明的其他示例性的实施例将从下文中提供的详细描述中变得显见。应理解的是详细描述和具体例子虽然公开本发明的示例性实施例,但仅意图于阐述目的而不意图于限制本发明的范围。
附图说明
本发明的示例性实施例将从详细描述和附图中变得更完整地理解,各图为:
图1是根据一个示例性实施例的基于高压质子交换膜的水电解器系统的剖面图;
图2是图1的容器沿线2-2截取的截面视图;
图3是图2的膜电极组件在铺开和展开位置的透视图;
图4是根据另一个示例性实施例的基于高压质子交换膜的水电解器系统的剖面图;
图5是根据图1或图4的任一示例性实施例的包括基于高压质子交换膜的水电解器系统的电动车辆的平面图。
具体实施方式
如下的实施例(多个实施例)的描述仅在本质上是示例性的(说明性的),且不意图于限制本发明、其应用或使用。
首先参考图1至图3,根据一个示例性实施例的基于高压质子交换膜的水电解器系统10可以包括压力容器缸或称外电极12,该外电极12具有水入口14和气体出口16。水位传感器19也可以结合在容器10内,指示外电极12的内部部分20内的水位。水位传感器19与水入口14的止回阀部分通信,以将其在打开位置和关闭位置之间移动,以当传感器19指示内部部分20内的水位过低时允许水通过水入口14进入内部部分。
系统10也可以包括传导的中心柱或称中心电极18,该中心电极18部分地容纳在外电极12的内部部分20内且通过绝缘的馈通部分22延伸到系统10的外侧。外电极12和中心电极18可以是阳极电极或阴极电极,其中当中心电极18是阴极电极时外电极12是阳极电极,且其中当中心电极18是阳极电极时外电极12是阴极电极。外电极12和中心电极18可以各通过直流(DC)电源11相互电联接。外电极12和中心电极18因此形成DC电源11的正极端子和负极端子。
如在图2中最佳地示出,膜电极组件或MEA 38可以在外电极12的内部20内围绕中心电极18缠绕。也在图2中最佳地示出不可渗透的分隔件层40,该分隔件层40可以单独地围绕外电极的内部20内的中心电极18缠绕,且可以联接到中心电极18和外电极12两者。不可渗透分隔件层40可以帮助防止MEA 38的远程部分之间的电接触,该分隔件层螺旋缠绕MEA38的远程部分且因此靠近所述远程部分。不可渗透分隔件层40暗含地也可以大体上防止水或氧气或氢气或氢离子通过它的流动。
虽然MEA 38和不可渗透分隔件层40在图2中都示出为以逆时针方向从中心电极18缠绕到外电极12,但也可以利用从中心电极18到外电极12的顺时针方向。
如在图3中最佳地示出,MEA 38可以由一系列电连接的质子交换膜(PEM)电池30形成,所述质子交换膜(PEM)电池30以交替的方式联接在PEM膜36的相对侧23、33上。每个PEM电池30可以包括阳极电极32和阴极电极34,它们相互之间以间隙27分开。
在膜36的一侧23或另一侧33上每个PEM电池30与相邻的PEM电池30以间隙43分开。另外,每个PEM电池30可以通过横过间隙43的电接线25而电联接到位于PEM膜36的相同侧23或33上的相邻的PEM电池30。
当中心电极18是阳极电极时,如在图3中示出,最内侧PEM电池30的阳极电极34A电联接到中心电极18,且最外侧PEM电池30的阴极电极32B电联接到外电极12(外电极12是阴极电极),以完成回路。
相反地,在可以想到但本文未示出的相反的布置中,当中心电极18是阴极电极且外电极12是阳极电极时,最内侧PEM电池30的阴极电极32电联接到中心电极18,而最外侧PEM电池30的阳极电极34电联接到外电极12,以完成回路。
电极(阴极电极32、32B和阳极电极34、34A)可以是催化剂层,该催化剂层可以包括催化剂微粒和离子传导材料,例如与微粒混合的传导质子的离聚物。质子传导材料可以是离聚物,例如全氟磺酸聚合物。催化剂材料可以包括金属,例如铂、钯,和金属混合物,例如铂和钼、铂和钴、铂和钌、铂和镍、铂和锡、其他的铂过渡金属合金,以及本领域中已知的其它燃料电池电催化剂。催化剂金属可以按需要被磨碎。
多种不同类型的膜可以用于本发明的实施例。在本发明的多种实施例中有用的固体聚合物电解质膜可以是离子传导材料。合适的膜的例子在美国专利No 4,272,353和No 3,134,689中披露,且在Journal of PowerSources,第28期(1990),367-387页中披露。这样的膜也已知为离子交换树脂膜。树脂包括处于其聚合物结构的离子组;其一个离子成分被聚合物基质固定或保持,且至少一个其他的离子成分是可移动的可替换离子,它与固定的成分静电结合。可移动离子在合适的条件下与其他离子可替换的能力赋予了这些材料的离子交换特征。
离子交换树脂能够通过将成分的混合物聚合而制备,所述成分之一包含离子组分。阳离子交换质子传导树脂的一个广泛的类型是所谓的磺酸阳离子交换树脂。在磺酸膜中,阳离子交换组是接附到聚合物骨架的磺酸组。
将这些离子交换树脂形成为膜对于本领域一般技术人员是熟知的。优选的类型是全氟磺酸聚合物电解质,其中整个膜结构具有离子交换特征。这些膜在商业上是可获得的,且商用磺酸全氟化碳质子传导膜的典型例子由E.I.DuPont de Nemours&Company以为商标销售。其他这样的膜从Asahi Glass and Asahi Chemical Company可获得。其他类型的膜的使用也在本发明的范围内,例如但不限制于:全氟阳离子交换膜,基于碳氢化合物的阳离子交换膜以及阴离子交换膜。
在图1至图3中示出的示例性实施例的运行中(其中中心电极18(即DC电源11的正极端子)是电联接到阳极34A的阳极电极,且外电极12(即DC电源11的负极端子)是电联接到阴极电极32B的阴极电极),当水位传感器19指示水位过低时,水通过水入口14被引入到内部区域20内。水位传感器19将水入口14的止回阀部分引导到打开位置,以允许水的引入。
反应剂水紧靠最内侧的阳极电极34A,其处发生化学反应以形成氧气(O2气体)、电子和氢离子(质子)。可以通过将DC直流电源11的正极端子(在此为中心电极18)连接到最内侧的阳极电极34A且通过将DC电源11的负极端子(在此为外电极12)连接到最外侧的阴极电极32B而促进化学反应。
在阳极电极34A上生成的电子行进到中心电极18且然后行进到DC电源11。氧气被排出,而在此反应中生成的氢离子通过PEM膜36从第一侧23迁移到第二侧33,且在相应的阴极电极32处与电子(电子由相邻的阳极电极34提供)结合以产生氢气(H2气体)。
类似的反应在其他阳极电极34和阴极电极32的每个上发生,以分别生成氧气和氢气。在阳极电极34上生成的电子可以通过电接线25提供到位于一侧23或33上的各阴极电极32。在阳极电极34处生成的氢离子可以由通过PEM膜36的迁移而提供到各阴极电极32。过多的电子从DC电源11的负极端子行进到外电极12且然后行进到最外侧的阴极电极32B以完成回路。
在系统10内生成的氧气和氢气以与施加的电池电流成比例的速度按化学计量比生成,即每一个体积单位的氧气对应两个体积单位的氢气。
进行电解所需要的电池电压是随串联连接以形成MEA 38的PEM电池30的个数而定。对于常规的单个电池单元,具有大致1.6-2.4伏特的电压的DC电源11可以足以将水分裂以生成氧气和氢气。对于十二个PEM电池30的单元,如在图3的示例性实施例中示出,DC电源11电压应乘以十二,且因此可以要求提供大约至少19.2-24伏特的DC电源11。通过经常称为PEM堆的串联PEM电池的电流将取决于PEM堆的物理尺寸和其他特征,且因此以上所述的电压可以改变以获得希望的氢生产速度。
现在参考图4,图中描绘替代的示例性实施例,其中气体分离器区或第二内部部分45可以引入到容器10内,以允许H2和O2分开且通过重力分离被分开地取出。
因此,基于高压质子交换膜的水电解器系统10可以进一步包括氧出口15和氢出口17,它们取代气体出口16以将氢气和氧气分别地从内部部分20移除,这与图1至图3中的在从容器10移除后分开氢气和氧气不同。
在此示例性实施例中,内部部分20可以进一步分为由网筛部分55分开的第一内部部分35和第二内部部分45,其中MEA 38和水入口14包括在第一内部部分35内且氧出口15、氢出口17、水位传感器19和氢/氧界面传感器21包括在第二内部部分45内。进入第一内部部分35的水位(如通过由水位传感器19感测到的水位确定)可以通过高压水喷射泵以及通过氢出口17和氧出口15排出的氢气和氧气而被连续调整,以保持氢气/氧气界面关于氢/氧界面传感器21定中心。
另外,多个非传导球体65可以容纳在第二内部部分45内。球体65有助于进一步通过尺寸排斥(除重力分离外)而将氢气和氧气分离。
以上的示例性实施例披露基于高压质子交换膜的水电解器系统10,所述水电解器系统10可以利用在多种应用中,用于生成高压氢气和氧气。用于任一示例性实施例的基于高压质子交换膜的水电解器系统10的一个示例性应用是用于提供电动车辆85的燃料电池80内使用的氢气,如在图5中示出。
本发明的以上所述实施例仅在本质上是示例性的,因此其变化不解释为离开本发明的精神和范围。

Claims (27)

1.一种包括基于高压质子交换膜的水电解器系统的产品,包括:
具有内部区域和水入口的外电极;
联接在所述外电极的另一个部分内的气体出口;
联接在所述内部区域内的中心电极,所述中心电极通过直流电源电联接到所述外电极;
在所述内部区域内围绕所述中心电极螺旋缠绕的膜电极组件,所述膜电极组件包括多个串联电联接的质子交换膜电池,所述多个质子交换膜电池的每个联接到质子交换膜,其中所述多个质子交换膜电池的最内部的一个电联接到所述中心电极,且所述多个质子交换膜电池的最外部的一个电联接到所述外电极;和
围绕所述中心电极缠绕且联接到所述中心电极和所述外电极的非导体分隔件,所述非导体分隔件防止所述多个质子交换膜电池之间的电接触。
2.根据权利要求1所述的产品,其中所述中心电极包括阴极电极且其中所述外电极包括阳极电极。
3.根据权利要求1所述的产品,其中所述中心电极包括阳极电极且其中所述外电极包括阴极电极。
4.根据权利要求1所述的产品,其中所述多个质子交换膜电池的每个包括阴极电极和阳极电极。
5.根据权利要求1所述的产品,其中所述内部区域通过金属丝网筛被分为第一内部部分和第二内部部分,其中所述膜电极组件完全地包含在所述第一内部部分内;和
其中所述第二内部部分包括多个非传导球体。
6.根据权利要求5所述的产品,其中所述气体出口包括氧气出口和氢气出口。
7.根据权利要求1所述的产品,进一步包括:
联接到所述水入口的用于控制水流入到所述内部部分内的止回阀,所述止回阀可从关闭位置移动到打开位置;和
用于测量所述内部部分内的水位的水位传感器,其中所述水位传感器联接到所述止回阀且控制所述止回阀在所述打开位置和所述关闭位置之间的定位。
8.根据权利要求1所述的产品,其中所述质子交换膜包括磺酸全氟化碳质子传导膜。
9.根据权利要求1所述的产品,进一步包括联接到所述基于高压质子交换膜的水电解器系统的燃料电池。
10.根据权利要求1所述的产品,进一步包括电动车辆,所述电动车辆包括所述基于高压质子交换膜的水电解器系统。
11.根据权利要求1所述的产品,进一步包括电动车辆,所述电动车辆包括联接到权利要求1所述的基于高压质子交换膜的水电解器系统的燃料电池。
12.一种用于基于高压质子交换膜的水电解器系统的螺旋缠绕膜电极组件,其中所述水电解器系统包括:
具有内部区域和水入口的外电极;
联接在所述外电极的另一个部分内的气体出口;
联接在所述内部区域内的中心电极,所述中心电极通过直流电源电联接到所述外电极;
在所述内部区域内围绕所述中心电极螺旋缠绕的膜电极组件,所述膜电极组件包括多个串联电联接的质子交换膜电池,所述多个质子交换膜电池的每个联接到质子交换膜,其中所述多个质子交换膜电池的最内部的一个电联接到所述中心电极,且所述多个质子交换膜电池的最外部的一个电联接到所述外电极;和
围绕所述中心电极缠绕且联接到所述中心电极和所述外电极的非导体分隔件,所述非导体分隔件防止所述多个质子交换膜电池之间的电接触,
所述螺旋缠绕膜电极组件包括:
质子交换膜;
联接到所述质子交换膜的第一侧的第一质子交换膜电池,所述第一质子交换膜电池具有阳极电极和阴极电极;
联接到所述质子交换膜的第二侧且通过所述质子交换膜电联接到所述第一质子交换膜电池的第二质子交换膜电池,所述第二质子交换膜电池具有第二阳极电极和第二阴极电极;
其中所述质子交换膜的所述第一侧与所述质子交换膜的所述第二侧相反;和
联接到所述质子交换膜的所述第一侧且通过所述质子交换膜电联接到所述第二质子交换膜的第三质子交换膜电池,所述第三质子交换膜电池具有第三阳极电极和第三阴极电极;
其中所述第三质子交换膜电池与所述第一质子交换膜电池沿所述第一侧以间隙分隔开;和
其中所述第三质子交换膜电池通过横过所述间隙的电线电联接到所述第一质子交换膜电池。
13.一种用于从水生成氢气和氧气的方法,该方法包括:
(a)形成基于高压质子交换膜的水电解器系统,该水电解器包括:
具有内部区域的外电极;
联接在所述外电极的一部分内的水入口;
联接在所述外电极的另一个部分内的气体出口;
联接在所述内部区域内的中心电极,所述中心电极通过直流电源电联接到所述外电极;
在所述内部区域内围绕所述中心电极螺旋缠绕的膜电极组件,所述膜电极组件包括多个串联电联接的质子交换膜电池,所述多个质子交换膜电池的每个联接到质子交换膜,其中所述多个质子交换膜电池的最内部的一个电联接到所述中心电极,且所述多个质子交换膜电池的最外部的一个电联接到所述外电极;和
围绕所述中心电极缠绕且联接到所述中心电极和所述外电极的非导体分隔件,所述非导体分隔件防止所述多个质子交换膜电池之间的电接触;
(b)将第一量的水从所述水入口引入到所述内部区域内;
(c)将所述直流电源激活,以提供跨接所述中心电极和所述外电极的电压,所述电压足以导致所述第一量的水起反应,以产生第一量的氧气和第一量的氢气;和
(d)使所述第一量的氧气和所述第一量的氢气通过所述气体出口移除。
14.根据权利要求13所述的方法,其中所述中心电极包括阴极电极且其中所述外电极包括阳极电极。
15.根据权利要求13所述的方法,其中所述中心电极包括阳极电极且其中所述外电极包括阴极电极。
16.根据权利要求13所述的方法,进一步包括:
使用金属丝网筛将所述内部区域分为第一区域和第二区域,其中所述膜电极组件位于所述第一区域内;和
将多个非传导球体引入到所述第二区域内以帮助将所述第一量的氧气与所述第一量的氢气分离。
17.根据权利要求16所述的方法,其中(d)使所述第一量的氧气和所述第一量的氢气通过所述气体出口移除包括:
(d)通过氧气出口移除所述第一量的氧气;和
(e)通过氢气出口移除所述第一量的氢气。
18.根据权利要求17所述的方法,进一步包括:
将氢/氧界面传感器联接在所述第二区域的一部分内在所述氢出口和所述氧出口之间;
确定所述第二区域内的氢气和氧气界面;和
通过所述氧出口移除所述第一量的氧气的一部分,或通过所述氢出口移除所述第一量的氢气的一部分,以维持所述氢气和氧气界面大致定心为所述氢/氧界面传感器。
19.根据权利要求14所述的方法,进一步包括:
确定所述内部区域内包含的水量;
当所述确定的水量落在预定阈值以下时,将另外量的水引入到所述内部区域内。
20.一种电动车辆,包括:
基于高压质子交换膜的水电解器系统,该水电解器系统包括:
具有内部区域的外电极;
联接在所述外电极的一部分内的水入口;
联接在所述外电极的另一个部分内的气体出口;
联接在所述内部区域内的中心电极,所述中心电极通过直流电源电联接到所述外电极;
在所述内部区域内围绕所述中心电极螺旋缠绕的膜电极组件,所述膜电极组件包括多个串联电联接的质子交换膜电池,所述多个质子交换膜电池的每个联接到质子交换膜,其中所述多个质子交换膜电池的最内部的一个电联接到所述中心电极,且其中所述多个质子交换膜电池的最外部的一个电联接到所述外电极;和
围绕所述中心电极缠绕且联接到所述中心电极和所述外电极的非导体分隔件,所述非导体分隔件防止所述多个质子交换膜电池之间的电接触;
通过所述气体出口流体联接到所述基于高压质子交换膜的水电解器系统的燃料电池。
21.根据权利要求20所述的电动车辆,其中所述中心电极包括阴极电极且其中所述外电极包括阳极电极。
22.根据权利要求20所述的电动车辆,其中所述中心电极包括阳极电极且其中所述外电极包括阴极电极。
23.根据权利要求20所述的电动车辆,其中所述多个质子交换膜电池的每个包括阴极电极和阳极电极。
24.根据权利要求20所述的电动车辆,其中使用金属丝网筛将所述内部区域分为第一内部部分和第二内部部分,其中所述膜电极组件完全地包含在所述第一内部部分内;和
其中所述第二内部部分包括多个非传导球体。
25.根据权利要求24所述的电动车辆,其中所述气体出口包括氧气出口和氢气出口,所述氧气出口和氢气出口分开地联接到所述外电极且与所述第二内部部分流体连通。
26.根据权利要求20所述的电动车辆,进一步包括:
联接到所述水入口用于控制水流入到所述内部部分内的止回阀,所述止回阀可从关闭位置移动到打开位置;和
用于测量所述内部部分内的水位的水位传感器,其中所述水位传感器联接到所述止回阀且控制所述止回阀在所述打开位置和所述关闭位置之间的定位。
27.根据权利要求20所述的电动车辆,其中所述质子交换膜包括磺酸全氟化碳质子传导膜。
CN2009102063945A 2008-10-15 2009-10-15 基于高压质子交换膜的水电解器系统 Active CN101724855B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/251,822 US9255333B2 (en) 2008-10-15 2008-10-15 High pressure proton exchange membrane based water electrolyzer system
US12/251,822 2008-10-15

Publications (2)

Publication Number Publication Date
CN101724855A CN101724855A (zh) 2010-06-09
CN101724855B true CN101724855B (zh) 2013-03-06

Family

ID=42055345

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102063945A Active CN101724855B (zh) 2008-10-15 2009-10-15 基于高压质子交换膜的水电解器系统

Country Status (3)

Country Link
US (1) US9255333B2 (zh)
CN (1) CN101724855B (zh)
DE (1) DE102009047839A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9464356B2 (en) * 2011-09-21 2016-10-11 Encite Llc High pressure gas system
KR101724060B1 (ko) * 2016-05-18 2017-04-06 주식회사 두산 알칼리 수전해 장치 및 이의 운전 방법
TWI618837B (zh) * 2016-06-17 2018-03-21 Yuan Ze University 灌溉系統
CN106532087A (zh) * 2016-09-30 2017-03-22 李连博 燃料动力电池发电机及发电方法
TWI740670B (zh) * 2020-10-05 2021-09-21 元智大學 高壓水電解系統
IT202100005471A1 (it) 2021-03-09 2022-09-09 S A T E Systems And Advanced Tech Engineering S R L Sistema combinato di produzione di idrogeno, ossigeno e anidride carbonica segregata e sequestrata provvisto di un motore termico a ciclo chiuso
CN113667997A (zh) * 2021-08-30 2021-11-19 广东能源集团科学技术研究院有限公司 一种高压质子交换膜电解水系统
WO2023238026A1 (en) * 2022-06-07 2023-12-14 Consiglio Nazionale Delle Ricerche + Istituto Nazionale Di Astrofisica Electrochemical device suitable to work both as electrolyser and fuel cell

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3134689A (en) * 1961-03-24 1964-05-26 Intellux Inc Thin film structure and method of making same
US4274353A (en) * 1967-12-22 1981-06-23 The United States Of America As Represented By The Secretary Of The Navy Acoustic imaging system for wire guided torpedo
CH614237A5 (zh) * 1974-04-01 1979-11-15 Hoffmann La Roche
US4272353A (en) 1980-02-29 1981-06-09 General Electric Company Method of making solid polymer electrolyte catalytic electrodes and electrodes made thereby
JP4156884B2 (ja) * 2002-09-06 2008-09-24 本田技研工業株式会社 水電解水素ガス製造装置
US6890410B2 (en) * 2002-12-10 2005-05-10 John T. Sullivan Apparatus for converting a fluid into at least two gasses through electrolysis
JP4611281B2 (ja) * 2003-02-21 2011-01-12 アバレンス・リミテッド・ライアビリティ・カンパニー 電解槽装置及び水素を製造する方法
US7393440B2 (en) * 2005-05-09 2008-07-01 National Research Council Of Canada Hydrogen generation system
US7790013B2 (en) * 2006-03-29 2010-09-07 Safe Hydrogen, Llc Storing and transporting energy
US20080202942A1 (en) * 2007-02-22 2008-08-28 Hydrogen Production Werks, Llc Method and apparatus for converting water into hydrogen and oxygen for a heat and/or fuel source
CZ302850B6 (cs) * 2007-08-28 2011-12-14 Ústav makromolekulární chemie, AV CR, v. v. i. Zpusob separace vodíku z plynných smesí
US20090090313A1 (en) * 2007-10-05 2009-04-09 Henry Sr Zachary A Method and apparatus for enhancing the utilization of fuel in an internal combustion engine

Also Published As

Publication number Publication date
US9255333B2 (en) 2016-02-09
US20100089747A1 (en) 2010-04-15
CN101724855A (zh) 2010-06-09
DE102009047839A1 (de) 2010-04-29

Similar Documents

Publication Publication Date Title
CN101724855B (zh) 基于高压质子交换膜的水电解器系统
US6576362B2 (en) Electrochemical cell system
US6855450B2 (en) Proton exchange membrane electrochemical cell system
US6471850B2 (en) Low gravity electrochemical cell
WO2006039536A1 (en) Electrochemical cell bipolar plate with laminated arrangement of bonded layers
JP2008503852A (ja) 燃料電池システム
WO2006039540A1 (en) Electrochemical cell bipolar plate
ES2968670T3 (es) Conjunto de electrodos de membrana y método de fabricación del mismo
JP2006253079A (ja) 燃料電池ユニット及び燃料電池ユニット集合体並びに電子機器
EP3108530B1 (en) Electrochemical cell
JP2009503254A (ja) 複数の圧縮可能な層を含む流動場部材を備えた電気化学セル
CN1713411A (zh) 燃料电池的隔板及其制备方法以及包括它的燃料电池
JP4658784B2 (ja) 液体燃料カートリッジおよびそれを備えた直接液体燃料電池
CA2575366A1 (en) Low profile electrochemical cell
WO2006039464A1 (en) Gas barrier for electrochemical cells
US20090181281A1 (en) Electrochemical cell bipolar plate
KR20140133301A (ko) 전기화학셀용 막전극 접합체
US20080220304A1 (en) Venting apparatus and system
JP2002110190A (ja) 燃料電池
US20070207368A1 (en) Method and apparatus for electrochemical flow field member
US20240093387A1 (en) Pump free alkaline electrolyte membrane water electrolytic device
US20050158605A1 (en) Fuel cell and electronic device using it
JP2023159573A (ja) 水電解セル、水電解セルの製造方法
WO2023238026A1 (en) Electrochemical device suitable to work both as electrolyser and fuel cell
JP2024018349A (ja) 流路部材、電気化学セルおよび電気化学セル装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant