CN101717857B - Rapid direct leaching of nickel sulfide concentrate under the action of ultrasonic waves - Google Patents
Rapid direct leaching of nickel sulfide concentrate under the action of ultrasonic waves Download PDFInfo
- Publication number
- CN101717857B CN101717857B CN2009101842839A CN200910184283A CN101717857B CN 101717857 B CN101717857 B CN 101717857B CN 2009101842839 A CN2009101842839 A CN 2009101842839A CN 200910184283 A CN200910184283 A CN 200910184283A CN 101717857 B CN101717857 B CN 101717857B
- Authority
- CN
- China
- Prior art keywords
- nickel
- leaching
- ore
- sulfide concentrate
- weight ratio
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000002386 leaching Methods 0.000 title claims abstract description 53
- 239000012141 concentrate Substances 0.000 title claims abstract description 33
- WWNBZGLDODTKEM-UHFFFAOYSA-N sulfanylidenenickel Chemical compound [Ni]=S WWNBZGLDODTKEM-UHFFFAOYSA-N 0.000 title claims abstract description 30
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 71
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims abstract description 26
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000007800 oxidant agent Substances 0.000 claims abstract description 14
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 claims abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000007787 solid Substances 0.000 claims abstract description 10
- 235000010344 sodium nitrate Nutrition 0.000 claims abstract description 9
- 239000004317 sodium nitrate Substances 0.000 claims abstract description 9
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 7
- 239000010935 stainless steel Substances 0.000 claims abstract description 7
- 235000010333 potassium nitrate Nutrition 0.000 claims abstract description 6
- 239000004323 potassium nitrate Substances 0.000 claims abstract description 6
- 238000007598 dipping method Methods 0.000 claims abstract 3
- 239000002245 particle Substances 0.000 claims description 7
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 6
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 6
- 239000011707 mineral Substances 0.000 claims description 6
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 2
- 229940001516 sodium nitrate Drugs 0.000 claims 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract description 21
- 239000000203 mixture Substances 0.000 abstract description 8
- 230000001590 oxidative effect Effects 0.000 abstract description 8
- 238000009854 hydrometallurgy Methods 0.000 abstract description 3
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 abstract description 2
- 229910002651 NO3 Inorganic materials 0.000 abstract description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract description 2
- 230000036632 reaction speed Effects 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000001179 sorption measurement Methods 0.000 description 6
- 238000003756 stirring Methods 0.000 description 5
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000010907 mechanical stirring Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- VEQPNABPJHWNSG-UHFFFAOYSA-N Nickel(2+) Chemical compound [Ni+2] VEQPNABPJHWNSG-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 238000005903 acid hydrolysis reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001447 ferric ion Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910001453 nickel ion Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000009853 pyrometallurgy Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
技术领域technical field
本发明属于重有色金属湿法冶金领域,特别是在超声波作用下从硫化镍精矿中经氧化酸解直接浸取镍的新方法。The invention belongs to the field of heavy non-ferrous metal hydrometallurgy, in particular to a new method for directly leaching nickel from nickel sulfide concentrate through oxidative acidolysis under the action of ultrasonic waves.
背景技术Background technique
硫化镍精矿由于本身及其伴生矿物性质的原因,从中提取金属镍并不容易:火法冶金过程产生的低浓度二氧化硫的回收,至今仍是一个世界性的难题;湿法浸镍过程可以不产生二氧化硫,但通常浸出速度慢,效率低,耗时长,成本高。Due to the nature of nickel sulfide concentrate itself and its associated minerals, it is not easy to extract metallic nickel from it: the recovery of low-concentration sulfur dioxide produced in the pyrometallurgical process is still a worldwide problem; Sulfur dioxide is produced, but usually the leaching speed is slow, the efficiency is low, it takes a long time and the cost is high.
为解决湿法浸镍过程低效、耗时、高成本的问题,各种各样的湿法浸镍新流程被提了出来。为叙述方便,按其操作的基本参数,将其分为常温常压法和高温高压法二种(Hydrometallurgy,2008,91:35-55)。根据所浸硫化镍精矿的性质和具体的工艺特点,这两种方法有时也交替或分段使用。In order to solve the problems of inefficiency, time-consuming and high cost in wet nickel leaching process, various new processes of wet nickel leaching have been proposed. For the convenience of description, according to the basic parameters of its operation, it is divided into two types: normal temperature and pressure method and high temperature and high pressure method (Hydrometallurgy, 2008, 91: 35-55). According to the properties of the leached nickel sulfide concentrate and the specific process characteristics, these two methods are sometimes used alternately or in stages.
高温高压法有较高的浸出效率、较快的浸出速度和较低的浸出剂用量等优点。但也存在着能耗高、对设备的要求高、设备的投入和维修费用高的不足。在对目的元素浸出率提高的同时,各种伴生元素的浸出率也同时提高;而且操作技术复杂等缺点也严重制约它的推广。例如,高压高温法从硫化镍精矿中用硫酸浸出镍(中国专利CN1352308A)的方法,要求浸出过程的总压达1.0~1.3×106Pa,氧气分压达2~3×105Pa,浸出温度达100~180℃,浸出时间为1~6小时。又如,美国专利(US5855858)在0.2~2.0×106Pa的高压和90~160℃的高温下,用硫酸(40g/l)+盐酸(10-12g/l)浸出硫化镍精矿,浸出时间为0.5~5.0小时,浸出率约为90~99%。The high temperature and high pressure method has the advantages of higher leaching efficiency, faster leaching speed and lower amount of leaching agent. However, there are also disadvantages of high energy consumption, high requirements for equipment, high equipment investment and maintenance costs. While the leaching rate of the target element is increased, the leaching rate of various associated elements is also increased; and the disadvantages such as complicated operation technology also seriously restrict its promotion. For example, the method of leaching nickel with sulfuric acid from nickel sulfide concentrate by high pressure and high temperature method (Chinese patent CN1352308A) requires the total pressure of the leaching process to reach 1.0~1.3× 106 Pa, the partial pressure of oxygen to reach 2~3×105Pa, and the leaching temperature It reaches 100-180°C, and the leaching time is 1-6 hours. As another example, U.S. Patent (US5855858) leaches nickel sulfide concentrate with sulfuric acid (40g/l)+hydrochloric acid (10-12g/l) at a high pressure of 0.2~2.0×106Pa and a high temperature of 90~160°C. The leaching time is 0.5-5.0 hours, the leaching rate is about 90-99%.
常温常压法浸出硫化镍精矿的优点是明显的:首先节省了能耗;不需要特别的耐高温高压的设备;有较低的设备投入和设备维修费用;有较大的安全性和较宽的适应性;伴生元素的浸出也较低,从而有利于下一步的除杂工序。但其缺点也是明显的:如较慢的浸出速度;较低的浸出率;较大的设备体积和较长的操作时间;较低的产出效率和较多的浸出剂用量等。但为了加快浸出速度,除过堆浸以外,真正在常温常压下的浸出过程很少。例如,美国专利(US2008050294)从镍品位较低的硫化镍精矿里浸镍,用202~223g/l的硫酸,在80℃下浸出3小时,浸出率约72%;又如,中国发明专利(200710065624.1)用硫酸从硫化镍精矿中浸镍,硫酸的浓度为100~120g/l,温度为50~80℃,浸出时间为1.5~2.0小时,浸出率为75~91%。The advantages of leaching nickel sulfide concentrate at normal temperature and pressure are obvious: firstly, it saves energy consumption; it does not need special high-temperature and high-pressure equipment; it has low equipment investment and equipment maintenance costs; it has greater safety and comparative Wide adaptability; the leaching of associated elements is also low, which is beneficial to the next step of impurity removal process. But its disadvantages are also obvious: such as slower leaching speed; lower leaching rate; larger equipment volume and longer operating time; lower output efficiency and more leaching agent dosage, etc. However, in order to speed up the leaching speed, except for heap leaching, there are very few leaching processes under normal temperature and pressure. For example, the United States patent (US2008050294) leaches nickel from nickel sulfide concentrate with low nickel grade, using 202-223g/l sulfuric acid, leaching at 80°C for 3 hours, and the leaching rate is about 72%; another example, the Chinese invention patent (200710065624.1) leaching nickel from nickel sulfide concentrate with sulfuric acid, the concentration of sulfuric acid is 100-120g/l, the temperature is 50-80°C, the leaching time is 1.5-2.0 hours, and the leaching rate is 75-91%.
为克服常温常压浸出的缺点,研究发现,影响硫化镍精矿浸出速度的原因主要有两个:一是由于硫化镍及其伴生元素存在形态的复杂性;二是由于还原的元素硫在镍精矿微粒表面的吸附导致其扩散困难,反应缓慢。为解决前一问题,研究者们使用了各种氧化剂,如纯氧,臭氧,氯气,过氧化氢,三价铁离子等来增加镍离子的有效浓度,提高浸出速度;为克服后一困难,除加强搅拌以外,有的还提高了反应温度,用机械搅拌的波动和高温下溶液的湍流降低吸附的速度,减少吸附层的厚度。但前者的问题在于气体类氧化剂都不易保存,而且有的价格较高,有的对操作人员不安全;而后者在于机械搅拌有个限度:当转速达到某个极限时,无论怎样增加搅拌转速,对吸附层的减薄都毫无作用。而高温操作也不能完全消除吸附层,且有高耗能的问题。In order to overcome the shortcomings of normal temperature and pressure leaching, the study found that there are two main reasons affecting the leaching speed of nickel sulfide concentrate: one is the complexity of the existing forms of nickel sulfide and its associated elements; the other is that the reduced element sulfur is present in the nickel The adsorption on the surface of concentrate particles makes its diffusion difficult and the reaction is slow. To solve the former problem, researchers have used various oxidants, such as pure oxygen, ozone, chlorine, hydrogen peroxide, ferric ions, etc. to increase the effective concentration of nickel ions and increase the leaching speed; to overcome the latter difficulty, In addition to strengthening stirring, some also increase the reaction temperature, use the fluctuation of mechanical stirring and the turbulent flow of the solution at high temperature to reduce the speed of adsorption and reduce the thickness of the adsorption layer. But the problem with the former is that gaseous oxidants are not easy to preserve, and some are expensive, and some are unsafe for operators; while the latter is that there is a limit to mechanical stirring: when the speed reaches a certain limit, no matter how you increase the stirring speed, It has no effect on the thinning of the adsorbed layer. However, high-temperature operation cannot completely eliminate the adsorption layer, and there is a problem of high energy consumption.
发明内容Contents of the invention
本发明为了克服上述现有技术存在的不足,寻找一种从硫化镍精矿里提取镍的新方法。该方法能够基本兼容上述两类方法的主要优点:即基本能在常温常压下浸出从而省能、降耗且不需特殊高压装备,同时具有较快地浸出速度。The present invention seeks a new method for extracting nickel from nickel sulfide concentrate in order to overcome the above-mentioned deficiencies in the prior art. This method can basically be compatible with the main advantages of the above two types of methods: that is, it can basically be leached under normal temperature and pressure to save energy and reduce consumption, and does not require special high-pressure equipment, and has a faster leaching speed.
本发明的技术方案:在超声波作用下,镍粒表面的硫吸附层得到一定程度的清除,使镍粒表面裸露出来。超声波的空化作用减薄了液-固边界层,强化了传质,也降低了浸出时元素硫吸附和反应产物导致的阻力膜,加速了反应进行。以少量硫酸和硝酸钠的水溶液,氧化酸解浸出硫化镍精矿。该法具有常压操作,反应速度快,浸出率高,且氧化剂为固体硝酸盐,相对安全的特点。The technical scheme of the present invention: under the action of ultrasonic waves, the sulfur adsorption layer on the surface of the nickel particles is removed to a certain extent, so that the surface of the nickel particles is exposed. The cavitation of ultrasonic waves thins the liquid-solid boundary layer, enhances mass transfer, reduces the resistance film caused by elemental sulfur adsorption and reaction products during leaching, and accelerates the reaction. With a small amount of sulfuric acid and sodium nitrate aqueous solution, nickel sulfide concentrate is leached by oxidative acid hydrolysis. This method has the characteristics of normal pressure operation, fast reaction speed, high leaching rate, and the oxidant is solid nitrate, which is relatively safe.
本发明按以下步骤进行:保证镍精矿粉矿的粒度为0.15~0.08mm占90%以上;将镍矿粉与水混匀成矿浆置于不锈钢反应器内,其中水与镍矿重量比为5~30∶1;加入氧化剂,其中所述的氧化剂可以是硝酸钠、硝酸钾、纯氧、过氧化氢或臭氧,优选加入固体氧化剂硝酸钠或硝酸钾,其中固体氧化剂与镍矿重量比为0.5~1.0∶1;再加入98%浓硫酸,其中浓硫酸与镍矿重量比为0.5~1.1∶1,最后在超声波不锈钢探头(频率20.02kHz,功率为50~150W)作用下,常温常压下共浸取40~60min。The present invention is carried out according to the following steps: ensure that the particle size of the nickel concentrate powder ore is 0.15-0.08mm, which accounts for more than 90%; mix the nickel ore powder and water to form an ore slurry and place it in a stainless steel reactor, wherein the weight ratio of water to nickel ore is 5~30:1; add oxidizing agent, wherein said oxidizing agent can be sodium nitrate, potassium nitrate, pure oxygen, hydrogen peroxide or ozone, preferably add solid oxidizing agent sodium nitrate or potassium nitrate, wherein the weight ratio of solid oxidizing agent and nickel ore is 0.5~1.0:1; then add 98% concentrated sulfuric acid, wherein the weight ratio of concentrated sulfuric acid to nickel ore is 0.5~1.1:1, and finally under the action of ultrasonic stainless steel probe (frequency 20.02kHz, power 50~150W), normal temperature and pressure leaching for 40-60 minutes.
本发明可能涉及的主要化学反应方程如下:The main chemical reaction equation that the present invention may relate to is as follows:
Ni3S2+2NO3 -+8H+→3Ni2++2S+2NO+4H2ONi 3 S 2 +2NO 3 - +8H + → 3Ni 2+ +2S+2NO+4H 2 O
或Ni3S2+2NO3 -+8H+→3Ni2++2S+NO2+4H2OOr Ni 3 S 2 +2NO 3 - +8H + → 3Ni 2+ +2S+NO 2 +4H 2 O
本发明达到的技术经济指标:镍浸出率95%~99%。The technical and economic index achieved by the invention: the nickel leaching rate is 95%-99%.
与现有的其它浸镍技术相比具有的优点:Advantages compared with other existing nickel immersion technologies:
①使用固体硝酸钠或硝酸钾作为氧化剂。避免了气体氧化剂较不易保存及安全方面的隐患;① Use solid sodium nitrate or potassium nitrate as an oxidizing agent. It avoids the hidden dangers of gas oxidizers that are not easy to store and safety;
②使用超声波强化硫化镍精矿的浸出过程,不但在分子水平上提高了反应物和生成物的传质速度,而且降低了反应的活化能,超声波作用于浸出过程退化的热能也在一定程度上强化了反应过程,能量得到充分利用;②The use of ultrasound to strengthen the leaching process of nickel sulfide concentrate not only increases the mass transfer rate of reactants and products at the molecular level, but also reduces the activation energy of the reaction. The reaction process is strengthened, and the energy is fully utilized;
③反应速率快,浸出率高。达到97%~99%的浸出率仅用40~60min,避免了一般同类浸出中较长的浸出时间和大部分情况下较低的浸出率;③The reaction rate is fast and the leaching rate is high. It takes only 40-60 minutes to reach the leaching rate of 97%-99%, which avoids the longer leaching time and the lower leaching rate in most cases of the same kind of leaching;
④对镍精矿粒度要求低。镍精矿粒度90%以上为0.15~0.08mm,这正好相当于市售的工业粉矿100目~200目,能与现有的工艺衔接。避免了同类浸出中镍矿磨细程度要求更高的缺点;浸出过程为常压,无额外供热。避免了很多同类浸出中高达数百度的浸出温度和某些浸出过程高达1.3×106帕的压力。④ Low requirements on the particle size of nickel concentrate. More than 90% of the nickel concentrate particle size is 0.15-0.08mm, which is exactly equivalent to 100-200 mesh of commercially available industrial fine ore, and can be connected with the existing process. It avoids the disadvantage of requiring higher grinding degree of nickel ore in similar leaching; the leaching process is under normal pressure without additional heating. The leaching temperature as high as hundreds of degrees in many similar leaching processes and the pressure as high as 1.3×10 6 Pa in some leaching processes are avoided.
具体实施方式Detailed ways
下面结合实施例进一步描述本发明(实例中所用硫化镍精矿均来自金川镍公司的粉矿):Further describe the present invention below in conjunction with embodiment (nickel sulfide concentrate used in the example all comes from the fine ore of Jinchuan Nickel Company):
实施例1Example 1
硫化镍精矿组成(%)Composition of nickel sulfide concentrate (%)
将硫化镍精矿磨细至0.15mm左右,准确称取2g与水搅拌混匀成矿浆于100ml不锈钢反应器内,水与硫化镍精矿重量比为30∶1,加入固体氧化剂硝酸钠,硝酸钠与硫化镍精矿重量比为0.825∶1,搅拌10min后,再加入98%浓硫酸,浓硫酸与硫化镍精矿重量比为1.1∶1,同时在超声波作用下,常压共浸出40min,完全不用专门加热(但超声波与溶液分子作用的退化热可使温度有所升高,下同),超声波频率20.02kHz,功率为90W,镍浸出率为98.22%。Grind the nickel sulfide concentrate to about 0.15mm, accurately weigh 2g and mix it with water to form an ore slurry in a 100ml stainless steel reactor, the weight ratio of water to nickel sulfide concentrate is 30:1, add solid oxidant sodium nitrate, The weight ratio of sodium to nickel sulfide concentrate is 0.825:1. After stirring for 10 minutes, add 98% concentrated sulfuric acid. The weight ratio of concentrated sulfuric acid to nickel sulfide concentrate is 1.1:1. There is no need for special heating at all (but the degeneration heat of the action of ultrasonic waves and solution molecules can increase the temperature, the same below), the ultrasonic frequency is 20.02kHz, the power is 90W, and the nickel leaching rate is 98.22%.
实施例2Example 2
硫化镍精矿组成同实施例1,Nickel sulfide concentrate composition is the same as embodiment 1,
将硫化镍精矿磨细至0.08mm左右,准确称取10g与水搅拌混匀成矿浆于500ml不锈钢反应器内,水与镍矿重量比为20∶1,加入固体氧化剂硝酸钠,硝酸钠与硫化镍精矿重量比为1∶1,搅拌10min后,再加入98%浓硫酸,浓硫酸与硫化镍精矿重量比为1.33∶1,最后在超声波作用下,常压共浸出50min,完全不用专门加热,超声波频率20.02kHz,功率为120W,镍浸出率为98.31%。Grind the nickel sulfide concentrate to about 0.08mm, accurately weigh 10g and mix it with water to form an ore slurry in a 500ml stainless steel reactor, the weight ratio of water to nickel ore is 20:1, add solid oxidant sodium nitrate, sodium nitrate The weight ratio of nickel sulfide concentrate is 1:1. After stirring for 10 minutes, 98% concentrated sulfuric acid is added. Special heating, ultrasonic frequency 20.02kHz, power 120W, nickel leaching rate 98.31%.
实施例3Example 3
硫化镍精矿组成同实施例1,Nickel sulfide concentrate composition is the same as embodiment 1,
将硫化镍精矿磨细至0.1mm左右,准确称取10g与水搅拌混匀成矿浆于500ml不锈钢反应器内,水与硫化镍精矿重量比为20∶1,加入固体氧化剂硝酸钾,硝酸钾与硫化镍精矿重量比为0.8∶1,搅拌10min后,再加入98%浓硫酸,硫酸与硫化镍精矿重量比为1.4∶1,同时在超声波作用下,常压共浸出50min,完全不用专门加热,超声波频率20.02kHz,功率为120W,镍浸出率为97.79%。Grind the nickel sulfide concentrate to about 0.1mm, accurately weigh 10g and mix it with water to form a slurry in a 500ml stainless steel reactor. The weight ratio of water to nickel sulfide concentrate is 20:1, add solid oxidant potassium nitrate, The weight ratio of potassium to nickel sulfide concentrate is 0.8:1. After stirring for 10 minutes, add 98% concentrated sulfuric acid. The weight ratio of sulfuric acid to nickel sulfide concentrate is 1.4:1. Without special heating, the ultrasonic frequency is 20.02kHz, the power is 120W, and the nickel leaching rate is 97.79%.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009101842839A CN101717857B (en) | 2009-08-18 | 2009-08-18 | Rapid direct leaching of nickel sulfide concentrate under the action of ultrasonic waves |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009101842839A CN101717857B (en) | 2009-08-18 | 2009-08-18 | Rapid direct leaching of nickel sulfide concentrate under the action of ultrasonic waves |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101717857A CN101717857A (en) | 2010-06-02 |
CN101717857B true CN101717857B (en) | 2011-07-06 |
Family
ID=42432496
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009101842839A Expired - Fee Related CN101717857B (en) | 2009-08-18 | 2009-08-18 | Rapid direct leaching of nickel sulfide concentrate under the action of ultrasonic waves |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101717857B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101899568B (en) * | 2010-07-23 | 2012-06-20 | 陕西华泽镍钴金属有限公司 | Method for producing electrolytic nickel by leaching chemically precipitated nickel sulfide with pure oxygen |
JP5445777B2 (en) * | 2010-07-28 | 2014-03-19 | 住友金属鉱山株式会社 | Method for producing ferronickel smelting raw material from low-grade nickel oxide ore |
CN102732719B (en) * | 2012-07-10 | 2013-10-16 | 金堆城钼业股份有限公司 | Method for purifying molybdenum disulfide by ultrasonic-assisted acid leaching of molybdenite |
KR20150051691A (en) * | 2013-11-05 | 2015-05-13 | 한국지질자원연구원 | Leaching method of molybdenum from sulfide mineral contained molybdenum and copper using electrolytic oxidation |
CN106947877B (en) * | 2016-12-27 | 2018-09-28 | 核工业北京化工冶金研究院 | A method of improving ground-dipping uranium extraction leaching rate using ultrasonic wave |
CN107043853A (en) * | 2016-12-30 | 2017-08-15 | 四川师范大学 | The dezincification method of copper solution |
CN113584314B (en) * | 2021-07-29 | 2023-03-14 | 湖南中伟新能源科技有限公司 | High nickel matte normal pressure leaching method and nickel sulfate |
RU2768928C1 (en) * | 2021-08-03 | 2022-03-25 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" | Method for dissolving metal sulfides using ozone and hydrogen peroxide |
CN114934193A (en) * | 2022-05-24 | 2022-08-23 | 浙江伽能环境工程有限责任公司 | Method for enhancing normal-pressure acid leaching efficiency of nickel anode mud desulfurization slag |
-
2009
- 2009-08-18 CN CN2009101842839A patent/CN101717857B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101717857A (en) | 2010-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101717857B (en) | Rapid direct leaching of nickel sulfide concentrate under the action of ultrasonic waves | |
CN104694764B (en) | A kind of Strengthen education method of fine fraction trapping gold | |
CN103252340B (en) | Resource utilization method of Fenton iron sludge | |
WO2012171481A1 (en) | Hydrometallurgical process for complete and comprehensive recovery with substantially no wastes and zero emissions | |
CN103725889A (en) | Method for leaching copper and nickel in leaching slag of matte/ice nickel with assistance of microwave | |
CN102321809A (en) | Method for extracting cobalt and copper from cobalt-copper-iron alloy | |
CN107674973B (en) | A kind of method of mechanochemical strengthening chalcopyrite leaching | |
CN104131167A (en) | Method for recovering selenium and manganese in manganese anode slime by using microwaves | |
CN101774565B (en) | Method for deeply deashing cock | |
CN105648224A (en) | Method for extracting chromium, treating and recycling harmful waste and preparing chromium compound | |
CN113584314A (en) | High nickel matte normal pressure leaching method and nickel sulfate | |
CN104630466A (en) | Method for collaboratively leaching gold in refractory gold ores by virtue of ultrasonic enhancement, chlorination and oxidization | |
CN104805310B (en) | Method for leaching cobalt from high-valence cobalt oxide-containing raw material | |
CN115161491A (en) | A method for leaching copper and cadmium slag by ultrasonic synergistic ozone oxidation | |
CN104313317B (en) | A kind of nickel-molybdenum ore oxidizing acid leaching nickel and the method for molybdenum | |
CN103526020A (en) | Method for lixiviating manganese ore containing manganous silicate | |
CN103194767B (en) | High ferro high-phosphorus manganese is utilized to prepare the method for manganese sulfate electrolyte | |
CN103924082A (en) | Method for removing iron from laterite-nickel ore high-pressure leaching solution | |
CN103738928B (en) | A kind of method utilizing selenium in ultrasound-enhanced recovery electrolytic manganese anode mud | |
CN106435183A (en) | Solid oxidizing agent for removing iron in wet metallurgy leaching agent in neutralizing manner and application of solid oxidizing agent | |
CN102115814B (en) | The atmosphere-pressure catalytic oxidation method of difficult Gold Concentrates Together With Complicated Metals Sulphides | |
CN108085486A (en) | A kind of method for extracting manganese from low-grade pyrolusite with grinding-pressurization combination method | |
CN115612848B (en) | Method for reducing copper content in zinc purification slag by ultrasonic activation of persulfate | |
CN107385208A (en) | A kind of microwave radiation technology, which is strengthened, soaks golden method | |
CN104152723B (en) | A kind of method of Leaching Vanadium from high calcium magnesium types Rock coal containing alum |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20110706 Termination date: 20120818 |