CN101718084A - 梯级水电站弃水优化方法与系统 - Google Patents

梯级水电站弃水优化方法与系统 Download PDF

Info

Publication number
CN101718084A
CN101718084A CN200910114599A CN200910114599A CN101718084A CN 101718084 A CN101718084 A CN 101718084A CN 200910114599 A CN200910114599 A CN 200910114599A CN 200910114599 A CN200910114599 A CN 200910114599A CN 101718084 A CN101718084 A CN 101718084A
Authority
CN
China
Prior art keywords
water
power station
surplus water
hydroelectric
station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910114599A
Other languages
English (en)
Inventor
吴杰康
郭壮志
丁国强
何芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CN200910114599A priority Critical patent/CN101718084A/zh
Publication of CN101718084A publication Critical patent/CN101718084A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

本发明公开一种梯级水电站弃水优化方法与系统,其特征在于:可以根据水头和发电流量之间最佳协调关系来确定水电站最佳的动态弃水界限,该动态弃水界限随水电站水头及发电流量的变化处在动态的变化之中,通过将其融合到梯级水电站优化调度模型中,采用优化手段确定各水电站最佳的发电流量和弃水流量的大小,具体实现过程要和水电站数据采集系统和控制系统相配合。由于通过摒弃静态弃水策略中弃水就产生损失的传统观念,利用水电站弃水来实现水力资源在梯级水电站间的动态最佳再分配,提高机组运行的发电效率,从而提高了梯级水电站整体运行的经济性。

Description

梯级水电站弃水优化方法与系统
技术领域
本发明涉及一种采用水电站水头与发电流量之间最佳协调关系来确定各梯级水电站最优弃水流量的方法及系统,可以提高单一水电站和梯级水电站运行的综合经济性,该发明属于水力发电领域。
背景技术
我国河流众多、水力资源丰富,由于其为一种可再生能源,用其产生电能具有清洁无污染的特点,合理高效利用水力资源可以达到节约燃煤等非可再生资源、实现能源的可持续利用及降低大气污染程度等目的[1]。梯级水电站可以实现水力资源的重复再利用,已经成为水力资源合理开发和高效利用的主要形式之一,在长江、黄河中游的干支流上已建获正建一批大型的水电站,广西红水河也已经形成了一个大型的梯级水电系统。但梯级水电站要实现水力资源的合理高效利用仍然面临着严峻的考验,受到众多因素例如:水库来水的季节性、随机性及空间分布的不均衡性等因素的存在,复杂的水力联系、电气联系,负荷的随机性,电气结构,国家政策等的影响,而这些因素的存在都将影响水力资源在梯级水电站的分配策略,其影响之一就是梯级水电站的弃水方法及弃水量的多少,最终影响水力资源的利用效率及梯级水电站的运行经济性。
弃水已经成为影响水电站经济运行的重要因素,每年因为弃水而产生大量的电能损失[2]。造成弃水的因素很多,如:负荷的不匹配、自动发电控制的投入、用电低谷期等,但其中一个重要因素是弃水方法的不合理。目前,一个被广泛应用的弃水方法就是当水库的水位达到设定的最高限制水位并且水电站入库流量大于其最大发电流量时产生弃水,该策略的目的就是尽最大可能的将来水存储在水库中以满足未来用水的需要,尽最大可能利用水轮机组产生泄水,即当水轮机组未达到最大的发电流量时让水力资源经水轮机组流向下游以减少弃水[3-9]。这是一种静态的弃水策略,无论对于单一水电站还是梯级水电站而言具有一定的不合理性。构建一个合理的弃水方法将在很大程度上提高梯级水电站的发电效益,具有重要的现实意义。
参考文献
[1]黄强,畅春霞.水资源系统多维临界调控的理论和方法[M].北京:中国水利水电出版社,2007.
[2]张周来.广西红水河年弃水电量损失惊人.新华网广西频道(www.gx.xinhuanet.com),2007年01月29日.
[3]Basu M,Chakrabarti R N,Chattopadhyay P K,et al.Simulated annealing based optimallong-term scheduling of variable head multi-reservoir power system
[J].JOURNAL-INSTITUTION OF ENGINEERS INDIA PART EL ELECTRICALENGINEERING DIVISION,2006,87(6):35-40.
[4]Naresh R,Sharma J.Two-phase neural network based solution technique for short termhydrothermal scheduling[J].IEE Proc-Gener Transm Distrib,1999,146(6):657-663.
[5]Naresh R,Shatma J.Hydro system scheduling using ANN approach[J].IEEE trans on powersystem,2000,15(1):388-395.
[6]曾勇红,姜铁兵,张勇传.三峡梯级水电站蓄能最大长期优化调度模型及分解算法[J].电网技术,2004,28(10):5-8.
[7]原文林,黄强,王义民,等.最小弃水模型在梯级水库优化调度中的应用[J].水力发电学报,2008,27(3):16-21.
[8]吴杰康,陆文玲.基于效益分析的水火电力系统短期优化调度[J].电网技术,2009,33(18):25-31.
[9]吴杰康,郭壮志,秦砺寒,等.基于连续线性规划的梯级水电站优化调度[J].电网技术,2009,33(8):24-29.
发明内容
基于上述分析,为实现水电站弃水的合理产生及水力资源在梯级水电站间的最佳分配,提高水力资源利用率及发电效益,本发明提出一种水电站动态弃水产生方法及系统。该方法利用水电站机组的动态最佳发电流量极限,在兼顾机组发电效率的基础上,建立梯级水电站的动态弃水模型,该模型与梯级水电站优化调度模型相融合,可以方便的确定梯级水电站最佳的发电流量、弃水流量、前池水位等参数,实现水力资源的最佳分配,提高梯级水电站运行的综合经济性。
本发明的技术方案如下:
本发明的原理方法为:根据水能到电能的转换机理,在分析水电站机组的水头、水头损失及机组出力之间关系的基础上,建立水电站机组获得最大出力的最佳的协调条件,通过上述条件可以方便有效的确定不同水头下机组获得最大出力时的发电流量,该流量随着水头的变化呈现动态的变化,并以此发电流量作为弃水产生的界限,通过将其和梯级水电站优化调度模型融合,确定各时段的最佳发电流量、弃水流量、前池水位等,从而提高发电机组的发电效率及用水的合理性。
实现的步骤如下:
1、根据水电站水库特征参数,构建各梯级水电站的水头模型、水头损失模型,在此基础上利用水能到电能的转换机理建立发电机组的出力模型;
2、利用优化方法中函数极值确定的必要条件,建立水电站机组获得最大出力时的最优条件。
3、利用最优条件,在考虑机组发电效率的基础上构建梯级水电站动态弃水模型;
4、通过优化的手段来确定梯级水电站最优动态弃水量、发电流量及前池水位等的实现方法。
根据本发明作者的研究结果表明:
1、以静态弃水为依据的水电站弃水方法,即尽量减少水电站弃水、最大限度的利用水库存水,并不是一种合理的弃水产生方法,当发电水头与发电流量不匹配时,反而会降低水电站机组的发电效率,最终影响梯级水电站的整体运行效益。
2、在梯级水电站中,水电站的弃水不能够单纯的看作是一种损失,对于单一水电站而言,弃水将造成自身水力资源的减少,但却可以实现水力资源在梯级水电站间的动态合理再分配,可以提高水电站的整体发电效益,因此在梯级水电站运行时应考虑其必要的弃水。
具体实施方式:
1、建立机组的出力模型
采用H表示水电站的发电净水头,Q为与之相应的发电流量,η为水能到电能转化的效率,根据水能到电能的转化机理,在t0~t1的时间内水电站生产的电能可表示为
W = ∫ t 0 t 1 9.81 ηQHdt - - - ( 1 )
ΔH为水电站的水头损失,对于已建水电站,水头损失ΔH主要与发电流量Q的大小有关,Q越大,ΔH的值就越大,它们之间一般呈非线性关系。通常可将水头损失ΔH表示为发电流量Q的二次函数关系,β0、β1、β2为水头损失的拟合系数,则ΔH可表示为
ΔH=β0Q21Q+β2         (2)
QI为水电站的入库流量,则水电站的总水头可用函数HZ(QI,Q)表示,则水电站的发电净水头为
H=HZ(QI,Q)-(β0Q21Q+β2)       (3)
因此,机组的出力模型可以重新表示为
W = ∫ t 0 t 1 9.81 ηQ [ H z ( Q I , Q ) - ( β 0 Q 2 + β 1 Q + β 2 ) ] dt - - - ( 4 )
2、确定机组获得最大出力的最优条件
根据优化方法中极值取得的必要条件,在t0~t1的时间内水电站要获得最大的发电量需满足W对入库流量QI及发电流量Q的偏导数为0,即
∂ W ∂ Q I = ∫ t 0 t 1 9.81 ηQ ∂ H Z ∂ Q I dt = 0 - - - ( 5 )
∂ W ∂ Q = ∫ t 0 t 1 9.81 η { H Z ( Q I , Q ) - ( β 0 Q 2 + β 1 Q + β 2 )
+ Q [ ∂ H Z ∂ Q - ( 2 β 0 Q + β 1 ) ] } dt = 0 - - - ( 6 )
在t0~t1的时间内,水电站出库流量和入库流量都处在不同的变化之中,因此总水头HZ也是一变动值,利用式(5)和式(6)求出获得最大发电量时的发电总水头HZ与发电流量Q的最佳协调关系比较复杂,实际通常采用时段的平均水头来代替瞬时水头,即认为在t0~t1的时间内总水头HZ为一定值保持不变,根据以上分析可将式(5)作为一恒等式,式(6)则变为
∂ W ∂ Q = ∫ t 0 t 1 9.81 η [ H Z ( Q I , Q ) - ( 3 β 0 Q 2 + 2 β 1 Q + β 2 ) ] dt = 0 - - - ( 7 )
由式(7)即可得到发电总水头HZ与发电流量Q的最佳协调关系为
Q = - β 1 + β 1 2 - 3 β 0 ( β 2 - H Z ) 3 β 0 - - - ( 8 )
式(8)表示的物理含义为在固定总水头HZ下有一个最佳的发电流量Q与该水头相对应使水电站获得最大的机组出力。
3、构建动态弃水模型
说明书附图中,图1描述某机组输出功率、水头和水头损失与发电流量变化的关系,Qopt为式(8)确定的机组获得最大输出功率时的发电流量,Qmax机组允许的最大过机流量。目前通常所采用的弃水策略就是以Qmax为最大发电流量边界,当入库流量QI>Qmax且水库水位达到设定的上限时产生弃水。该弃水策略的目的就是尽量减少水电站的弃水,尽最大可能使较多的水流经发电机组及较多的水存储到水库中。根据图1可知,此时机组的输出功率并不是最大的,原因在于这种情况下,虽然发电流量Q比由式(8)所确定的最佳发电流量Qopt大,但由于此时由于水头损失ΔH过大,水电站的出力反而会减少,降低了机组的发电效率,因此可以看出,目前这种静态弃水策略存在着明显不足,并没有真正实现水力资源合理利用,若此时以Qopt为水电站的弃水界限更为合理。由式(8)可知,Qopt随发电流量Q的变化而处在动态的变化之中,在某些情况下会出现Qopt<Qmax,此时需采用Qmax作为弃水界限。由此可见,水电站弃水界限随着时间的推移及发电流量的变化处在动态的变化之中,与之对应的弃水策略称之为动态弃水策略。Z为水库的蓄水水位,Zmax为水电站水库允许的最高蓄水水位,此时单一水电站的弃水条件表示为
Q I > min ( Q opt , Q max ) Z > Z max - - - ( 9 )
对于梯级水电站而言,需要对式(9)的弃水条件进行修改。ΔPu为上级水电站输出功率的变化量,ΔPd为与之相邻的下游水电站的输出功率的变化量,若当上级水电站产生弃水其输出功率的减少量ΔPu小于下级水电站输出功率的增加量ΔPd,则以弃水的发电流量产生弃水,其弃水流量s为
S=Q-min(Qopt,Qmax)        (10)
梯级水电站的弃水条件需要通过约束条件和目标函数共同作用来实现。由上述可知式(9)为单一水电站的弃水条件,式(10)是一个整体的弃水条件,在梯级水电站优化调度中采用这两个条件,可以有效兼顾局部和整体利益,提高水电站运行的综合经济性。
4、最优动态弃水的实现与系统
对于单一水电站而言,根据动态弃水条件,可以方便的确定水电站弃水流量及发电流量的大小;对于梯级水电站而言,由于各水电站是一个整体,它们之间相互影响,要考虑提及水电站整体最佳发电效益,要确定各水电站最佳的放水策略,要将动态弃水模型融入梯级水电站优化调度模型中,采用最优化的手段确定各水电站的最佳的发电流量及弃水流量。由于梯级水电站的弃水条件随水电站的水头及发电流量极限而动态的改变,因此需要时刻监测水电站水库的前池水位、尾水水位及机组的发电流量等,其实现流程及系统示意图参看附图2梯级水电站动态弃水优化方法及系统。
本发明的优点在于:
1、静态弃水模型增加了水电站的水头损失、降低了水力资源的利用效率及机组的发电效率,动态弃水模型则可以克服上述之不足。
2、动态弃水模型摒弃了静态弃水模型中水电站尽最大可能的将水力资源存储在水库中尽量不产生弃水的观念,认为弃水并不完全是一种损失,通过合理弃水可以动态改变水电站水库的蓄放水规律,更好的实现水力资源在梯级水电站间的最佳分配,提高机组的发电效益及实现梯级水电站整体效益的最佳化。
附图说明
图1水头、水头损失、输出功率与发电流量关系
图2梯级水电站动态弃水优化方法及系统

Claims (3)

1.梯级水电站动态弃水模型的确定方法,其特征在于利用水电站机组出力最大时的最优条件来确定水头和发电流量的最佳协调关系,以此为基础,在考虑机组发电效率的前提下确定梯级水电站的动态弃水模型。
2.梯级水电站弃水优化方法,其特征在于:在权利要求1的基础上,通过各水电站的合理弃水,以实现水力资源在梯级水电站间的动态再分配,其最佳发电流量和弃水流量的确定需将动态弃水模型和优化调度模型相融合并采用优化的手段来确定,从而最终提高梯级水电站的综合发电效益,
3.梯级水电站弃水优化系统,其特征在于:如权利要求2所述,实现上述水力资源的动态再分配过程需要态采集各水电站的数据,如发电流量、弃水流量、前池水位等,根据优化调度结果,对实际运行状态和优化结果不匹配的水电站进行调整。因此,该弃水优化系统由计算机系统、数据采集系统、水电站控制系统组成,该系统的特点在于优化模块中优化模型的构建以动态弃水策略为基础。
CN200910114599A 2009-12-01 2009-12-01 梯级水电站弃水优化方法与系统 Pending CN101718084A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910114599A CN101718084A (zh) 2009-12-01 2009-12-01 梯级水电站弃水优化方法与系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910114599A CN101718084A (zh) 2009-12-01 2009-12-01 梯级水电站弃水优化方法与系统

Publications (1)

Publication Number Publication Date
CN101718084A true CN101718084A (zh) 2010-06-02

Family

ID=42432717

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910114599A Pending CN101718084A (zh) 2009-12-01 2009-12-01 梯级水电站弃水优化方法与系统

Country Status (1)

Country Link
CN (1) CN101718084A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102182159A (zh) * 2011-03-21 2011-09-14 武汉大学 一种梯级水库汛限水位联合运用调度方法
CN102776872A (zh) * 2012-08-01 2012-11-14 卢江江 水电站高效防洪发电的优化方法
CN106655280A (zh) * 2016-11-26 2017-05-10 大连理工大学 一种基于电量控制的梯级水电短期调峰模型及求解方法
CN107862408A (zh) * 2017-11-02 2018-03-30 广西大学 一种水电厂弃水最小预警协调滚动优化方法
CN108596388A (zh) * 2018-04-23 2018-09-28 广西大学 一种考虑梯级水电站最优弃水的水火联合调度方法
CN109167367A (zh) * 2018-09-19 2019-01-08 长江勘测规划设计研究有限责任公司 基于单边匹配机制的水电站负荷动态调整方法
CN109636140A (zh) * 2018-11-27 2019-04-16 广东电网有限责任公司韶关供电局 考虑径流量的微电网中小水电站弃水电量计算方法
CN111476474A (zh) * 2020-04-01 2020-07-31 贵州黔源电力股份有限公司 梯级水电站减少弃水量的调度方法
CN111738625A (zh) * 2020-07-21 2020-10-02 河南郑大水利科技有限公司 一种径流式水电站前池高水位运行方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102182159A (zh) * 2011-03-21 2011-09-14 武汉大学 一种梯级水库汛限水位联合运用调度方法
CN102776872A (zh) * 2012-08-01 2012-11-14 卢江江 水电站高效防洪发电的优化方法
CN102776872B (zh) * 2012-08-01 2015-06-17 卢江江 水电站高效防洪发电的优化方法
CN106655280A (zh) * 2016-11-26 2017-05-10 大连理工大学 一种基于电量控制的梯级水电短期调峰模型及求解方法
CN106655280B (zh) * 2016-11-26 2019-03-29 大连理工大学 一种基于电量控制的梯级水电短期调峰模型及求解方法
CN107862408B (zh) * 2017-11-02 2021-08-27 广西大学 一种水电厂弃水最小预警协调滚动优化方法
CN107862408A (zh) * 2017-11-02 2018-03-30 广西大学 一种水电厂弃水最小预警协调滚动优化方法
CN108596388A (zh) * 2018-04-23 2018-09-28 广西大学 一种考虑梯级水电站最优弃水的水火联合调度方法
CN109167367A (zh) * 2018-09-19 2019-01-08 长江勘测规划设计研究有限责任公司 基于单边匹配机制的水电站负荷动态调整方法
CN109636140A (zh) * 2018-11-27 2019-04-16 广东电网有限责任公司韶关供电局 考虑径流量的微电网中小水电站弃水电量计算方法
CN111476474A (zh) * 2020-04-01 2020-07-31 贵州黔源电力股份有限公司 梯级水电站减少弃水量的调度方法
CN111476474B (zh) * 2020-04-01 2023-10-13 贵州黔源电力股份有限公司 梯级水电站减少弃水量的调度方法
CN111738625A (zh) * 2020-07-21 2020-10-02 河南郑大水利科技有限公司 一种径流式水电站前池高水位运行方法
CN111738625B (zh) * 2020-07-21 2024-02-20 河南郑大水利科技有限公司 一种径流式水电站前池高水位运行方法

Similar Documents

Publication Publication Date Title
CN101718084A (zh) 梯级水电站弃水优化方法与系统
Tang et al. Solar energy curtailment in China: Status quo, reasons and solutions
CN102097866B (zh) 中长期机组组合优化方法
CN102496968A (zh) 间歇式能源与常规能源协调调度模式下发电计划优化方法
CN104915790A (zh) 一种促进风电消纳的峰谷电价优化方法
CN104779611A (zh) 基于集中式和分布式双层优化策略的微电网经济调度方法
Liu et al. Research on short-term optimization for integrated hydro-PV power system based on genetic algorithm
Feng et al. Integrated technical paradigm based novel approach towards photovoltaic power generation technology
CN112184016B (zh) 复杂电网下判断水光互补一体化光伏规模的方法
CN112257951B (zh) 一种基于合作博弈的综合能源系统与配电公司的优化运行方法
Li et al. Multi-energy coordinated operation optimization model for wind-solar-hydro-thermal-energy storage system considering the complementary characteristics of different power resources
Rezaei et al. A Novel Energy Management Scheme for a Microgrid with Renewable Energy Sources Considering Uncertainties and Demand Response
CN109961224B (zh) 一种计及多种能源的月度电能交易计划制定的时序仿真法
Zhang et al. Analysis of peak regulation strategy with considering renewable energy injection and power from outside
CN105244879A (zh) 考虑核电机组检修的核电抽水储能电站联合运行优化方法
Zhang Study on the Effects of Different Measures in Promoting Renewable Energy Consumption
Yuanyuan et al. Research on the available power supply capacity assessment method considering the access of large-scale new energy generation and electric vehicle charging facilities
Li et al. Optimization of continental power exchange under the framework of global energy interconnection
Yang et al. Capacity configuration of thermal energy storage within CSP plant considering scheduling economy
Wang et al. Comparisons of Different Dispatches to Promote the Consumption of Renewable Energy
Sui et al. Optimization of Monthly Power Generation Plan for Thermal Power Units Considering Access of Large-scale New Energy
Liang et al. Low Carbon Economic Dispatch of Integrated Energy System with Liquid Storage Carbon Capture Power Storage Considering Integrated Demand Response
Guo et al. Optimal design and feasibility analysis of a stand-alone hybrid chp system-based on pv/wind/gas turbine generator/vrb for an university in hangzhou city
Zhu et al. Research on the Development and Index System of Smart Distribution Network in China in the Future
Song et al. A New Energy Power Grid Expansion Planning Technology Considering Optimal Economy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20100602