CN101703842A - 微量镉富集分离的方法 - Google Patents

微量镉富集分离的方法 Download PDF

Info

Publication number
CN101703842A
CN101703842A CN200910191341A CN200910191341A CN101703842A CN 101703842 A CN101703842 A CN 101703842A CN 200910191341 A CN200910191341 A CN 200910191341A CN 200910191341 A CN200910191341 A CN 200910191341A CN 101703842 A CN101703842 A CN 101703842A
Authority
CN
China
Prior art keywords
separation
cadmium
enrichment
trace
trace cadmium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910191341A
Other languages
English (en)
Inventor
刘阁
陈彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Technology and Business University
Original Assignee
Chongqing Technology and Business University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Technology and Business University filed Critical Chongqing Technology and Business University
Priority to CN200910191341A priority Critical patent/CN101703842A/zh
Publication of CN101703842A publication Critical patent/CN101703842A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

微量镉富集分离的方法, 本发明针对微量镉分离过程的一些参数是非常复杂的,分离效率低、费用高等特点,使得一些分离难以得到满意的结果。提出一种微量镉富集分离的方法,提出了一种利用Tween80-(NH4)2SO4-H2O体系对微量镉的分离富集的研究,镉的分离富集可达100%。该法投资少、金属离子回收率高、操作简单方便、减少了镉对人体的危害显著等优点。

Description

微量镉富集分离的方法
技术领域
本发明涉及一种微量镉富集分离的方法,具体是一种通过采用Tween80-(NH4)2SO4-H2O体系对微量镉的分离富集的研究方法,使之微量的镉快速的富集而分离,该法用于湿法冶金、分析化学、环境保护等领域。
背景技术
随着生活水平的不断提高,人们越来越关注环境中各种有害物质对健康的影响。镉是一种有毒重金属,可以在人体,动物体中累积,镉进入体内后往往置换锌酶中的锌,使锌酶的活性大受影响,从而影响了正常代谢机能。而且有致变、致畸、致癌作用,怎样测定和分离水中微量的镉,具有较为重大的意义。
但在分离过程由于一些参数是非常复杂的,难以控制,使其分离过程出现滞后性、时变、多变量和非线性等特点,使得一些常规的分离与测定往往难以得到满意的结果。虽然近年来一些新的灵敏显色剂的出现和计算光度法流动注射光度法的应用,将使微量镉的分离与富集得到更快的发展,但费用较高。从而制约了微量镉的分离与富集的一步提高。应用Tween80-(NH4)2SO4-H2O体系对镉的富集分离,使水中的微量镉的分离效率达100%。该法投资少、金属离子回收率高、操作简单方便、减少了镉对人体的危害显著等优点。
发明内容
本发明的目的在于针对微量镉分离过程的一些参数是非常复杂的,难以控制,使分离过程出现滞后性、时变、多变量和非线性等的特点,使得一些常规的分离难以得到满意的结果。提出一种微量镉富集分离的方法,利用Tween80-(NH4)2SO4-H2O体系对微量镉的分离富集的研究,在125mL的分液漏斗中依次加入1.0mL 10%的硫脲,1.0mL 2%的盐酸羟胺,20%的抗坏血酸1.0mL,50%的酒石酸1.0mL,2.0mL 30%的碘化钾,3.0mL4.5mol/L硫酸溶液,浓度为0.24%的结晶紫溶液1.0mL,5μg的镉(II)标液,再加入质量浓度为30%的Tween 80溶液10mL,每次都要摇匀,并用水稀释至25mL。然后加入6.0g的硫酸铵固体,振荡五分钟,静置,待分层后,将下层分相放入50mL比色管中,用水稀释至刻度。然后取一定体积的溶液稀释、光度测定。把上层Tween 80相另外移入一50ml的比色管中,调节酸度,用水稀释至刻度,振荡摇匀,以1cm的比色皿,以相应的试剂空白为参比于600nm处测定配合物的吸光度,计算被萃取物镉(II)的萃取率,镉的富集程度可达100%。具体富集分离的方法分为两阶段进行如下:
阶段1:确立Tween80-(NH4)2SO4-H2O体系对微量镉的分离富集的研究。
阶段2:选择恰当的分离体系,对微量镉进行富集分离。
在富集含量很高的条件下,快速启用分离体系进行分离提取,使水中的微量镉的分离效率达100%,大大降低了水中镉的含量,减少了镉对人体的危害。
本发明方法的有益效果是,建立了Tween80-(NH4)2SO4-H2O进行微量镉的富集分离.其富集程度可达100%,分离效率高,投资少、金属离子回收率高、操作简单方便.既适合于湿法冶金、分析化学领域,也适合环境保护测等领域.
实现本发明目的进一步描写:
理论上,所研究的水溶性聚合物和盐在满足体系成相条件下,即可分成聚合物固相和盐水相两相。影响成相的因素除聚合物的浓度和盐浓度外,盐的种类、聚合物的分子量、溶液酸度等因素均可影响两相的形成。
反应机理如下:
Cd2++4I-=CdI4 2-
Cd2++2CV+=(CdI4 2-)(CV+)2
在无机盐存在下,表面活性剂能分成两相。Tween80、Tween60分相明显,Na2SO4、(NH4)2SO4在较小量时就能得到清晰的分层。但Tween60在水中溶解度较小,操作较为麻烦。为了考察液固体系中不同种类盐分相能力的差异,实验用几种常见的盐分别对Tween80不同浓度体系进行了研究。在Tween80溶液浓度和体系的酸度都一定的条件下,加入不同量的(NH4)2SO4、Na2SO4、Na2CO3、NH4Cl、K2SO4,在体系中盐的加入量最终达其饱和点,结果发现NH4Cl、K2SO4不能使其分相,其它几种盐均能使Tween80-H2O不同程度的分相,但有很大的差异。而(NH4)2SO4分相效果较好,界面清晰,且价格便宜,适于作盐析剂,加入KI形成络阴离子作萃取剂,因而建立了Tween80-(NH4)2SO4-H2O体系作为萃取分离体系较为理想。
Tween80浓度越低,分相所需的盐浓度越高,反之亦然。一般情况要想获得明显的相分离,在总体积保持为25mL一定的条件下,需30%Tween80 10mL和(NH4)2SO4 6g。另外,Tween80和(NH4)2SO4浓度对体系的光度吸收有一定影响,但在30%Tween808~12mL和(NH4)2SO4 4~7g范围内,吸光度保持不变。实验选择30%Tween80 10mL和(NH4)2SO4 6g、4.5mol/L的硫酸溶液3.0mL、30%碘化钾溶液2.0mL、0.24%的结晶紫溶液1.0mL。在该条件下镉得到较好的富集分离。

Claims (3)

1.一种微量镉富集分离的方法,其特征在于,利用Tween80-(NH4)2SO4-H2O体系对微量镉的分离富集的方法,使微量镉很快的富集,进而使镉进行分离。该法投资少、金属离子回收率高、操作简单方便、大大减少了镉对人体的危害显著等优点。具体富集分离的方法分为两阶段进行如下:
阶段1:建立Tween80-(NH4)2SO4-H2O体系对微量镉的分离富集的研究。
阶段2:在Tween80-(NH4)2SO4-H2O体系下,改变水溶液中的任一参数对微量镉进行富集分离。
2.根据权利要求1所述的微量镉富集分离的方法,其特征是,采用Tween80-(NH4)2SO4-H2O体系进行微量镉的富集分离。
3.根据权利要求1所述的微量镉富集分离的方法,其特征是,阶段2中,在富集含量很高的条件下,快速启用分离体系进行分离提取,其富集程度可达100%。阶段2改变水溶液中的任一参数,微量镉富集分离都可在瞬间完成,而且分离高效稳定。
CN200910191341A 2009-11-06 2009-11-06 微量镉富集分离的方法 Pending CN101703842A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910191341A CN101703842A (zh) 2009-11-06 2009-11-06 微量镉富集分离的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910191341A CN101703842A (zh) 2009-11-06 2009-11-06 微量镉富集分离的方法

Publications (1)

Publication Number Publication Date
CN101703842A true CN101703842A (zh) 2010-05-12

Family

ID=42374136

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910191341A Pending CN101703842A (zh) 2009-11-06 2009-11-06 微量镉富集分离的方法

Country Status (1)

Country Link
CN (1) CN101703842A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112185469A (zh) * 2020-09-16 2021-01-05 广州海洋地质调查局 一种预测海域天然气水合物有利聚集区的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112185469A (zh) * 2020-09-16 2021-01-05 广州海洋地质调查局 一种预测海域天然气水合物有利聚集区的方法

Similar Documents

Publication Publication Date Title
Verschoor et al. A comparison of three colorimetric methods of ferrous and total reactive iron measurement in freshwaters
Saar et al. Lead (II) complexation by fulvic acid: how it differs from fulvic acid complexation of copper (II) and cadmium (II)
Cho et al. A polymer inclusion membrane for extracting thiocyanate from weakly alkaline solutions
Krasnodębska-Ostręga et al. Thallium (III) determination in the Baltic seawater samples by ICP MS after preconcentration on SGX C18 modified with DDTC
Zhang et al. The use of a polymer inclusion membrane in flow injection analysis for the on-line separation and determination of zinc
CN103822885A (zh) 食盐中微量铅镉离子的分离富集和检测方法
Dadfarnia et al. Solidified floating organic drop microextraction and spectrophotometric determination of vanadium in water samples
Abderrahim et al. A new sorbent for uranium extraction: polyethyleniminephenylphosphonamidic acid
Yu et al. Simultaneous speciation of inorganic selenium and tellurium by inductively coupled plasma mass spectrometry following selective solid-phase extraction separation
López-López et al. Simple hollow fiber liquid membrane based pre-concentration of silver for atomic absorption spectrometry
CN104198412A (zh) 浊点萃取-紫外可见分光光度法测定痕量锌离子的方法
CN101703842A (zh) 微量镉富集分离的方法
CN113063758A (zh) 一种土壤生物有效态汞的检测方法
CN104892598A (zh) 一种1,10-菲啰啉衍生物及其制备方法与应用
Tan et al. Determination of arsenic (III) and arsenic (V) in ferric chloride-hydrochloric acid leaching media by ion chromatography
CN108802234B (zh) 一种粉煤灰中铵根离子含量的测定方法
Majidi et al. Separation and determination of trace level of gold from hydrochloric acid solutions using ultrasound-assisted cold-induced aggregation microextraction
CN102830074B (zh) 钛渣氯化废弃物中钪的定量分析方法
Teng et al. Heavy metal Ion extraction using organic solvents: An application of the equilibrium slope method
Zare-Shahabadi et al. Characterization of a new uranyl selective bulk optode; utilizing synergistic effect in optical sensor
Verma et al. Determination of bismuth (iii) in environmental and pharmaceutical samples using an organic reagent
Pourreza et al. Extraction spectrophotometric determination of trace amounts of perchlorate based on ion-pair formation with thionine
Dietz et al. Task-Specific Ionic Liquids for Metal Ion Extraction: Progress, Challenges, and Prospects
Taga et al. Flotation-Spectrophotometric Determination of Phosphate with Bis [2-(5-chloro-2-pyridylazo)-5-diethylaminophenolato]-cobalt (III) Chloride
CN106855546A (zh) ASE提取IC‑ICP‑MS联用测定茶叶中Cr的方法及应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20100512