CN1017008B - 调相变压器 - Google Patents

调相变压器

Info

Publication number
CN1017008B
CN1017008B CN89102285A CN89102285A CN1017008B CN 1017008 B CN1017008 B CN 1017008B CN 89102285 A CN89102285 A CN 89102285A CN 89102285 A CN89102285 A CN 89102285A CN 1017008 B CN1017008 B CN 1017008B
Authority
CN
China
Prior art keywords
phase
main
transformer
coil
iron core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CN89102285A
Other languages
English (en)
Other versions
CN1040456A (zh
Inventor
祖井克二
石井孝一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN1040456A publication Critical patent/CN1040456A/zh
Publication of CN1017008B publication Critical patent/CN1017008B/zh
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/06Fixed transformers not covered by group H01F19/00 characterised by the structure
    • H01F30/12Two-phase, three-phase or polyphase transformers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ac-Ac Conversion (AREA)
  • Control Of Electrical Variables (AREA)
  • Transformers For Measuring Instruments (AREA)

Abstract

本发明的调相变压器设有主变压器和串联变压器的各相线圈绕在其上的六相铁芯,各相线圈的排列使该六相铁芯内相互相邻的各主磁通的相位差为30°,所以,用一台变压器便可构或调相变压器,并且可使通过相邻各相线圈间的铁芯的相间极靴的差磁通过约为上述主磁通的一半,从而可实现体积小、重量轻、价格便宜。

Description

本发明涉及调相变压器,特别是小型的价格低的调相变压器,该调相变压器用于连接电压和相位不同的两个电力系统以及为了使环形电力系统的输电损失为最小而控制功率流量。
图1是本发明的一个实施例的平面图,图2是图1的主磁通和差磁通的矢量图,图3是本发明其他实施例的主磁通和差磁通的矢量图,图4是普通的调相变压器的接线图,图5是说明图4的调相变压器的相位调整动作的矢量图,图6是图4的调相变压器的各相的主磁通的矢量图,图7是先有的调相变压器的主变压器的斜视图,图8是图7的主变压器的平面图,图9是先有的调相变压器的主磁通和差磁通的矢量图。
图4是先有的实用化的普通调相变压器的接线图。
图中,主变压器1以及与该主变压器串联连接的串联变压器11构成三相的调相变压器。
主变压器1由星形接法的初级线圈2、星形接法的次级线圈3和三角形接法的第三线圈4构成,各线圈2~4分别具有处于同相关系的U相、V相和W相等三个相线圈。另外,初级线圈2具有与电力系统相连接的三个输入端U、V和W,次级线圈3具有三个输出端u、v和w。
串联变压器11由通过各转换抽头Ta~Tc及接点Sa~Sc与次级线圈3相连接的星形接法的相位调整线圈13、通过各接点a、b、c 与第三线圈4相连接的星形接法的励磁线圈14和三角形接法的稳定线圈15构成,各线圈13~15分别具有处于同相关系的u相、v相和w相等三个相线圈。
下面,参照图5和图6的矢量图说明图4的调相变压器的相位调整动作。
首先,当主变压器1的初级线圈2的接点U~W与三相电力系统相接,加上电压Eu、Ev和Ew时,初级线圈2中便感应出与系统电压Eu、Ev及Ew平衡的电压。另外,在次级线圈3和第三线圈4的各相线圈内分别感应出与初级线圈2的各相线圈同相的电压。
这时,由于次级线圈3是星形接法,而第三线圈4是三角形接法,所以,与串联变压器11的励磁线圈14相连接的第三线圈4的各个接点a、b、c的对地电压,都比初级线圈2的各个接点U、V、W的相位滞后30°。
另外,在串联变压器11内部,通过接点a、b、c与主变压器1的第三线圈4相连接的励磁线圈14是星形接法,在相位调整线圈13和稳定线圈15的各相线圈内分别感应出与励磁线圈14的各相线圈同相的电压。因此,从主变压器1的初级线圈2的角度看,串联变压器11内的各线圈13~15的电压相位均滞后30°。
于是,若如图4所示的那样,把相位调整线圈13的a相、b相和c相的各相线圈分别与主变压器1的次级线圈3的V相、W相及U相的各相线圈相连接,则在次级线圈3的各相线圈的感应电压E′u、E′v及E′w与同其各相线圈串联连接的相位调整线圈13的各相线圈的感应电压Ea、Eb及Ec之间产生90°的相位差。
这时,次级线圈3的各接点u、v及w的对地电压Eu、Ev及Ew便 如图5所示,是次级线圈3的感应电压E′u、E′v及E′w与相位调整线圈13的感应电压Ea、Eb及Ec的矢量合成。
在图5中,虚线所示的Eu、Ev及Ew是初级线圈2的各接点U、V及W的电压矢量,Ea、Eb及Ec是相位调整线圈13的各相线圈中感应出的电压矢量,E′u、E′v及E′w是次级线圈3的各相线圈中感应出的电压矢量,Eu、Ev及Ew是次级线圈3的各接点u、v及w的对地电压矢量。
由图5可知,次级线圈3的各接点电压Eu、Ev及Ew相对初级线圈2的各接点电压Eu、Ev及Ew有一个θ角度的相位差。利用抽头转换器(图中未示出)在有负载时调整相位调整线圈13的各个抽头Ta~Tc的位置而改变感应电压Ea、Eb及Ec的大小,可以任意调整该相位差角度θ。
另外,由于主变压器1的各线圈2~4的电压与串联变压器11的各线圈13~15的电压之间相位差,所以,主变压器1和串联变压器11的铁芯中产生的各相的主磁通φu、φv及φw与φu、φv及φw之间也有相位差。
若用矢量图表示上述关系,则如图6所示,虚线所示的φu、φv及φw是主变压器1的三相主磁通,实线所示的φa、φb及φc是串联变压器11的三相主磁通。由图6可知,例如若主磁通φu与φa之间的相位差为30°,则主磁通φa与φv之间的相位差就是90°。
图7是先有的作为主变压器1或串联变压器11的壳式普通三相变压器的内部结构斜视图,图8是图7的变压器的平面图。实际上,将与图7(图8)结构相同的两台变压器相连接,便构成调相变压器的主变压器1和串联变压器11,此处只示出了主变压器1。
铁芯21上,与各相配合的初级线圈2、次级线圈3和第三线圈4分别绕成U相线圈22U、V相线圈22V和W相线圈22W,其中,V相线圈22V的线圈的绕向是相反的,即与U相线圈22U及W相线圈22W的绕向相反。
另外,铁芯21由通过有主磁通φu、-φv及φw的主铁芯柱23和通过各相邻主磁通的差磁通φuv及φvw的相间铁芯柱24(参见画斜线处)构成。
下面,说明在图7及图8所示的主变压器1中主磁通φu、-φv及φw通过主铁芯柱时,通过各相间铁芯柱24的差磁通φuv及φvw的量。
通过各相间铁芯柱24的差磁通可用通过相邻主铁芯柱23的主磁通之差来表示,在U相线圈22U和V相线圈22V之间的相间铁芯柱24中通过由主磁通φu与-φv的矢量差构成的差磁通φuv,在V相线圈22V与W相线圈22W之间的相间铁芯柱24中通过由主磁通-φv与φw的矢量差构成的差磁通φvw。
若用矢量图表示上述关系,则为图9。这时,各主磁通φu、φv及φw的绝对值相等,并且相互有120°的相位差,另外,绕向相反的V相线圈22V产生的主磁通为-φv,相对各主磁通φu及φw的相位差为60°。因此,如图所示,各差磁通φuv及φvw的绝对值与主磁通φu、φv及φw的绝对值相等。
于是,铁芯21的主铁芯柱23和相间铁芯柱24的截面积应设计为能通过主磁通和差磁通所需要的数值,而将主铁芯柱23及相间铁芯柱24的宽度D1和D2设计为相同的宽度。对于串联变压器11,设计方法完全相同,并且如果铁芯的厚度与主变压器1的铁芯厚度H相 同,则主铁芯柱和相间铁芯柱的宽度也和主变压器1的宽度D1和D2相等。
如上所述,由于先有的调相变压器是由两台三相变压器即主变压器1和串联变压器11组合而成的,所以,不仅体积大,组装、运输和安装十分费力,而且,油箱、绝缘套和保护继电器等器材都必须使用两套。
另外,即使把两台变压器装在一个油箱内,也由于主要结构不能减少而使制造费用几乎不能节减,相反,由于外形尺寸加大而增加了运输的费用。
本发明就是为解决上述问题而提出来的,目的是要提供一种小型的价格便宜的调相变压器。
本发明的调相变压器设有可以卷绕主变压器和串联变压器的各相线圈的六相铁芯,各相线圈的配置使得在该六相铁芯内相邻的各主磁通的相位差为30°。
本发明用一台变压器构成调相变压器,并且使通过相邻各相线圈间的铁芯的相间铁芯柱的差磁通约为先有的一半,因此可使相间铁芯柱的截面积减小,从而实现小型化。
下面,说明本发明的一个实施例。图1是本发明的一个实施例的平面图,22U~22W、φu~φw、φa~φc和D1的意义与前述相同。另外,其接线图和图4所示的一样,各电压Eu~Ew及Eu~Ew和各主磁通φu~φw及φa~φc的矢量图分别和图5及图6所示的一样。
主变压器1(参见图4)的各相线图22U~22W和串联变压器11的各相线圈22a~22c一起绕在其上的六相铁芯31由通过各主 磁通φu~φw及φa~φc的主铁芯柱33和通过各差磁通φau、φvb、φbv、φvc及φcw的相间铁芯柱34构成。
另外,绕在六相铁芯31上的各相线圈从图上左边开始按a相、U相、b相、V相、c相及W相的顺序排列,V相线圈22V和b相线圈22b的绕向和前面所述的一样,是反向的,即与其它线圈的绕向相反。并且,各主磁通φu~φw和φa~φc的大小(绝对值)分别是相等的。
下面,参照图2的矢量图,说明图1所示的本发明的一个实施例的动作。图2是将反绕的b相线圈22b和V相线圈22V产生的主磁通φv及φb的方向反转180°后而成-φv及-φb的矢量图。关于相位调整线圈13(参见图4)的相位调整动作与前面所述的相同,此处从略。
通常,若矢量X与矢量Y的夹角为φ,则该二矢量X与Y的差矢量的绝对值|X-Y|可以表为
|X-Y|=(|X|2+|Y|2-2|X||Y|cosφ)1/2……(1)
现在,令各相的主磁通的绝对值为
|φu|=|φv|=|φw|=φN
|φa|=|φb|=|φc|=φS
并取
φM=φS=1.0〔P·U〕
其中,〔P·U〕表示将磁通量单位化以后的数值。
若考虑主变压器1的U相线圈22U产生的主磁通φu与串联变压器11的a相线圈22a产生的主磁通φa的关系,因二者的相位差为30°,所以,根据(1)式,可得差磁通φau的绝对值为
|φau|
=|φu-φa|
=(|φu|2+|φa|2-2|φu|·|φa|cos30°)1/2
=(φ2 M2 S-2φMφScos30°)1/2
=(2-31/21/2〔P·U〕
≈0.52〔P·U〕
因此,通过a相线圈22a与U相线圈22U之间的相间铁芯柱34的差磁通φau是通过主铁芯柱33的主磁通φa(或φu)的0.52倍,如果六相铁芯31的厚度与上述H相等,则相间铁芯柱34的宽度D′2约为上述宽度D2的一半就行了。
另外,由于反绕的b相线圈22b的主铁芯柱33中通过主磁通-φb,所以,主磁通φu及-φb之间的相位差同样也是30°,如图2所示。因此,通过U相线圈22U与b相线圈22b之间的相间铁芯柱34的差磁通φub的绝对值也和上述一样,等于0.52〔P·U〕。
如图2所示,由于相邻的各主磁通的关系相等,所以差磁通φbv、φvc和φcw的大小(绝对值)全等于0.52〔P·U〕。于是,六相铁芯31的所有相间铁芯柱34的宽度D′2都可以是主铁芯柱33的宽度D1的0.52倍。
这样,如果适当设定各主磁通的大小φM和φS,则通过各相间铁芯柱34的差磁通的磁通量比通过两侧的任一主铁芯柱33的主磁通少。因此,可使相间铁芯柱34的截面积小于主铁芯柱33,从而可使六相铁芯31体积小,重量轻。
在上述实施例中,说明的是主变压器1的各主磁通的大小φM和串联变压器11的各主磁通的大小φS相等的情况,但是,二者不相等 时也可获得同等的效果。这时,例如,如果取
φM=φS·cos30°
φS=φM·cos30°
则各差磁通的大小等于φM或者φS中较大者的0.5倍。图3是取
φM=1.0〔P·U〕
φS=φM·cos30°
=31/2/2〔P·U〕
时的矢量图,各差磁通的大小为0.5〔P·U〕。即,根据(1)式,可得
|φau|=|φub|=|φbv|=|φvc|=|φcw|
=(φ2 M2 S-2φMφScos30°)1/2
=〔1+3/4-2(31/2/2)21/2〔P·U〕
=0.5〔P·U〕
另外,只要相互相邻的主磁通的相位差为30°,则各相线圈的排列和绕向不必限于图1,也可以是其它排列方式。
另外,若在主变压器1的次级线圈3上设置抽头,还可以将主变压器1作为有负载时附加电压调整器的变压器使用。
如上所述,按照本发明,通过设置绕有主变压器及串联变压器的各相线圈的六相铁芯,并使各相线圈排列得使该六相铁芯内相互邻接的各主磁通的相位差为30°,所以,用一台变压器便可构成调相变压器,并且可使通过相邻的各相线圈间的铁芯的相间铁芯柱的差磁通约为主磁通的一半,所以,可以实现体积小,重量轻,价格便宜。

Claims (1)

  1. 调相变压器具有产生相互有120°相位差的三相主磁通的主变压器和与该主变压器串联连接并产生分别相对上述主磁通有90°相位差的三相主磁通的串联变压器,用以调整三相电力系统加在上述主变压器上的电压的相位,其特征在于:设置有上述主变压器和上述串联变压器的各相线圈绕在其上的六相铁芯,并且上述各相线圈的排列使该六相铁芯内相互相邻的上述各主磁通的相位差为30°。
CN89102285A 1988-08-15 1989-04-15 调相变压器 Expired CN1017008B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP201858/88 1988-08-15
JP63201858A JPH0779063B2 (ja) 1988-08-15 1988-08-15 位相調整変圧器

Publications (2)

Publication Number Publication Date
CN1040456A CN1040456A (zh) 1990-03-14
CN1017008B true CN1017008B (zh) 1992-06-10

Family

ID=16448054

Family Applications (1)

Application Number Title Priority Date Filing Date
CN89102285A Expired CN1017008B (zh) 1988-08-15 1989-04-15 调相变压器

Country Status (6)

Country Link
US (1) US5003277A (zh)
EP (1) EP0355023B1 (zh)
JP (1) JPH0779063B2 (zh)
CN (1) CN1017008B (zh)
DE (1) DE68917230T2 (zh)
PT (1) PT91394B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1981525B (zh) * 2004-07-27 2010-05-05 索尼株式会社 信息处理设备和信息处理方法

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59204391D1 (de) * 1991-04-23 1996-01-04 Siemens Ag Einstellvorrichtung.
US5434455A (en) * 1991-11-15 1995-07-18 Power Distribution, Inc. Harmonic cancellation system
US5343080A (en) * 1991-11-15 1994-08-30 Power Distribution, Inc. Harmonic cancellation system
US5379207A (en) * 1992-12-16 1995-01-03 General Electric Co. Controlled leakage field multi-interphase transformer employing C-shaped laminated magnetic core
US5543771A (en) * 1995-03-03 1996-08-06 Levin; Michael I. Phase shifting transformer or autotransformer
US5969510A (en) * 1997-09-23 1999-10-19 Equi-Tech Corporation Three-phase to six-phase wye transformer power system
US6737262B1 (en) * 2000-07-11 2004-05-18 Robert I. Bolla Animal feed containing polypeptides
US7280026B2 (en) * 2002-04-18 2007-10-09 Coldwatt, Inc. Extended E matrix integrated magnetics (MIM) core
US8102233B2 (en) * 2009-08-10 2012-01-24 Volterra Semiconductor Corporation Coupled inductor with improved leakage inductance control
US7498920B2 (en) 2002-12-13 2009-03-03 Volterra Semiconductor Corporation Method for making magnetic components with N-phase coupling, and related inductor structures
US7965165B2 (en) * 2002-12-13 2011-06-21 Volterra Semiconductor Corporation Method for making magnetic components with M-phase coupling, and related inductor structures
US8294544B2 (en) * 2008-03-14 2012-10-23 Volterra Semiconductor Corporation Method for making magnetic components with M-phase coupling, and related inductor structures
US8237530B2 (en) * 2009-08-10 2012-08-07 Volterra Semiconductor Corporation Coupled inductor with improved leakage inductance control
US7352269B2 (en) 2002-12-13 2008-04-01 Volterra Semiconductor Corporation Method for making magnetic components with N-phase coupling, and related inductor structures
US8299885B2 (en) 2002-12-13 2012-10-30 Volterra Semiconductor Corporation Method for making magnetic components with M-phase coupling, and related inductor structures
US7898379B1 (en) 2002-12-13 2011-03-01 Volterra Semiconductor Corporation Method for making magnetic components with N-phase coupling, and related inductor structures
US7417875B2 (en) * 2005-02-08 2008-08-26 Coldwatt, Inc. Power converter employing integrated magnetics with a current multiplier rectifier and method of operating the same
US7876191B2 (en) * 2005-02-23 2011-01-25 Flextronics International Usa, Inc. Power converter employing a tapped inductor and integrated magnetics and method of operating the same
US8125205B2 (en) * 2006-08-31 2012-02-28 Flextronics International Usa, Inc. Power converter employing regulators with a coupled inductor
FR2907591B1 (fr) * 2006-10-20 2009-01-16 Centre Nat Rech Scient Procede d'alimentation d'un coupleur magnetique et dispositif d'alimentation d'un dipole electrique.
US7667986B2 (en) * 2006-12-01 2010-02-23 Flextronics International Usa, Inc. Power system with power converters having an adaptive controller
US7675759B2 (en) * 2006-12-01 2010-03-09 Flextronics International Usa, Inc. Power system with power converters having an adaptive controller
US9197132B2 (en) 2006-12-01 2015-11-24 Flextronics International Usa, Inc. Power converter with an adaptive controller and method of operating the same
US7675758B2 (en) 2006-12-01 2010-03-09 Flextronics International Usa, Inc. Power converter with an adaptive controller and method of operating the same
US7889517B2 (en) * 2006-12-01 2011-02-15 Flextronics International Usa, Inc. Power system with power converters having an adaptive controller
US20080197952A1 (en) * 2007-02-16 2008-08-21 Shenzhen Putly Optic-Electronic Technology Co., Ltd. Three-phase Transformer
US7468649B2 (en) * 2007-03-14 2008-12-23 Flextronics International Usa, Inc. Isolated power converter
US7906941B2 (en) * 2007-06-19 2011-03-15 Flextronics International Usa, Inc. System and method for estimating input power for a power processing circuit
WO2009049076A1 (en) * 2007-10-09 2009-04-16 Particle Drilling Technologies, Inc. Injection system and method
WO2010083511A1 (en) * 2009-01-19 2010-07-22 Flextronics International Usa, Inc. Controller for a power converter
CN102342008B (zh) 2009-01-19 2016-08-03 伟创力国际美国公司 用于功率转换器的控制器
WO2010114914A1 (en) 2009-03-31 2010-10-07 Flextronics International Usa, Inc. Magnetic device formed with u-shaped core pieces and power converter employing the same
US8514593B2 (en) * 2009-06-17 2013-08-20 Power Systems Technologies, Ltd. Power converter employing a variable switching frequency and a magnetic device with a non-uniform gap
US9077248B2 (en) 2009-06-17 2015-07-07 Power Systems Technologies Ltd Start-up circuit for a power adapter
US8643222B2 (en) 2009-06-17 2014-02-04 Power Systems Technologies Ltd Power adapter employing a power reducer
US9019063B2 (en) 2009-08-10 2015-04-28 Volterra Semiconductor Corporation Coupled inductor with improved leakage inductance control
US8638578B2 (en) 2009-08-14 2014-01-28 Power System Technologies, Ltd. Power converter including a charge pump employable in a power adapter
US8976549B2 (en) * 2009-12-03 2015-03-10 Power Systems Technologies, Ltd. Startup circuit including first and second Schmitt triggers and power converter employing the same
US8520420B2 (en) * 2009-12-18 2013-08-27 Power Systems Technologies, Ltd. Controller for modifying dead time between switches in a power converter
US8674802B2 (en) 2009-12-21 2014-03-18 Volterra Semiconductor Corporation Multi-turn inductors
US7994888B2 (en) 2009-12-21 2011-08-09 Volterra Semiconductor Corporation Multi-turn inductors
US8174348B2 (en) * 2009-12-21 2012-05-08 Volterra Semiconductor Corporation Two-phase coupled inductors which promote improved printed circuit board layout
US8330567B2 (en) * 2010-01-14 2012-12-11 Volterra Semiconductor Corporation Asymmetrical coupled inductors and associated methods
US8787043B2 (en) * 2010-01-22 2014-07-22 Power Systems Technologies, Ltd. Controller for a power converter and method of operating the same
US9246391B2 (en) 2010-01-22 2016-01-26 Power Systems Technologies Ltd. Controller for providing a corrected signal to a sensed peak current through a circuit element of a power converter
WO2011116225A1 (en) 2010-03-17 2011-09-22 Power Systems Technologies, Ltd. Control system for a power converter and method of operating the same
CN102834817B (zh) * 2010-03-26 2016-08-03 电力系统技术有限公司 具有通用串行总线集线器的功率适配器
US8772967B1 (en) 2011-03-04 2014-07-08 Volterra Semiconductor Corporation Multistage and multiple-output DC-DC converters having coupled inductors
US8792257B2 (en) 2011-03-25 2014-07-29 Power Systems Technologies, Ltd. Power converter with reduced power dissipation
CN102314998B (zh) * 2011-05-16 2013-06-26 台达电子企业管理(上海)有限公司 集成多相耦合电感器及产生电感的方法
US10128035B2 (en) 2011-11-22 2018-11-13 Volterra Semiconductor LLC Coupled inductor arrays and associated methods
US9373438B1 (en) 2011-11-22 2016-06-21 Volterra Semiconductor LLC Coupled inductor arrays and associated methods
US8792256B2 (en) 2012-01-27 2014-07-29 Power Systems Technologies Ltd. Controller for a switch and method of operating the same
US9190898B2 (en) 2012-07-06 2015-11-17 Power Systems Technologies, Ltd Controller for a power converter and method of operating the same
US9099232B2 (en) 2012-07-16 2015-08-04 Power Systems Technologies Ltd. Magnetic device and power converter employing the same
US9214264B2 (en) 2012-07-16 2015-12-15 Power Systems Technologies, Ltd. Magnetic device and power converter employing the same
US9379629B2 (en) 2012-07-16 2016-06-28 Power Systems Technologies, Ltd. Magnetic device and power converter employing the same
US9106130B2 (en) 2012-07-16 2015-08-11 Power Systems Technologies, Inc. Magnetic device and power converter employing the same
US8975995B1 (en) 2012-08-29 2015-03-10 Volterra Semiconductor Corporation Coupled inductors with leakage plates, and associated systems and methods
US9240712B2 (en) 2012-12-13 2016-01-19 Power Systems Technologies Ltd. Controller including a common current-sense device for power switches of a power converter
US9287038B2 (en) 2013-03-13 2016-03-15 Volterra Semiconductor LLC Coupled inductors with non-uniform winding terminal distributions
US9336941B1 (en) 2013-10-30 2016-05-10 Volterra Semiconductor LLC Multi-row coupled inductors and associated systems and methods
US9300206B2 (en) 2013-11-15 2016-03-29 Power Systems Technologies Ltd. Method for estimating power of a power converter
US10008322B2 (en) 2014-10-29 2018-06-26 General Electric Company Filter assembly and method
US20160247627A1 (en) 2015-02-24 2016-08-25 Maxim Integrated Products, Inc. Low-profile coupled inductors with leakage control
CA3020169C (en) * 2016-04-08 2019-11-05 Eaton Intelligent Power Limited Voltage regulation for multi-phase power systems
WO2019073658A1 (ja) * 2017-10-12 2019-04-18 三菱電機株式会社 電力変換装置
CN109671552B (zh) 2017-10-17 2021-04-09 台达电子工业股份有限公司 整合型磁性元件
EP4159703A1 (en) 2020-05-26 2023-04-05 Kabushiki Kaisha Toshiba Silicon nitride sintered body, wear-resistant member using same, and method for producing silicon nitride sintered body
CN113253155B (zh) * 2020-12-31 2023-03-21 国网河南省电力公司超高压公司 一种用于自耦变压器的带负荷测试装置及测试方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2408212A (en) * 1943-07-20 1946-09-24 Westinghouse Electric Corp Electrical induction apparatus
DE1261951B (de) * 1960-04-12 1968-02-29 Westinghouse Electric Corp Dreiphasiger Transformator, Wandler oder Drossel
US4156174A (en) * 1977-12-30 1979-05-22 Westinghouse Electric Corp. Phase-angle regulator
DE3047521C2 (de) * 1980-12-17 1985-06-27 Schorch GmbH, 4050 Mönchengladbach Dreiphasiger Netzkupplungstransformator
IN161003B (zh) * 1981-05-18 1987-09-12 Westinghouse Electric Corp
US4488136A (en) * 1981-05-18 1984-12-11 Westinghouse Electric Corp. Combination transformer with common core portions
JPH0785653B2 (ja) * 1986-12-22 1995-09-13 三菱電機株式会社 サイクロコンバ−タ用三相変圧器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1981525B (zh) * 2004-07-27 2010-05-05 索尼株式会社 信息处理设备和信息处理方法

Also Published As

Publication number Publication date
EP0355023B1 (en) 1994-08-03
DE68917230T2 (de) 1995-03-16
PT91394A (pt) 1990-03-08
PT91394B (pt) 1995-08-09
JPH0251206A (ja) 1990-02-21
CN1040456A (zh) 1990-03-14
US5003277A (en) 1991-03-26
EP0355023A1 (en) 1990-02-21
JPH0779063B2 (ja) 1995-08-23
DE68917230D1 (de) 1994-09-08

Similar Documents

Publication Publication Date Title
CN1017008B (zh) 调相变压器
US6101113A (en) Transformers for multipulse AC/DC converters
CN1093332C (zh) 具有双励磁的电机,特别是机动车交流发电机
US5455759A (en) Symmetrical, phase-shifting, fork transformer
US6335872B1 (en) Nine-phase transformer
US8258665B2 (en) Motor winding
AU547734B2 (en) Polyphase electric machine having controlled magnetic flux density
CN103812294A (zh) 一种五相双凸极电机
US6424552B1 (en) Multiphase transformer having main and auxiliary transformers
US4489265A (en) Electric machine with continuous pole phase modulation
CN1118921C (zh) 带增强转子场系的无电刷三相同步发电机
CN103683686A (zh) 永磁无刷直流发电机的整流方法及永磁无刷直流发电机
MXPA05005770A (es) Convertidor electrico tipo prisma para generacion, transmision, distribucion y suministro de corriente electrica y metodo de fabricacion.
JP3201383B2 (ja) 共振型電源用トランス
US5731971A (en) Apparatus for providing multiple, phase-shifted power outputs
JP2001093753A (ja) 多重インバータ用変圧器
US20140265709A1 (en) Steered Flux Generator
Ming et al. Performance Comparison of Stator Partitioned Doubly Salient Permanent Magnet Motors with Diverse Number of Permanent Magnets
CN113300564B (zh) 高功率因数横向磁通永磁同步直线电机
JPH0217900A (ja) 永久磁石励磁電気機械
JPH02159706A (ja) 変圧器
EP3846330A2 (en) Interphase power transformer for electrical systems
RU39737U1 (ru) Трехфазный трансформатор для питания двух нагрузок
JP2637103B2 (ja) 電機子巻線
CN113991898A (zh) 一种高可靠性的模块化双三相永磁电机及其绕组设计方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C13 Decision
GR02 Examined patent application
C14 Grant of patent or utility model
GR01 Patent grant
C15 Extension of patent right duration from 15 to 20 years for appl. with date before 31.12.1992 and still valid on 11.12.2001 (patent law change 1993)
OR01 Other related matters
C17 Cessation of patent right
CX01 Expiry of patent term