CN101706403B - 流动体系的粘度检测方法 - Google Patents

流动体系的粘度检测方法 Download PDF

Info

Publication number
CN101706403B
CN101706403B CN2009101526070A CN200910152607A CN101706403B CN 101706403 B CN101706403 B CN 101706403B CN 2009101526070 A CN2009101526070 A CN 2009101526070A CN 200910152607 A CN200910152607 A CN 200910152607A CN 101706403 B CN101706403 B CN 101706403B
Authority
CN
China
Prior art keywords
viscosity
acoustic emission
fluid
emission signal
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009101526070A
Other languages
English (en)
Other versions
CN101706403A (zh
Inventor
王靖岱
汪兵
陈杰勋
黄正梁
任聪静
阳永荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN2009101526070A priority Critical patent/CN101706403B/zh
Publication of CN101706403A publication Critical patent/CN101706403A/zh
Application granted granted Critical
Publication of CN101706403B publication Critical patent/CN101706403B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种流动体系的粘度的测定方法,包括以下步骤:1)在流动体系所在的装置外壁设置声发射信号接收装置;2)接收流体撞击壁面所产生的声发射信号;3)选取声发射信号中的平均能量或特征频段的能量作为特征变量;4)将3)中选取的特征变量代入预先标定的特征变量与流体粘度间的粘度预测模型,计算得到流动体系的粘度。本发明使用非侵入式的声发射装置进行检测,操作简单、安装方便,具有灵敏度高、测量误差小的特点。

Description

流动体系的粘度检测方法
技术领域
本发明涉及声波检测领域,尤其涉及搅拌釜、管道和环管中流体粘度的声波检测方法。
背景技术
粘度是流体的重要物理性质和技术指标之一,流体的粘性是流体微团间发生相对滑移时产生切向阻力的性质,是流体抵抗剪切变形的能力或属性。粘度的测定在许多工业部门和科学研究领域中都具有重要意义,特别是在石油化工、医药、冶金、食品等行业中。搅拌釜、管道和环管在众多领域都有广泛的应用,对搅拌釜、管道和环管中流体粘度的测量是控制生产流程、保证安全生产、控制与评定产品质量及科学研究的重要手段。
搅拌釜、管道和环管是工业生产中的核心设备,伴随着混合、溶解、反应等过程的进行,不断发生着各种物理化学变化,从而使流体的粘度也随之而变。若能实现流体粘度的实时在线检测,将能大大提高产品质量,并降低生产消耗。然而传统的流体粘度检测方法,如旋转剪切速率降速式粘度测量法(ZL96109032.4)、强迫共振法的流体粘度测量方法(ZL200710030380.3)等,都只能用于离线检测,无法应用于在线检测。而Brookfield公司和Cambridge公司的粘度检测仪(US5,531,102),具有较高的检测精度,测量结果能够基本满足很多工业过程的要求,然而,这些粘度检测仪及相关配套器件价格昂贵、维护保养复杂,同时检测时还需要将检测仪插入到流体中,从而改变流体的流场分布,不利于流程的稳定运行。
专利号为ZL01822778.3的中国发明专利中提出了“声探测器”的概念,通过将探测器安装在与聚合反应器伸出的管子相联的线管外壁并用来监测聚合物的流变性质。然而,探测器需要定位在与聚合反应器伸出的管子相联的线管外壁,由于线管包括结构细部,这就产生了诸如聚合物堵塞线管以及维护保养复杂等困难。为了克服以上困难,我们采用了高频频率采样,直接检测流体撞击壁面的声发射信号。通过实验发现将声波传感器直接定位在管路的外壁,拾取流体撞击壁面的声波信号,通过分析能准确得到流体的粘度。该方法不仅适用于管路中流体粘度的测定,同时能准确的测定搅拌釜和环管中流体的粘度。
发明内容
本发明提出了一种具有准确度高、安全环保、简易快捷、价格合理的流体粘度声发射检测技术,通过提取声发射信号中的特征变量,并结合特征变量与流体粘度的回归模型,进而实现流体粘度的在线检测。
一种流动体系的粘度的检测方法,包括以下步骤:
1)在流动体系所在的装置外壁设置声发射信号接收装置;
2)接收流体撞击壁面所产生的声发射信号;
3)选取声发射信号中的平均能量或特征频段的能量作为特征变量;
4)将3)中选取的特征变量代入预先标定的特征变量与流体粘度间的粘度预测模型,计算得到流动体系的粘度。
所述的流动体系包括液体、气液体系或气液固体系。
所述的流动体系所在的装置指的是包括内部存在是流动体系的搅拌釜、管道和环管。
所述的声发射信号接收装置的安装在流动体系所在的装置外壁,不会影响装置内部多相流体的运动或内部的化学反应。
所述的声发射信号中的平均能量,是通过对采集到的声发射信号,使用快速傅立叶变进行频谱分析后,直接积分得到的。
所述的声发射信号中的特征频段的能量,是通过对采集到的声发射信号,使用快速傅立叶变进行频谱分析,得到流体撞击壁面产生声发射信号的特征频段后,对特征频段的进行积分得到的。
所述的选取声发射信号中特征频段判断指的是分析接收装置采集到的声发射信号,利用快速傅立叶变换做频谱分析,将符合以下规律的区域作为特征频段:当流体粘度增加时,壁面附近的流体的速度降低,撞击壁面变得平缓,声发射信号的能量降低;当流体粘度降低时,壁面附近的流体的速度增加,撞击壁面变得剧烈,声发射信号的能量增加。
所述的特征变量与流体粘度间的预测模型,是所述的特征变量与流体粘度成如下的对应关系:
μ=A1*exp(E/t1)+y0
其中μ为流体的粘度;E为特征变量;A1、t1、y0为系数,通过预先标定的已知粘度的流动系统的特征变量与流体粘度间的标准曲线确定。
所述的流动体系的声波信号的频率一般在0~1MHz之间。
所述的声发射传感器的接收频率范围为1kHz~2MHz,接收频率范围为1kHz~2MHz的声发射信号,接收频率范围以30kHz~500kHz为佳。
本发明与现有的方法相比具有如下一些优点:
1)声发射接收装置是非插入式的,安装简易方便,不会影响装置内部多相流体的运动或内部的化学反应;
2)不需要发射源。振动信号是流体在运动过程中自身产生的,安全环保;
3)对测量条件要求低,能在比较恶劣的环境下全天候工作,即使在高温高压等苛刻环境下仍能正常工作;
4)反应灵敏,测量误差小,适用面广。
附图说明
图1是搅拌釜冷模装置示意图;
其中,1-搅拌釜;2-传感器;3-前置放大器;4-放大器;5-带采集卡的电脑。
图2是实施例1冷模装置中采用平均能量作为特征变量标定实验结果。
图3是实施例2的声发射信号频谱分析;
其中直线a、b之间为特征频段,即积分区域。
图4是实施例2冷模装置中采用特征频段的能量作为特征变量标定实验结果。
图5是实施例3直径560mm搅拌釜在1.33、1.50、1.67、1.83、2.00r/s五个不同转速下采用平均能量作为特征变量的标准曲线。
图6是实施例3中实验测定的粘度数据和通过公式计算得到的粘度数据的比较。
图7是实施例4直径980mm的搅拌釜在1.33、1.50、1.67、1.83、2.00r/s五个不同转速下采用特征频段的能量作为特征变量的标准曲线。
图8是实施实例4中实验测定的粘度数据和通过公式计算得到的粘度数据的比较。
图9是实施例5的管道在0.5、1.0、1.5、2.0、2.5m/s五个不同流速下采用平均能量作为特征变量的标准曲线。
图10是实施例6中实验测定的粘度数据和通过公式计算得到的粘度数据的比较。
图11是环管冷模装置示意图;
其中,1’-环管反应器  2-传感器  3-前置放大器  4-放大器  5-带采集卡的电脑。
图12是实施例6的环管在0.5、1.0、1.5、2.0、2.5m/s五个不同流速下采用平均能量作为特征变量的标准曲线。
图13是实施例6中实验测定的粘度数据和通过公式计算得到的粘度数据的比较。
具体实施方式
本发明将声发射信号接收装置放置于搅拌釜、管道和环管外壁面位置,通过采集搅拌釜、管道和环管中流体撞击器壁产生的声发射信号,分析并提取声发射信号中平均能量或特征频段的能量为特征变量E,借助预先标定建立的E与流体粘度μ之间的对应关系,由此可以实现流体粘度的在线检测。根据检测结果,可以对搅拌釜、管道和环管进行优化设计,达到指导生产、提高生产效率的目的。
搅拌釜、管道和环管内部的动态声发射信号通过设置在外壁处的声发射接收装置进入放大装置进行信号的放大,以保证信号的长距离输送,然后进入声信号采集装置进行信号的A/D转换,最后进入声发射信号处理装置(计算机)进行处理和分析。
通过置于搅拌釜、管道和环管外壁处的声发射传感器,采集声发射信号,分析计算获得特征变量E,当流体粘度增加时,壁面附近的流体的速度降低,撞击壁面变得平缓,声发射信号的能量降低;当搅流体粘度降低时,壁面附近的流体的速度增加,撞击壁面变得剧烈,声发射信号的能量增加。
为实施本发明方法所设计的一套专用检测装置,包括声发射信号的接收装置,信号采集装置以及信号处理装置。其中声发射信号的接收装置为一个或多个振动换能器;信号采集装置为一个或多个信号采集卡(A/D转化器);信号处理装置为带处理软件的处理器。
所述的振动信号的接收装置的信号输出端与信号放大装置的输入端连接,信号放大装置的输出端与信号采集装置的输入端连接,所述的信号放大装置为一个或多个信号放大器。该放大装置可以根据实际需要选择是否使用。
振动信号接收装置的接收频率范围为1kHz~2MHz,其中接收频率范围以30kHz~500kHz为佳。
实施例1
采用如图1所示的冷模装置,搅拌釜1为高150mm、直径110mm的有机玻璃容器。搅拌叶轮为六叶盘式涡轮,叶轮直径55mm。搅拌转速通过电子恒速搅拌器测定(杭州仪表电机厂,额定电压220V,量程80-1000r·min-1,精确到±10r·min-1)。实验中采用的采样频率为500kHz,采样时间为10s。声波测量仪器包括声波接收装置2、前置放大器3、放大器4、信号采集装置和信号处理装置5(带采集卡的电脑)。标定实验所用物料为水-蔗糖溶液,并通过落球法测定流体的粘度。
分析声信号接收装置采集到的声发射信号,首先对信号进行快速傅立叶变换(FFT),将时间域内信号转换成频域信号,得到声发射信号的频谱图,通过积分得到平均能量。
通过标定实验建立流体粘度μ与特征变量E之间的关系,具体步骤如下:将已知粘度的流体加入搅拌釜,通过采集声发射信号计算不同粘度的平均能量作为特征变量E;将流体粘度μ做横坐标,平均能量做纵坐标,通过拟合得到指数拟合曲线图2;
通过拟合曲线得到流体粘度μ与特征变量E的关系:
E=2.57E8exp(-μ/0.15)+1105.56
实施例2
采用实施实例1所使用的冷模装置。标定实验所用物料为水-蔗糖溶液,并通过落球法测定流体的粘度,同时在搅拌釜底通入气体。
分析声信号接收装置采集到的声发射信号,对信号进行快速傅立叶变换做频谱分析,将符合以下规律的区域作为特征频段:当搅拌釜中流体粘度增加时,由搅拌桨带动的流体转速降低,撞击搅拌釜壁面变得平缓,声发射信号的特征能量降低;当搅拌釜中流体粘度降低时,由搅拌桨带动的流体转速增加,撞击搅拌釜壁面变得剧烈,声发射信号的特征能量增加。将流体撞击壁面产生声发射信号的特征频段(1~5kHz)积分得到能量,作为特征变量。
通过标定实验建立流体粘度μ与特征变量之间的关系,具体步骤如下:将已知粘度的流体加入搅拌釜,通过采集声发射信号计算不同粘度的特征频段的能量E’(图3);将流体粘度μ做横坐标,特征频段的能量E’做纵坐标,通过拟合得到指数拟合曲线图4;
通过拟合曲线得到流体粘度μ与特征频段的能量E’的关系:
E’=3.58E13exp(-μ/0.10)+468278.92
实施例3
利用声发射技术对直径560mm的搅拌釜的流体粘度进行了检测。搅拌釜高1000mm、直径560mm的,材质为有机玻璃,转速调节范围50~250r/min。声发射信号采用声波测量仪器进行测量。其中声波测量仪器包括声波接收装置、放大装置、信号采集装置和信号处理装置,声传感器置于搅拌釜壁面上,采样频率1MHz,采样时间5s。标定实验所用物料为水-蔗糖溶液,并通过落球法测定流体的粘度。通过加入不同数量的蔗糖来改变流体的粘度,同时采集声发射信号。标定实验在五个转速(1.33、1.50、1.67、1.83、2.00r/s)下进行,对采集到的声发射信号进行FFT变换,积分后得到平均能量作为特征变量E,与流体粘度μ作图,具体结果如图5所示。
通过拟合曲线得到转速为1.33r/s流体粘度μ与E的关系:
E=3.97E14exp(-μ/0.07)+1101.17
通过拟合曲线得到转速为1.50r/s流体粘度μ与E的关系:
E=6.82E10exp(-μ/0.10)+1096.55
通过拟合曲线得到转速为1.67r/s流体粘度μ与E的关系:
E=2.42E8exp(-μ/0.14)+1095.09
通过拟合曲线得到转速为1.83r/s流体粘度μ与E的关系:
E=6.52E9exp(-μ/0.12)+1173.27
通过拟合曲线得到转速为2.00r/s流体粘度μ与E的关系:
E=3.58E7exp(-μ/0.18)+1100.58
将实验测定的粘度数据和通过公式计算得到的粘度数据比较,如图6所示。
实施例4
利用声发射技术对直径980mm的搅拌釜的流体粘度进行了检测。搅拌釜高1600mm、直径980mm的,材质为有机玻璃,转速调节范围10~250r/min。声发射信号采用声波测量仪器进行测量。其中声波测量仪器包括声波接收装置、放大装置、信号采集装置和信号处理装置,声传感器置于搅拌釜壁面上,采样频率1MHz,采样时间5s。标定实验所用物料为水-蔗糖溶液,并通过落球法测定流体的粘度。实验中向不同粘度的蔗糖溶液通入气体,气体量维持在80m3/hr不变,同时采集声发射信号。标定实验在五个转速(1.33、1.50、1.67、1.83、2.00r/s)下进行,对采集到的声发射信号进行FFT变换,积分后得到特征频段(2~4kHz)的能量E’,与流体粘度μ作图,具体结果如图7所示。
通过拟合曲线得到转速为1.33r/s流体粘度μ与E’的关系:
E′=6.56E16exp(-μ/0.07)+473072.59
通过拟合曲线得到转速为1.50r/s流体粘度μ与E’的关系:
E′=3.03E13exp(-μ/0.10)+471431.14
通过拟合曲线得到转速为1.67r/s流体粘度μ与E’的关系:
E′=1.04E14exp(-μ/0.09)+474686.69
通过拟合曲线得到转速为1.83r/s流体粘度μ与E’的关系:
E′=4.69E11exp(-μ/0.13)+488146.24
通过拟合曲线得到转速为2.00r/s流体粘度μ与E’的关系:
E′=5.16E10exp(-μ/0.16)+488799.17
将实验测定的粘度数据和通过公式计算得到的粘度数据比较,如图8所示。
实施例5
利用声发射技术对的管道中的粘度进行了检测。管路直径100mm,长度5000mm。声发射信号采用声波测量仪器进行测量。其中声波测量仪器包括声波接收装置、放大装置、信号采集装置和信号处理装置,声传感器置于管路壁面上,采样频率1MHz,采样时间5s。标定实验所用物料为水-蔗糖溶液,并通过落球法测定流体的粘度。通过加入不同数量的蔗糖来改变流体的粘度,同时采集声发射信号。标定实验在五个流速(0.5、1.0、1.5、2.0、2.5m/s)下进行,对采集到的声发射信号进行FFT变换,积分后得到平均能量作为特征变量E,与流体粘度μ作图,具体结果如图9所示。
通过拟合曲线得到流速为0.5m/s时流体粘度μ与E的关系:
E=2.18E8exp(-μ/0.15)+1957.94
通过拟合曲线得到流速为1.0m/s时流体粘度μ与E的关系:
E=6.15E8exp(-μ/0.15)+2240.12
通过拟合曲线得到流速为1.5m/s时流体粘度μ与E的关系:
E=2.95E7exp(-μ/0.18)+2572.79
通过拟合曲线得到流速为2.0m/s时流体粘度μ与E的关系:
E=5.19E8exp(-μ/0.14)+2683.10
通过拟合曲线得到流速为2.5m/s时流体粘度μ与E的关系:
E=1.10E9exp(-μ/0.14)+2823.79
将实验测定的粘度数据和通过公式计算得到的粘度数据比较,如图10所示。
实施例6
采用如图11所用的环管装置。声发射信号采用声波测量仪器进行测量。其中声波测量仪器包括传感器、前置放大器3、放大器4、信号采集装置和信号处理装置5(带采集卡的电脑),声传感器置于环管反应器1的管路外壁面上,采样频率1MHz,采样时间5s。标定实验所用物料为水-蔗糖溶液,并通过落球法测定流体的粘度。通过加入不同数量的蔗糖来改变流体的粘度,同时采集声发射信号。标定实验在五个流速(0.5、1.0、1.5、2.0、2.5m/s)下进行,对采集到的声发射信号进行FFT变换,积分后得到平均能量作为特征变量E,与流体粘度μ作图,具体结果如图12所示。
通过拟合曲线得到流速为0.5m/s时流体粘度μ与E的关系:
E=1.48E14exp(-μ/0.07)+4180.99
通过拟合曲线得到流速为1.0m/s时流体粘度μ与E的关系:
E=7.09E6exp(-μ/0.22)+4967.08
通过拟合曲线得到流速为1.5m/s时流体粘度μ与E的关系:
E=1.19E9exp(-μ/0.14)+5697.25
通过拟合曲线得到流速为2.0m/s时流体粘度μ与E的关系:
E=9.85E8exp(-μ/0.14)+6131.98
通过拟合曲线得到流速为2.5m/s时流体粘度μ与E的关系:
E=1.70E8exp(-μ/0.16)+6770.43
将实验测定的粘度数据和通过公式计算得到的粘度数据比较,如图13所示。

Claims (8)

1.一种流动体系的粘度检测方法,包括以下步骤:
1)在流动体系所在的装置外壁设置声发射信号接收装置;
2)接收流体撞击壁面所产生的声发射信号;
3)选取声发射信号中的平均能量或特征频段的能量作为特征变量;
所述的平均能量通过对采集到的声发射信号,使用快速傅立叶变换进行频谱分析后,直接积分得到;
4)将3)中选取的特征变量代入预先标定的特征变量与流体粘度间的粘度预测模型,计算得到流动体系的粘度。
2.根据权利要求1所述的粘度检测方法,其特征在于:所述的流动体系包括液体、气液体系或气液固体系。
3.根据权利要求1所述的粘度检测方法,其特征在于:所述的流动体系所在的装置指内部存在流动体系的搅拌釜、管道和环管。
4.根据权利要求1所述的粘度检测方法,其特征在于:所述的特征频段的能量通过对采集到的声发射信号,使用快速傅立叶变换进行频谱分析,得到流体撞击壁面产生声发射信号的特征频段后,对特征频段的进行积分得到。
5.根据权利要求4所述的粘度检测方法,其特征在于:所述的特征频段指的是分析采集到的声发射信号,利用快速傅立叶变换做频谱分析,将符合以下规律的区域作为特征频段:当流体粘度增加时,壁面附近的流体的速度降低,撞击壁面变得平缓,声发射信号的能量降低;当流体粘度降低时,壁面附近的流体的速度增加,撞击壁面变得剧烈,声发射信号的能量增加。
6.根据权利要求1所述的粘度检测方法,其特征在于:所述的特征变量与流体粘度间的预测模型,是所述的特征变量与流体粘度成如下的对应关系:
μ=A1*exp(E/t1)+y0
其中μ为流体的粘度,E为特征变量,A1、t1、y0为系数。
7.根据权利要求1所述的粘度检测方法,其特征在于:接收频率范围为1kHz~2MHz的声发射信号。
8.根据权利要求7所述的粘度检测方法,其特征在于:接收频率范围为30kHz~500kHz的声发射信号。
CN2009101526070A 2009-09-10 2009-09-10 流动体系的粘度检测方法 Expired - Fee Related CN101706403B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009101526070A CN101706403B (zh) 2009-09-10 2009-09-10 流动体系的粘度检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009101526070A CN101706403B (zh) 2009-09-10 2009-09-10 流动体系的粘度检测方法

Publications (2)

Publication Number Publication Date
CN101706403A CN101706403A (zh) 2010-05-12
CN101706403B true CN101706403B (zh) 2011-11-23

Family

ID=42376641

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101526070A Expired - Fee Related CN101706403B (zh) 2009-09-10 2009-09-10 流动体系的粘度检测方法

Country Status (1)

Country Link
CN (1) CN101706403B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3171912B1 (en) * 2014-07-25 2019-11-20 Kpr U.S., Llc Flow control apparatus comprising detection system
CN109580924B (zh) * 2017-09-29 2020-03-27 重庆南方数控设备有限责任公司 血栓弹力图凝固过程的频域参数分析方法及系统
CN109856013B (zh) * 2017-11-30 2021-09-14 廊坊立邦涂料有限公司 一种平整表面的半固体装饰性材料施工性能判断方法
CN109297864B (zh) * 2018-10-08 2020-10-27 浙江大学 一种粘性颗粒流化床的检测方法
CN111044411B (zh) * 2019-12-17 2020-12-25 浙江大学 一种制冷剂气相粘度测量装置及制冷剂气相粘度计算方法
CN112121513B (zh) * 2020-09-23 2022-08-12 黑龙江齐泰动物保健品有限公司 一种可对粘稠度进行粗略检测的液体兽药加工用提取装置

Also Published As

Publication number Publication date
CN101706403A (zh) 2010-05-12

Similar Documents

Publication Publication Date Title
CN101706403B (zh) 流动体系的粘度检测方法
CN206193013U (zh) 一种液体pH连续自动测定装置
CN101067617B (zh) 变压器油中微水及混合气体超声在线检测方法及装置
CN102507430A (zh) 一种管道内腐蚀在线监测装置
AU4599393A (en) Liquid dispensing system
CN103278561A (zh) 通用型超声波液体浓度检测方法及装置
CN101907551A (zh) 中药提取浓缩液密度超声检测装置及应用
CN103591975A (zh) 一种超声波传感器指标检测方法及装置
CN108036853B (zh) 一种检测单一方向振动的振动检测方法
CN107741264A (zh) 一种超声波液位测量方法和装置
CN203772333U (zh) 直线互射式超声波水表
CN112710703B (zh) 一种带有导电特性补偿的电导网格传感器三相流成像方法
CN105352849A (zh) 在线式油品粘度检测仪
CN210690481U (zh) 一种原油含水率超声检测仪
CN103091020A (zh) 一种液压破碎锤冲击能检测方法及装置
US4852396A (en) Self-calibrating ultrasonic measurement of dispersed phase volumetric holdup in liquid/liquid dispersions
CN208013153U (zh) 色谱分析仪器的云自测仪
CN206531842U (zh) 一种新型雨污分析机
CN205719939U (zh) 红外光谱酒精度监测探头
CN206804575U (zh) 聚氨酯在线水分含量测量装置
CN111044095A (zh) 一种用于罐式集装箱的多功能传感装置
CN103743445A (zh) 一种氧气流量浓度检测装置
CN101532989B (zh) 搅拌釜中分散相含量的检测方法
EP3399285A1 (en) Taper pipe-shaped area flow meter using magnetostrictive distance measurement
CN114001799A (zh) 一种基于大型石油储罐的超声波式油水界面检测系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111123

Termination date: 20140910

EXPY Termination of patent right or utility model