CN101706274B - Device for automatically detecting nut loss of rail fastener system - Google Patents
Device for automatically detecting nut loss of rail fastener system Download PDFInfo
- Publication number
- CN101706274B CN101706274B CN2009102536811A CN200910253681A CN101706274B CN 101706274 B CN101706274 B CN 101706274B CN 2009102536811 A CN2009102536811 A CN 2009102536811A CN 200910253681 A CN200910253681 A CN 200910253681A CN 101706274 B CN101706274 B CN 101706274B
- Authority
- CN
- China
- Prior art keywords
- nut
- software module
- image
- fastener system
- missing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 claims description 21
- 238000000605 extraction Methods 0.000 claims description 11
- 239000013598 vector Substances 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 8
- 238000004422 calculation algorithm Methods 0.000 claims description 7
- 238000012706 support-vector machine Methods 0.000 claims description 6
- 230000008034 disappearance Effects 0.000 claims 11
- 238000001514 detection method Methods 0.000 abstract description 19
- 238000004364 calculation method Methods 0.000 abstract description 14
- 230000000007 visual effect Effects 0.000 abstract description 14
- 239000000284 extract Substances 0.000 abstract 1
- 238000007781 pre-processing Methods 0.000 description 12
- 238000012423 maintenance Methods 0.000 description 8
- 238000012549 training Methods 0.000 description 7
- 230000009466 transformation Effects 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 238000000513 principal component analysis Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 241001669679 Eleotris Species 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 241000282414 Homo sapiens Species 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011179 visual inspection Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009659 non-destructive testing Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Image Processing (AREA)
- Image Analysis (AREA)
Abstract
一种钢轨扣件系统螺母缺失自动检测装置,包括视觉采集装置、GPS定位器、照明装置和计算机系统。照明装置增加螺母光照。计算机系统设有视频数据存储软件模块、显示软件模块和缺失螺母识别定位软件模块,其执行步骤依次为:视频数据存储软件模块接收并存储由GPS定位器获取的装置所处位置信息,以及视觉采集装置得到的包含扣件系统螺母的连续视频图像,并记录各视频图像和位置数据获取的对应时间值;缺失螺母识别定位软件模块对获得的视频图像进行预处理、子图像裁切、特征提取、特征分类和位置计算,实现螺母缺失的识别和定位;显示软件模块显示和打印缺失螺母图像和位置信息。本发明工作时随列车运动,实现钢轨扣件系统螺母缺失的自动检测和定位。
An automatic detection device for missing nuts in a rail fastener system, comprising a vision acquisition device, a GPS locator, a lighting device and a computer system. The lighting fixture increases nut lighting. The computer system is equipped with a video data storage software module, a display software module and a missing nut identification and positioning software module, and its execution steps are as follows: the video data storage software module receives and stores the location information of the device obtained by the GPS locator, and visual collection The device obtains continuous video images containing the nuts of the fastener system, and records the corresponding time values of each video image and position data acquisition; the missing nut identification and positioning software module preprocesses the obtained video images, cuts sub-images, extracts features, Feature classification and position calculation realize the identification and location of missing nuts; the display software module displays and prints images and position information of missing nuts. When the invention works, it moves with the train to realize the automatic detection and positioning of the missing nuts of the rail fastener system.
Description
技术领域 technical field
本发明专利涉及一种钢轨扣件系统螺母缺失自动检测装置,特别涉及一种基于计算机视觉的钢轨扣件系统螺母缺失自动检测装置。The patent of the present invention relates to an automatic detection device for missing nuts in a rail fastener system, in particular to an automatic detection device for missing nuts in a rail fastener system based on computer vision.
背景技术 Background technique
线路维修保养对于地铁和铁路系统的正常工作和安全运行具有重要作用。世界各国的铁道和城市轨道交通部门都对线路维修工作非常重视,制定了详细的计划和严格的规章。线路维修保养的重要工作之一是检查扣件系统螺母是否缺失,扣压件是否松动。扣件系统螺母、道钉和扣件的作用是使钢轨和路枕达到紧密有效的联接,是铁道和地铁线路的重要附件。实际中,由于安装保养不到位、列车行驶的振动和人为盗取等原因,线路上扣件系统螺母可能会缺失,这给列车安全行驶造成隐患。Line maintenance plays an important role in the normal work and safe operation of subway and railway systems. The railway and urban rail transit departments of all countries in the world attach great importance to line maintenance work, and have formulated detailed plans and strict regulations. One of the important tasks of line maintenance is to check whether the nuts of the fastener system are missing and whether the fastening parts are loose. Fastener system The function of nuts, spikes and fasteners is to achieve a tight and effective connection between rails and sleepers, and they are important accessories for railway and subway lines. In practice, due to insufficient installation and maintenance, vibration of the train running, and human theft, the nuts of the fastener system on the line may be missing, which poses hidden dangers to the safe running of the train.
长期以来,线路维修中主要依靠维修养护工队的人工巡检和目测的方法来判定是否存在路枕损坏、钢轨磨损以及扣件系统螺母缺失等线路非正常状况。部分国外铁路公司也依靠有经验维修人员观看线路路面录像,从而判断是否有路枕、钢轨和扣件系统螺母需要维修,其中录像是由安装在行驶列车上的摄像机拍摄记录的。这种人工检查线路钢轨、路枕和扣件系统螺母的方法所需时间长、劳动强度大、效率低、漏检率高。For a long time, line maintenance has mainly relied on the manual inspection and visual inspection of the maintenance team to determine whether there are line abnormalities such as damaged road bolsters, worn rails, and missing fastener system nuts. Some foreign railway companies also rely on experienced maintenance personnel to watch the road surface video to judge whether there are road ties, rails and fastener system nuts that need to be repaired. The video is recorded by the camera installed on the moving train. This method of manual inspection of line rails, road sleepers and fastening system nuts requires a long time, high labor intensity, low efficiency, and high missed detection rate.
计算机视觉是用各种成像系统代替视觉器官作为输入敏感手段,由计算机来代替大脑完成处理和解释。计算机视觉的最终目标是使计算机能象人那样通过视觉观察和理解世界,并具有自主判断和识别的能力。近二、三十年以来,计算机视觉技术已逐步从实验研究迈向实际应用阶段。目前,计算机视觉系统在检测领域应用十分广泛。基于计算机视觉技术的检测方法,具有效率高、成本低和可靠性好等优点,是无损检测的重要发展方向。利用计算机视觉识别方法代替人工目视检查,是铁道和地铁线路维修的新趋势。Computer vision uses various imaging systems instead of visual organs as input sensitive means, and the computer replaces the brain to complete processing and interpretation. The ultimate goal of computer vision is to enable computers to observe and understand the world through vision like humans, and to have the ability to judge and recognize autonomously. In the past two or three decades, computer vision technology has gradually moved from experimental research to practical application. At present, computer vision systems are widely used in the field of detection. The detection method based on computer vision technology has the advantages of high efficiency, low cost and good reliability, and is an important development direction of nondestructive testing. The use of computer vision recognition methods to replace manual visual inspection is a new trend in railway and subway line maintenance.
经过对现有技术的文献检索发现,没有关于钢轨扣件系统螺母缺失的自动检测装置的实用新型和发明专利,只有国外少部分学者对基于计算机视觉的扣件系统螺母缺失的自动检测技术进行了初步的研究。Mazzeo等(Mazzeo et al.,Pattern Recognition Letters,2004,25:669-677;Mazzeo et al.,Proceedings of the 2004 IEEE Intelligent TransportationSystems Conference,417-422;Mazzeo et al.,Proceedings of the 2003 IEEEInternational Symposium on Intelligent Control,636-641)研究了利用主元分析、小波变换和神经网络技术对轨道线路视频图像进行处理,从而自动检测扣件系统螺母的缺失。在最近的文献(Ruvo et al.,Proceedings of the7th international Workshop on Computer Architecture for Machine Perception,2005,1-6;Marino et al.,IEEE Transactions on Systems,Man,andCybernetics,Part C,2007)中,研究人员介绍了基于FPGA开发的扣件系统螺母缺失检测装置,运用了前述神经网络等算法,实验结果显示其具有一定实时性。上述研究人员利用计算机视觉进行缺失螺母检测,虽然取得了初步成果,但是存在以下不足:After searching the literature of the existing technology, it is found that there is no utility model or invention patent for the automatic detection device for the missing nut of the rail fastener system, and only a small number of foreign scholars have carried out the automatic detection technology for the missing nut of the fastener system based on computer vision. preliminary research. Mazzeo et al. (Mazzeo et al., Pattern Recognition Letters, 2004, 25: 669-677; Mazzeo et al., Proceedings of the 2004 IEEE Intelligent Transportation Systems Conference, 417-422; Mazzeo et al., Proceedings of the 2003 IEEE Intelligent Transportation Systems Conference on Symposium on Symposium Intelligent Control, 636-641) studied the use of principal component analysis, wavelet transform and neural network technology to process video images of track lines to automatically detect the absence of nuts in fastener systems. In recent literature (Ruvo et al., Proceedings of the7th international Workshop on Computer Architecture for Machine Perception, 2005, 1-6; Marino et al., IEEE Transactions on Systems, Man, and Cybernetics, Part C, 2007), research The staff introduced the nut missing detection device of the fastener system developed based on FPGA, using the aforementioned neural network and other algorithms, and the experimental results show that it has a certain real-time performance. The above-mentioned researchers used computer vision to detect missing nuts. Although they have achieved preliminary results, they have the following shortcomings:
(1)其利用神经网络进行特征分类的方法,容易使分类辨识结果陷入局部最优,而且一般需要大样本,训练结果也不稳定,使得该视觉识别系统的适用性和工作可靠性有待提高;(1) The method of feature classification using neural network tends to cause the classification and identification results to fall into a local optimum, and generally requires large samples, and the training results are also unstable, so that the applicability and working reliability of the visual recognition system need to be improved;
(2)缺失螺母的位置是基于视频图像中扣件系统螺母数目和相邻两个螺母的间距进行计算,这种计算方法得到的螺母地理位置结果误差较大。(2) The position of the missing nut is calculated based on the number of nuts in the fastener system in the video image and the distance between two adjacent nuts. This calculation method results in a large error in the location of the nut.
发明内容 Contents of the invention
本发明的目的在于克服现有技术中存在的不足,提供一种钢轨扣件系统螺母缺失的自动检测装置,使其系统结构简单,检测和定位准确,用于代替或辅助钢轨扣件系统螺母的人工巡检。The purpose of the present invention is to overcome the deficiencies in the prior art, to provide an automatic detection device for the lack of nuts in the rail fastener system, so that the system structure is simple, the detection and positioning are accurate, and it is used to replace or assist the nuts of the rail fastener system. Manual inspection.
为实现本发明所述目的,本发明提供一种钢轨扣件系统螺母缺失的自动检测装置,该自动检测装置包括:视觉采集装置、GPS定位器、照明装置和计算机系统。该缺失螺母自动检测装置安装于列车底部,在列车行进时,对钢轨两侧扣件系统螺母视频图像进行采集、存储,对缺失螺母的辨识和定位由计算机系统在线或离线完成。In order to achieve the stated purpose of the present invention, the present invention provides an automatic detection device for missing nuts in a rail fastener system. The automatic detection device includes: a visual acquisition device, a GPS locator, a lighting device and a computer system. The missing nut automatic detection device is installed at the bottom of the train. When the train is moving, it collects and stores the video images of the nuts of the fastener system on both sides of the rail, and the identification and positioning of the missing nuts are completed online or offline by the computer system.
本发明的视觉采集装置,实现采集包括各个扣件系统螺母的连续视频图像,并将所获得的视频图像传送给计算机系统。The vision collection device of the present invention realizes the collection of continuous video images including nuts of each fastener system, and transmits the obtained video images to a computer system.
照明装置用于增加扣件系统螺母光照,从而改善所获得的视频图像质量。The lighting unit was used to increase the illumination of the fastener system nuts, thereby improving the quality of the video images obtained.
GPS定位器确定视觉采集装置各个时刻所处的地理位置,并将各时刻对应的地理位置信息传送给计算机系统。The GPS locator determines the geographic location of the visual acquisition device at each moment, and transmits the geographic location information corresponding to each moment to the computer system.
计算机系统中设有视频数据存储软件模块、显示软件模块和缺失螺母识别定位软件模块,并执行如下步骤:The computer system is provided with a video data storage software module, a display software module and a missing nut identification and positioning software module, and the following steps are performed:
a)视频数据存储软件模块接收并存储由视觉采集装置传送来的包含扣件系统螺母的连续视频,并记录各视频图像对应的时间值;a) The video data storage software module receives and stores the continuous video containing the nut of the fastener system transmitted by the visual acquisition device, and records the corresponding time value of each video image;
b)视频数据存储软件模块接收并存储由GPS定位器传送来的各时刻装置所处地理位置信息,并记录各地理位置信息对应的时间值;b) The video data storage software module receives and stores the geographic location information of the device at each moment transmitted by the GPS locator, and records the corresponding time value of each geographic location information;
c)缺失螺母识别定位软件模块对视频图像进行图像预处理、子图像裁切、特征提取和特征分类,从而完成缺失螺母的辨识,并记录这些缺失螺母对应的图像的获取时间值;c) The missing nut identification and positioning software module performs image preprocessing, sub-image cropping, feature extraction and feature classification on the video image, thereby completing the identification of missing nuts, and recording the acquisition time values of the images corresponding to these missing nuts;
d)缺失螺母识别定位软件模块根据缺失螺母对应的图像的获取时间值以及各时刻对应的地理位置信息,计算缺失螺母的地理位置,实现缺失螺母的定位;d) The missing nut identification and positioning software module calculates the geographic location of the missing nut according to the acquisition time value of the image corresponding to the missing nut and the corresponding geographic location information at each moment, so as to realize the location of the missing nut;
e)显示软件模块对采集的视频进行按要求显示,并汇总、显示和打印缺失螺母的图像和地理位置信息。e) The display software module displays the collected video as required, and summarizes, displays and prints the image and geographic location information of the missing nut.
所述缺失螺母识别定位软件模块包括图像预处理子模块、子图像裁切子模块、特征提取子模块、特征分类子模块和缺失螺母位置计算子模块等五大功能子模块,具体工作过程为:The missing nut identification and positioning software module includes five functional submodules such as image preprocessing submodule, subimage cutting submodule, feature extraction submodule, feature classification submodule and missing nut position calculation submodule, and the specific working process is:
1)从视频数据存储软件模块读取的视频图像首先由图像预处理子模块进行滤波去噪和图像复原等预处理,并将预处理之后的视频图像传送给子图像裁切子模块;1) The video image read from the video data storage software module is first pre-processed by the image pre-processing sub-module such as filter denoising and image restoration, and the pre-processed video image is sent to the sub-image cutting sub-module;
2)子图像裁切子模块的目的是裁切尽可能小的包含扣件系统螺母的子图像,该处理过程首先使用模板匹配法确定包含螺母的子图像,采用穷尽搜索确定第一个扣件系统螺母在视频图像中的位置;然后根据列车速度预测下一个路枕上的扣件系统螺母出现的时间,这样就可以从相应视频图像中裁切得到一个螺母的子图像,其中列车速度根据地理位置数据和时间值计算得到;2) The purpose of the sub-image cropping sub-module is to cut as small a sub-image as possible containing the nut of the fastener system. The processing process first uses the template matching method to determine the sub-image containing the nut, and uses exhaustive search to determine the first fastener system The position of the nut in the video image; then predict the time when the nut of the fastening system on the next sleeper will appear according to the train speed, so that a sub-image of the nut can be cropped from the corresponding video image, where the train speed is based on the geographic location data and time values are calculated;
3)特征提取子模块利用图像变换算法对子图像裁切子模块传送的各幅子图像进行特征变换,得到各幅子图像的低维特征向量,并将其传送给特征分类子模块;3) The feature extraction sub-module uses an image transformation algorithm to perform feature transformation on each sub-image transmitted by the sub-image cropping sub-module, obtains the low-dimensional feature vector of each sub-image, and sends it to the feature classification sub-module;
4)特征分类子模块进行的特征分类处理过程,采用支持向量机算法进行子图像的特征分类,根据分类结果判断各特征向量所对应的子图像中的扣件系统螺母是否缺失,并将缺失螺母的图像的获取时间传送给缺失螺母位置计算子模块;4) The feature classification processing process carried out by the feature classification sub-module uses the support vector machine algorithm to classify the features of the sub-images, judges whether the fastener system nuts in the sub-images corresponding to each feature vector are missing according to the classification results, and replaces the missing nuts The acquisition time of the image is sent to the missing nut position calculation submodule;
5)缺失螺母位置计算子模块根据这些缺失螺母图像的时间值,从视频数据存储软件模块中查找和计算对应的地理位置数据,并将这些时间值和位置数据存储后,生成报表传送给显示软件模块。5) The missing nut position calculation sub-module searches and calculates the corresponding geographic location data from the video data storage software module according to the time values of these missing nut images, and after storing these time values and position data, generates a report and sends it to the display software module.
本发明是一种钢轨扣件系统螺母缺失自动检测装置,这种自动检测装置根据计算机视觉的原理实现扣件系统螺母缺失的自动识别,利用GPS定位器进行缺失螺母的定位,缺失螺母识别率高,并具有定位方式简单和定位误差小的特点,是一种在线或离线的缺失螺母自动检测装置。The present invention is an automatic detection device for missing nuts in a rail fastener system. The automatic detection device realizes automatic identification of missing nuts in the fastener system according to the principle of computer vision, uses a GPS locator to locate missing nuts, and has a high recognition rate for missing nuts. , and has the characteristics of simple positioning method and small positioning error. It is an on-line or off-line automatic detection device for missing nuts.
附图说明 Description of drawings
图1是本发明的结构框图;Fig. 1 is a block diagram of the present invention;
图2是本发明各模块和子模块之间的连接示意图。Fig. 2 is a schematic diagram of connections between modules and sub-modules of the present invention.
具体实施方式 Detailed ways
如图1所示,本发明包括四个组成部分:视觉采集装置、GPS定位器3、照明装置4和计算机系统5。视觉采集装置包含CCD图像传感器1和图像采集卡2。视觉采集装置用于采集包含列车底部钢轨两侧的扣件系统螺母的连续视频图像,并将所获得的连续视频图像传送给计算机系统5。As shown in FIG. 1 , the present invention includes four components: a visual acquisition device, a
GPS定位器3根据GPS定位原理确定视觉采集装置各个时刻所处的地理位置,地理位置数据包括经度和纬度数值,并将各时刻的地理位置信息传送给计算机系统5中的视频数据存储软件模块11,视频数据存储软件模块11同时也存储在获取各地理位置信息时所对应的时间值。GPS定位器3通过USB或RS-232等接口与计算机系统5连接通信。The
照明装置4安装在视觉采集装置的CCD图像传感器1旁侧,用于增加扣件系统螺母光照,从而改善所获得视频图像质量。The
如图2所示,计算机系统5中设有视频数据存储软件模块11、显示软件模块12和缺失螺母识别定位软件模块13。计算机系统5的视频数据存储软件模块11实时接收并存储由GPS定位器3获取的当前装置所处的地理位置信息,以及视觉采集装置得到的扣件系统螺母连续视频图像,完成地理位置数据、视频图像和相应时间值的存储。缺失螺母识别定位软件模块13通过对所获得的视频图像进行预处理、子图像裁切、特征变换、特征分类和位置计算等步骤,完成对缺失螺母的自动辨识和定位。显示软件模块12即能够实时显示所获得的连续视频图像,也可以显示缺失螺母识别定位软件模块13处理得到的缺失螺母图像以及所有缺失螺母位置信息报表。As shown in FIG. 2 , the
本发明装置安装时,CCD图像传感器1的光轴与铁轨路基平面尽可能垂直,并处于扣件系统螺母正上方。由于每个路枕一般安装有四个扣件螺母,因此本发明需要在列车底部并排安装四个CCD图像传感器。CCD图像传感器1的镜头放大倍数根据底部扣件系统螺母和图像传感器的距离进行恰当选取。列车行进时,CCD图像传感器1实现采集包含扣件系统螺母的连续视频图像,并通过图像采集卡2将所获得的连续视频图像传送给计算机系统5。When the device of the present invention is installed, the optical axis of the
视觉采集装置选配曝光时间尽可能短的高速CCD图像传感器,这样使得本发明装置工作时,允许列车高速行进。除计算机系统平台采用Windows XP外,本发明的视频数据存储软件模块11、显示软件模块12和缺失螺母识别定位软件模块13均采用Visual C++软件编程实现。The visual acquisition device is equipped with a high-speed CCD image sensor with as short an exposure time as possible, so that when the device of the present invention works, the train is allowed to travel at high speed. Except that the computer system platform adopts Windows XP, the video data storage software module 11 of the present invention, the display software module 12 and the missing nut identification and positioning software module 13 all adopt Visual C++ software programming to realize.
如图2所示,缺失螺母识别定位软件模块13包括图像预处理子模块6、子图像裁切子模块7、特征提取子模块8、特征分类子模块9和缺失螺母位置计算子模块10。各个子模块分别从前一模块获得图像或数据,并通过对图像或数据进行处理,将处理之后的图像或数据传送给下一模块。As shown in FIG. 2 , the missing nut identification and positioning software module 13 includes an image preprocessing submodule 6 , a subimage cropping submodule 7 , a feature extraction submodule 8 , a feature classification submodule 9 and a missing nut position calculation submodule 10 . Each sub-module respectively obtains the image or data from the previous module, and processes the image or data, and transmits the processed image or data to the next module.
计算机系统5所属的各软件模块和各子模块进一步详细说明如下:Each software module and each submodule of the
1)视频数据存储软件模块11。CCD图像传感器1采集所需视频图像,并经过图像采集卡2传送给视频数据存储软件模块11,另一方面GPS定位器3也周期的向视频数据存储软件模块11发送当前时刻的地理位置信息数据,视频数据存储软件模块11接收并存储这些视频图像数据、地理位置数据和对应时间值,供显示软件模块12和缺失螺母识别定位软件模块13使用。1) Video data storage software module 11.
2)显示软件模块12。显示软件模块12用于显示视频数据存储软件模块11所获得的连续视频图像,也能够显示和打印缺失螺母识别定位软件模块13输出的所有缺失螺母位置信息报表以及相应缺失螺母的图像。2) The software module 12 is displayed. The display software module 12 is used to display the continuous video images obtained by the video data storage software module 11, and can also display and print all missing nut position information reports output by the missing nut identification and positioning software module 13 and images of corresponding missing nuts.
3)缺失螺母识别定位软件模块13。该模块根据视频数据存储软件模块11提供的视频图像和地理位置数据,在线或离线的完成缺失螺母的识别和定位,它包括图像预处理子模块6、子图像裁切子模块7、特征提取子模块8、特征分类子模块9和缺失螺母位置计算子模块10。图像预处理子模块6读取原始视频图像并进行图像预处理,供子图像裁切子模块7使用;子图像裁切子模块7使用相应算法确定各个扣件系统螺母在连续视频的各帧图像中的位置,同时从各帧图像中裁切包含扣件系统螺母的子图像,并确定各子图像获取的时间信息;特征提取子模块8应用图像变换算法对子图像裁切子模块7传送的各幅子图像进行特征变换,计算得到各子图像的低维特征向量,供特征分类子模块9使用;特征分类子模块9利用相应特征分类方法,对各低维特征向量进行分类,从而识别各特征向量所对应的子图像中的扣件系统螺母是否缺失,并将缺失螺母的图像的获取时间传送给缺失螺母位置计算子模块10;缺失螺母位置计算子模块10根据这些缺失螺母图像的时间值,从视频数据存储软件模块中查找并计算得到对应的地理位置数据,并将这些位置存储后,生成报表以供显示软件模块12使用。3) Missing nut identification and positioning software module 13. This module completes the identification and location of missing nuts online or offline according to the video image and geographic location data provided by the video data storage software module 11, and it includes an image preprocessing submodule 6, a sub-image cutting submodule 7, and a feature extraction submodule 8. Feature classification sub-module 9 and missing nut position calculation sub-module 10. Image pre-processing sub-module 6 reads the original video image and performs image pre-processing for use by sub-image cutting sub-module 7; sub-image cutting sub-module 7 uses a corresponding algorithm to determine the position of each fastener system nut in each frame image of continuous video position, and simultaneously cut the sub-images containing the nuts of the fastener system from each frame image, and determine the time information obtained by each sub-image; the feature extraction sub-module 8 applies an image transformation algorithm to each sub-image transmitted by the sub-image cutting sub-module 7 The image is subjected to feature transformation, and the low-dimensional feature vectors of each sub-image are calculated to be used by the feature classification sub-module 9; the feature classification sub-module 9 uses the corresponding feature classification method to classify each low-dimensional feature vector, thereby identifying each feature vector. Whether the fastener system nut in the corresponding sub-image is missing, and the acquisition time of the image of the missing nut is sent to the missing nut position calculation submodule 10; the missing nut position calculation submodule 10 is based on the time value of these missing nut images, from the video The data storage software module finds and calculates the corresponding geographic location data, and after storing these locations, a report is generated for use by the display software module 12 .
a)图像预处理子模块6。图像预处理子模块6从视频数据存储软件模块11中,获取原始的扣件系统螺母连续视频图像进行预处理,为子图像裁切子模块7提供所需的图像。由于CCD图像传感器1和图像采集卡2等电子设备本身会引入图像噪声,图像预处理子模块6的主要任务包括将不同格式的图像格式转换成灰度图像格式,并使用滑动窗口平均等图像滤波去噪算法对图像进行滤波去噪。a) Image preprocessing sub-module 6. The image pre-processing sub-module 6 acquires the original continuous video images of fastener system nuts from the video data storage software module 11 for pre-processing, and provides the required images for the sub-image cutting sub-module 7 . Since electronic devices such as
b)子图像裁切子模块7。子图像裁切子模块7实现的功能是确定视频图像中扣件系统螺母的位置,并裁切尽可能小的包含扣件系统螺母的子图像。该子模块基于模板匹配法,采用穷尽搜索来确定视频图像中第一个扣件系统螺母的位置,其中模板匹配法用于确定包含螺母的小区域。在确定第一个扣件系统螺母出现的时间和位置之后,根据列车速度和相邻两个路枕间距来预测下一个路枕上扣件系统螺母出现的时间和位置,从而在相应的视频图像中裁切得到一个螺母的子图像。记第n个螺母出现的时间为tn,列车当前速度vtn,路枕中心线间距为常数L,则第n+1个螺母出现的时间的计算公式为:b) The sub-image cropping sub-module 7 . The function realized by the sub-image cutting sub-module 7 is to determine the position of the nut of the fastener system in the video image, and to cut the sub-image containing the nut of the fastener system as small as possible. This sub-module uses an exhaustive search to determine the position of the first fastener system nut in the video image based on the template matching method used to determine the small area containing the nut. After determining the time and position of the first fastening system nut, the time and position of the fastening system nut on the next road sleeper are predicted according to the train speed and the distance between two adjacent road sleepers, so that in the corresponding video image Cropping yields a subimage of a nut. Note that the time when the nth nut appears is t n , the current speed of the train is v tn , and the distance between the centerlines of the sleepers is a constant L, then the calculation formula for the time when the n+1th nut appears is:
tn+1=tn+L/vtn (1)t n+1 =t n +L/v tn (1)
列车当前速度vtn由子图像裁切子模块7根据地理位置数据和时间变化值计算得到。假定图像右侧方向为列车速度方向,设视频图像为k帧/秒,而vtn和k的比值记为P=vtn/k,并设第n个螺母第一次出现在第kn张图像上,距离图像右沿实际距离为q,第n+1个螺母第一次出现在第kn+1张图像上,则:The current speed v tn of the train is calculated by the sub-image cutting sub-module 7 according to the geographic position data and the time variation value. Assume that the direction on the right side of the image is the train speed direction, set the video image as k frames/second, and the ratio of v tn to k is recorded as P=v tn /k, and assume that the nth nut appears for the first time in the k nth sheet On the image, the actual distance from the right edge of the image is q, and the n+1th nut appears for the first time on the k n+1th image, then:
kn+1=kn+[(L-q)/p] (2)k n+1 =k n +[(Lq)/p] (2)
其中“[]”表示向下取整。第n+1个螺母的中心点距离第kn+1张图像右沿为p-((L-q)mod p),mod表示求余数运算。距离图像上沿距离不变。事先分析得到实际距离和图像像素对应关系,即可得到q值和第n+1个螺母在第kn+1张图像中的具体位置。根据扣件系统螺母的位置,裁切包含扣件系统螺母的子图像,像素记为n×m。n和m的取值与CCD图像传感器与螺母距离以及CCD图像传感器镜头放大倍数有关。Among them, "[]" indicates rounding down. The distance from the center point of the n+1th nut to the right edge of the kn+1th image is p-((Lq)mod p), and mod represents the remainder operation. The distance from the top edge of the image remains unchanged. The corresponding relationship between the actual distance and the image pixel can be obtained by analyzing in advance, and then the q value and the specific position of the n+1 nut in the k n+1 image can be obtained. According to the position of the nut of the fastener system, the sub-image containing the nut of the fastener system is cropped, and the pixels are recorded as n×m. The values of n and m are related to the distance between the CCD image sensor and the nut and the magnification of the CCD image sensor lens.
c)特征提取子模块8。特征提取子模块8应用主元分析法(PrincipalComponents Analysis,PCA,或称主成分分析法)提取由子图像裁切子模块7提供的包含扣件系统螺母的子图像特征。假设缺失螺母识别定位软件模块13训练过程中,共采用W幅螺母样本图像(包括螺母缺失和螺母正常的图像),每个图像已由子图像裁切子模块7转换成大小为m×n像素的灰度图像,则用m×n的矩阵A表示这一图像,矩阵相应元素的值即为图像相应像素点的灰度值。主元分析法是一种线性降维技术。记N=m×n,则每幅图像用一个大小为N的一维向量xk=(a1,a2,...,aN)来表示,其中k=1,2,...,W。以这W幅样本图像作为训练集,其总体协方差矩阵为:c) Feature extraction sub-module 8. The feature extraction sub-module 8 applies Principal Components Analysis (PCA, or principal component analysis) to extract the sub-image features provided by the sub-image cropping sub-module 7 including the fastener system nut. Assume that during the training process of the missing nut identification and positioning software module 13, a total of W nut sample images (including nut missing and nut normal images) are used, and each image has been converted into a gray image with a size of m×n pixels The image is represented by an m×n matrix A, and the value of the corresponding element of the matrix is the gray value of the corresponding pixel of the image. Principal component analysis is a linear dimensionality reduction technique. Note N=m×n, then each image is represented by a one-dimensional vector x k =(a 1 , a 2 ,...,a N ) of size N, where k=1, 2,... , W. Taking these W sample images as the training set, the overall covariance matrix is:
其中u为所有xk的均值向量,
d)特征分类子模块9。训练完毕的特征分类子模块9对特征提取子模块8传送的低维特征向量进行分类,从而判断对应子图像中的螺母是否缺失。特征分类子模块9将缺失螺母所对应的时间信息传送给缺失螺母位置计算子模块10。在训练阶段,特征分类子模块9使用支持向量机方法对特征提取子模块8提取的螺母样本图像的特征进行分类训练,从而用于其他非样本图像的螺母缺失识别。支持向量机采用结构风险最小化原则提高学习机的泛化能力,是从较少训练样本得到的决策规则,对独立的测试集仍可得到小误差的一种分类方法,基本上解决了过学习问题、非线性和维数灾难问题以及局部收敛等问题。支持向量机致力于寻找一个超平面,以使训练集中属于不同分类的点(各点与各幅样本图像的主成分对应)正好位于超平面的不同侧面,同时要使这些点距离该超平面尽可能远,也就是使分类间隔最大。设训练样本输人为zi,i=1,2,...,W,zi∈Rj,对应的期望输出为bi∈{+1,-1},其中+1和-1分别是样本zi是螺母完好和螺母缺失的样本图像特征参数的类别标识。支持向量机的目标就是,根据结构风险最小化原则,构造一个目标函数,从而将钢轨扣件系统螺母的完好和缺失两类模式尽量正确地区分开来。特征分类子模块9必须根据扣件系统螺母图像的特点正确选择核函数,以达到令人满意的螺母缺失识别效果。d) Feature classification sub-module 9. The trained feature classification sub-module 9 classifies the low-dimensional feature vectors sent by the feature extraction sub-module 8 to determine whether the nuts in the corresponding sub-images are missing. The feature classification sub-module 9 transmits the time information corresponding to the missing nut to the missing nut position calculation sub-module 10 . In the training phase, the feature classification sub-module 9 uses the support vector machine method to classify and train the features of the nut sample image extracted by the feature extraction sub-module 8, so as to identify missing nuts in other non-sample images. The support vector machine adopts the principle of structural risk minimization to improve the generalization ability of the learning machine. It is a classification method that can obtain small errors from the decision rules obtained from fewer training samples and can still obtain small errors for the independent test set. It basically solves the problem of over-learning. problems, problems of nonlinearity and the curse of dimensionality, and problems of local convergence. The support vector machine is dedicated to finding a hyperplane, so that the points belonging to different categories in the training set (each point corresponds to the principal component of each sample image) are located on different sides of the hyperplane, and at the same time, these points should be as far away from the hyperplane as possible. It may be far, that is, to maximize the classification interval. Suppose the training sample input is z i , i=1, 2,..., W, z i ∈ R j , and the corresponding expected output is b i ∈ {+1, -1}, where +1 and -1 are respectively Sample z i is the category identification of the image feature parameters of the sample images with intact nuts and missing nuts. The goal of the support vector machine is to construct an objective function according to the principle of structural risk minimization, so as to distinguish the intact and missing nuts of the rail fastener system as correctly as possible. The feature classification sub-module 9 must correctly select the kernel function according to the characteristics of the nut image of the fastener system, so as to achieve a satisfactory recognition effect of missing nuts.
e)缺失螺母位置计算子模块10。缺失螺母位置计算子模块10根据特征分类子模块9传送的缺失螺母图像的时间值,从视频数据存储软件模块11中查找和计算得到对应的地理位置数据,并将这些位置数据存储后,生成报表传送给显示软件模块12。e) Missing nut position calculation sub-module 10 . The missing nut position calculation sub-module 10 searches and calculates the corresponding geographical position data from the video data storage software module 11 according to the time value of the missing nut image transmitted by the feature classification sub-module 9, and after storing these position data, generates a report Send to the display software module 12.
经过以上处理,最终完成钢轨扣件系统缺失螺母的自动检测和定位。After the above processing, the automatic detection and positioning of the missing nut of the rail fastener system is finally completed.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009102536811A CN101706274B (en) | 2009-12-02 | 2009-12-02 | Device for automatically detecting nut loss of rail fastener system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009102536811A CN101706274B (en) | 2009-12-02 | 2009-12-02 | Device for automatically detecting nut loss of rail fastener system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101706274A CN101706274A (en) | 2010-05-12 |
CN101706274B true CN101706274B (en) | 2012-06-27 |
Family
ID=42376512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009102536811A Expired - Fee Related CN101706274B (en) | 2009-12-02 | 2009-12-02 | Device for automatically detecting nut loss of rail fastener system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101706274B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103103900B (en) * | 2011-11-10 | 2014-12-24 | 北京市劳动保护科学研究所 | Rail fastener loose detection method |
CN104773626B (en) * | 2015-04-08 | 2017-10-10 | 重庆市特种设备检测研究院 | A kind of building hoist standard knot bolt safe condition detection means |
CN105403807B (en) * | 2015-09-29 | 2018-11-27 | 昆明理工大学 | A kind of intelligent method of three sections of cables Hybrid HVDC line fault section identification |
CN106157316A (en) * | 2016-07-15 | 2016-11-23 | 成都唐源电气股份有限公司 | A kind of rail fastener location algorithm based on geometric match and device |
CN108009574B (en) * | 2017-11-27 | 2022-04-29 | 成都明崛科技有限公司 | Track fastener detection method |
CN108468256A (en) * | 2018-02-06 | 2018-08-31 | 中车工业研究院有限公司 | A kind of railway intelligence fastener installation mechanical arm and its fastener installation method |
CN108345858A (en) * | 2018-02-11 | 2018-07-31 | 杭州鸿泉物联网技术股份有限公司 | A kind of vehicle load condition detection method and system |
CN109174661B (en) * | 2018-06-22 | 2021-07-20 | 襄阳元创汽车零部件实业有限公司 | Vertical welding machine nut height detection mistake proofing system |
CN110846959B (en) * | 2019-11-01 | 2024-07-19 | 深圳市圆梦精密技术研究院 | Rail nut overhauling equipment and automatic position adjusting method thereof |
CN114367459B (en) * | 2022-01-11 | 2024-03-08 | 宁波市全盛壳体有限公司 | Video identification and detection method for automatic painting UV curing equipment |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1396461A (en) * | 2001-07-12 | 2003-02-12 | 圣诠科技股份有限公司 | Automated field survey system based on digital dynamic image combined with global positioning system |
CN101055178A (en) * | 2006-04-14 | 2007-10-17 | 雅音商行 | A positioning system that simultaneously displays external scene images and coordinate position map images |
-
2009
- 2009-12-02 CN CN2009102536811A patent/CN101706274B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1396461A (en) * | 2001-07-12 | 2003-02-12 | 圣诠科技股份有限公司 | Automated field survey system based on digital dynamic image combined with global positioning system |
CN101055178A (en) * | 2006-04-14 | 2007-10-17 | 雅音商行 | A positioning system that simultaneously displays external scene images and coordinate position map images |
Non-Patent Citations (1)
Title |
---|
孙朝云等.《路面裂缝无损检测图像采集系统设计》.《交通信息与安全》.2009,第27卷(第151期),106-110. * |
Also Published As
Publication number | Publication date |
---|---|
CN101706274A (en) | 2010-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101706274B (en) | Device for automatically detecting nut loss of rail fastener system | |
Gibert et al. | Robust fastener detection for autonomous visual railway track inspection | |
CN111476767B (en) | A Defect Recognition Method of High-speed Rail Fasteners Based on Heterologous Image Fusion | |
Gibert et al. | Deep multitask learning for railway track inspection | |
EP2697738B1 (en) | Method and system of rail component detection using vision technology | |
Resendiz et al. | Automated visual inspection of railroad tracks | |
CN109489724A (en) | A kind of tunnel safe train operation environment comprehensive detection device and detection method | |
CN112465706A (en) | Automatic gate container residual inspection method | |
CN114758322B (en) | Road quality detection system based on machine identification | |
CN103913464B (en) | A kind of high speed railway track surface imperfection matching process based on Machine Vision Detection | |
CN115601558A (en) | Single turnout state detection system and detection method and semi-automatic data labeling method | |
CN115439643A (en) | Road disease size analysis and management method based on monocular measurement | |
CN112184624A (en) | Picture detection method and system based on deep learning | |
CN112508911A (en) | Rail joint touch net suspension support component crack detection system based on inspection robot and detection method thereof | |
Abou Chacra et al. | Municipal infrastructure anomaly and defect detection | |
CN111595859A (en) | Bridge and culvert damage detection method and damage detection and management system | |
CN117541943A (en) | Unmanned aerial vehicle road disease detection technical method based on LiDAR sensor | |
CN114743166B (en) | A method for detecting brakes of railway freight cars | |
CN116229677A (en) | Comprehensive service interaction system and method based on intelligent robot | |
CN116519703A (en) | System and method for detecting carbon slide plate image of collector shoe based on line scanning 3D image | |
Srinivasan et al. | Development of a railroad track inspection system based on visual perception using labview | |
Fan et al. | Abnormal railway fastener detection using minimal significant regions and local binary patterns | |
Camargo et al. | Machine vision inspection of railroad track | |
CN113866184A (en) | Non-contact hard spot detection method and non-contact hard spot detection system | |
Posada Moreno et al. | Cargo wagon structural health estimation using computer vision |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120627 Termination date: 20121202 |