CN101699315A - Monitoring device and method for crop growth uniformity - Google Patents

Monitoring device and method for crop growth uniformity Download PDF

Info

Publication number
CN101699315A
CN101699315A CN200910236520A CN200910236520A CN101699315A CN 101699315 A CN101699315 A CN 101699315A CN 200910236520 A CN200910236520 A CN 200910236520A CN 200910236520 A CN200910236520 A CN 200910236520A CN 101699315 A CN101699315 A CN 101699315A
Authority
CN
China
Prior art keywords
ndvi
remote sensing
plot
sensing image
uniformity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910236520A
Other languages
Chinese (zh)
Other versions
CN101699315B (en
Inventor
王纪华
宋晓宇
赵春江
黄文江
李存军
常红
徐新刚
顾晓鹤
杨贵军
杨小冬
杨浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nongxin Technology Beijing Co ltd
Original Assignee
Beijing Research Center for Information Technology in Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Research Center for Information Technology in Agriculture filed Critical Beijing Research Center for Information Technology in Agriculture
Priority to CN2009102365201A priority Critical patent/CN101699315B/en
Publication of CN101699315A publication Critical patent/CN101699315A/en
Application granted granted Critical
Publication of CN101699315B publication Critical patent/CN101699315B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)

Abstract

The invention discloses a monitoring device and a method for crop growth uniformity degree, aiming at the problem of low efficiency for manually investigating data. The device comprises a remote sensing image processing module, a plot vector data processing module, a vegetation index processing module and a growth uniformity processing module. The method comprises: obtaining the remote sensing images of a satellite; carrying out radiometric ratification, atmospheric correction and geometric correction according to the remote sensing images of the satellite; classifying crops in the remote sensing images of a satellite to obtain a spatial distribution map; converting a grid classification result in the spatial distribution map into facet vector data; processing the spatial distribution map to correct the plot boundary of the crops; according to the spectral characteristics of the plot in the remote sensing image, calculating the vegetation index of the plot; and calculating the growth uniformity degree index according to the vegetation index of each plot. The invention uses the integration of the grid and the vector data to monitor the growth uniformity degree of crops in natural plots and performs the advantages of remote sensing data.

Description

一种作物长势均匀度的监测装置和方法 A monitoring device and method for crop growth uniformity

技术领域technical field

本发明涉及一种作物长势均匀度的监测装置和方法。The invention relates to a monitoring device and method for crop growth uniformity.

背景技术Background technique

农作物长势监测指对作物的苗情、生长状况及其变化的宏观监测,要求能够及时地全面反映农情。作物的长势均匀度一直是评价作物长势好坏的一个重要指标,该指标不但能够体现不同农田地块基础地力、地形的差异,也能反映出不同耕作者的管理水平。Crop growth monitoring refers to the macro-monitoring of crop seedling condition, growth status and changes, which requires timely and comprehensive reflection of agricultural conditions. The uniformity of crop growth has always been an important index to evaluate the quality of crop growth. This index can not only reflect the differences in soil fertility and topography of different farmland plots, but also reflect the management level of different cultivators.

传统作物长势均匀度多通过田间抽样调查确定。如马爱国等2001年提出的冬小麦基本苗均匀度指标P,就是采用随机取样的方法。该方法根据每个地块面积确定调查点数,然后将每块地各调查点的苗量从大到小排列。设前一半调查点苗量之和为∑a,后一半调查点苗量之和为∑b,然后代入公式(1-1)中计算获取每一地块对应的基本苗均匀度P:The growth uniformity of traditional crops is mostly determined through field sampling surveys. For example, the basic seedling uniformity index P of winter wheat proposed by Ma Aiguo et al. in 2001 is a random sampling method. This method determines the number of survey points according to the area of each plot, and then arranges the seedlings of each survey point in each plot from large to small. Assume that the sum of the seedling quantity of the first half of the survey points is ∑a, and the sum of the seedling quantity of the second half of the survey points is ∑b, and then substitute it into the formula (1-1) to calculate the basic seedling uniformity P corresponding to each plot:

PP == [[ 11 -- ΣaΣa ÷÷ 11 22 nno -- ΣbΣb ÷÷ 11 22 nno (( ΣaΣa ++ ΣbΣb nno )) ]] ×× 100100 %% -- -- -- (( 11 -- 11 ))

其中,n为地块调查点数。Among them, n is the number of plot survey points.

此外,仲其壮等2001年也提出了棉花均匀度指标。根据棉花的生长发育、外部形态特征及栽培管理措施定义了包括出苗整齐度、留苗均匀度、现蕾整齐度、开花整齐度、吐絮整齐度以及株高均匀度等一系列评价指标,并针对这些指标提出了提高均匀度的技术措施。In addition, Zhong Qizhuang et al. 2001 also proposed cotton uniformity index. According to the growth and development, external morphological characteristics and cultivation management measures of cotton, a series of evaluation indexes including uniformity of seedling emergence, uniformity of seedling retention, budding uniformity, flowering uniformity, boll opening uniformity and plant height uniformity were defined. These indicators suggest technical measures to improve uniformity.

杨利华等2006年提出了植株田间分布均匀度的定义,将植株在田间布局近似蜂巢的程度定义为植株田间分布均匀度,并给出了植株田间分布均匀度的计算公式(1-2):Yang Lihua et al. proposed the definition of plant field distribution uniformity in 2006, defined the degree of plant field distribution similar to honeycomb as plant field distribution uniformity, and gave the calculation formula of plant field distribution uniformity (1-2):

UDUD == 11 (( 11 ++ ΣηΣη // mm )) NN -- -- -- (( 11 -- 22 ))

其中,UD为植株田间分布均匀度,0<UD≤1,其值越接近1,植株分布越均匀;m为观测点数;N为平均穴株数;η(i=1,2,.....m)为每个观测点的离均系数,可以通过公式(1-3)计算得到:Among them, UD is the uniformity of plant distribution in the field, 0<UD≤1, the closer the value is to 1, the more uniform the plant distribution; m is the number of observation points; N is the average number of plants in holes; η(i=1,2,... .m) is the deviation coefficient of each observation point, which can be calculated by formula (1-3):

&eta;&eta; == &Sigma;&Sigma; (( PP ii -- PP )) 22 1212 // pp -- -- -- (( 11 -- 33 ))

式中Pi为一个蜂巢观测点的12个植株观测值,p为标准行距。In the formula, P i is the observed value of 12 plants at one honeycomb observation point, and p is the standard row spacing.

在实际应用中,作物长势均匀度的监测及相关指标的获取需要耗费大量的人力物力。由于需要到野外实地调查农作物的长势差异,所以存在工作量大、自动化程度低、更新周期长等缺点。而且当需要进行大范围的作物长势均匀度调查时,其测量难度也将加大。同时,不同农田地块作物长势的差异又是普遍存在的,单纯依赖人工调查数据,已经不能够满足现代农业管理的需要。In practical applications, the monitoring of crop growth uniformity and the acquisition of related indicators require a lot of manpower and material resources. Due to the need to go to the field to investigate the differences in the growth of crops, there are disadvantages such as heavy workload, low degree of automation, and long update cycle. Moreover, when a large-scale survey of crop growth uniformity is required, the measurement difficulty will also increase. At the same time, differences in crop growth in different farmland plots are common, and relying solely on manual survey data cannot meet the needs of modern agricultural management.

发明内容Contents of the invention

针对现有技术中存在的缺陷和不足,本发明的目的是提供一种作物长势均匀度的监测装置和方法,能够通过卫星遥感获得长势均匀度。Aiming at the defects and deficiencies in the prior art, the object of the present invention is to provide a monitoring device and method for crop growth uniformity, which can obtain growth uniformity through satellite remote sensing.

为达到上述目的,本发明提出了一种作物长势均匀度的监测装置,包括:In order to achieve the above object, the present invention proposes a monitoring device for crop growth uniformity, comprising:

遥感图像处理模块,所述遥感图像处理模块根据获得的遥感图像,对遥感图像进行辐射纠正、大气纠正和几何纠正;A remote sensing image processing module, the remote sensing image processing module performs radiometric correction, atmospheric correction and geometric correction on the remote sensing image according to the obtained remote sensing image;

地块矢量数据处理模块,所述地块矢量数据处理模块根据对所述遥感图像中的农作物进行分类,以获得目标农作物的空间分布图;并将分类后的遥感图像中的栅格分类结果转化为面状矢量数据;然后对所述空间分布图的地块边界进行修正;A plot vector data processing module, the plot vector data processing module classifies the crops in the remote sensing images to obtain the spatial distribution map of the target crops; and transforms the raster classification results in the classified remote sensing images It is area vector data; then the plot boundaries of the spatial distribution map are corrected;

植被指数处理模块,所述植被参数处理模块根据所述遥感图像中的地块内的光谱特征计算该地块的植被指数NDVI(NormalizedDifference Vegetation Index):Vegetation index processing module, the vegetation parameter processing module calculates the vegetation index NDVI (Normalized Difference Vegetation Index) of this plot according to the spectral features in the plot in the remote sensing image:

NDVINDVI == (( RR nirnir -- RR redred )) (( RR nirnir ++ RR redred ))

其中,Rnir指遥感图像的近红外波段的反射率;Rred指遥感图像的红光波段的反射率;Among them, R nir refers to the reflectance of the near-infrared band of the remote sensing image; R red refers to the reflectance of the red band of the remote sensing image;

长势均匀度处理模块,所述长势均匀度处理模块根据植被指数NDVI计算该地块的长势均匀度指数GUI(Growth Uniformity Index);Growth uniformity processing module, said growth uniformity processing module calculates the growth uniformity index GUI (Growth Uniformity Index) of this plot according to vegetation index NDVI;

GUIGUI == 11 -- NDVINDVI CVcv (( NDVINDVI CV cv minmin ++ NDVINDVI CV cv maxmax ))

其中:in:

NDVICV是每一地块所对应的NDVI的变异系数;NDVI CV is the coefficient of variation of NDVI corresponding to each plot;

NDVICV min为同一时相所有地块NDVI变异系数中的最小值;NDVI CV min is the minimum value of the NDVI coefficient of variation of all plots in the same phase;

NDVICV max为同一时相所有地块NDVI变异系数中的最大值。NDVI CV max is the maximum value of the NDVI coefficient of variation of all plots in the same period.

其中,所述地块矢量数据处理模块包括:Wherein, the block vector data processing module includes:

空间分布图处理子模块,所述空间分布图处理子模块对所述遥感图像中的农作物进行分类,以获得目标农作物的空间分布图;并将所述空间分布图的栅格分类转化为面状矢量数据;A spatial distribution map processing submodule, the spatial distribution map processing submodule classifies the crops in the remote sensing image to obtain a spatial distribution map of the target crops; and converts the grid classification of the spatial distribution map into a planar vector data;

土地利用数据处理子模块;所述土地利用数据处理子模块根据卫星遥感图像,对所述遥感图像进行目视解译获取历年数据的参考时相土地利用专题数据;The land use data processing submodule; the land use data processing submodule performs visual interpretation on the remote sensing image according to the satellite remote sensing image to obtain the reference time phase land use special data of the historical data;

地块边界处理子模块,所述地块边界处理子模块将所述面状矢量数据和所述参考时相土地利用专题数据叠加后,通过矢量图层Intersect算法进行切割后提取地块边界;并利用本年的卫星遥感图像,通过目视解译进行地块边界修正,获取最终农作物地块边界数据。A plot boundary processing sub-module, the plot boundary processing sub-module superimposes the surface vector data and the reference phase land use thematic data, and extracts the plot boundary after cutting through the vector layer Intersect algorithm; and Using the satellite remote sensing images of this year, the land boundary correction is carried out through visual interpretation, and the final crop land boundary data are obtained.

其中,所述植被指数处理模块包括:Wherein, the vegetation index processing module includes:

光谱特征处理子模块,所述光谱特征处理子模块提取所述地块对应的遥感数据,并根据遥感数据获得农作物不同时相、不同波段光谱特征信息;The spectral feature processing sub-module, the spectral feature processing sub-module extracts the remote sensing data corresponding to the plot, and obtains the spectral feature information of different time phases and different bands of crops according to the remote sensing data;

植被参数处理子模块,所述植被参数处理子模块对光谱特征信息进行波段运算,获取植被参数NDVI;Vegetation parameter processing sub-module, the vegetation parameter processing sub-module performs band operation on spectral feature information to obtain vegetation parameter NDVI;

NDVINDVI == (( RR nirnir -- RR redred )) (( RR nirnir ++ RR redred ))

其中,Rnir指遥感图像的近红外波段的反射率;Rred指遥感图像的红光波段的反射率;Among them, R nir refers to the reflectance of the near-infrared band of the remote sensing image; R red refers to the reflectance of the red band of the remote sensing image;

波段计算子模块,所述波段计算子模块对不同时相、不同波段的,光谱特征信息进行波段运算,获得NDVI最小值,最大值,均值,标准偏差、变异系数NDVICVThe band calculation sub-module, the band calculation sub-module performs band calculation on the spectral feature information of different time phases and different bands to obtain the minimum value, maximum value, mean value, standard deviation, and coefficient of variation NDVI CV of NDVI.

其中,所述装置还包括:Wherein, the device also includes:

作物光谱信息模块,所述作物光谱信息模块针对每一地块,提取该地块所对应所有像元NDVI值,计算出该地块不同时相NDVI最小值、最大值、均值、标准偏差及变异系数NDVICV和冬小麦长势均匀度指数GUI,并将此信息以新的字段添加到地块矢量文件对应的记录中,生成作物长势光谱信息知识库。Crop spectral information module, the crop spectral information module extracts the NDVI values of all pixels corresponding to the plot for each plot, and calculates the minimum, maximum, mean, standard deviation and variation of NDVI in different phases of the plot Coefficient NDVI CV and winter wheat growth uniformity index GUI, and add this information as a new field to the corresponding record of the plot vector file to generate a knowledge base of crop growth spectrum information.

其中,所述装置还包括:Wherein, the device also includes:

专题图制作模块,所述专题图制作模块根据所述作物光谱信息模块生成的作物长势光谱信息知识库,对所有地块的目标农作物的长势均匀度建立专题图。A thematic map making module, the thematic map making module builds a thematic map for the growth uniformity of target crops in all plots according to the crop growth spectrum information knowledge base generated by the crop spectral information module.

同时,本发明还提出了一种作物长势均匀度的监测方法,包括:Simultaneously, the present invention also proposes a monitoring method of crop growth uniformity, comprising:

步骤1、获得卫星遥感图像,并针对所述卫星遥感图像进行辐射纠正、大气纠正和几何纠正;Step 1, obtaining satellite remote sensing images, and performing radiation correction, atmospheric correction and geometric correction on the satellite remote sensing images;

步骤2、对卫星遥感图像中的农作物进行分类,以获得目标农作物的空间分布图;Step 2, classify the crops in the satellite remote sensing images to obtain the spatial distribution map of the target crops;

步骤3、将空间分布图中的栅格分类结果转化为面状矢量数据;并对所述空间分布图进行处理以对农作物的地块边界进行修正;Step 3, transforming the grid classification result in the spatial distribution map into area vector data; and processing the spatial distribution map to correct the plot boundaries of the crops;

步骤4、根据所述遥感图像中的地块内的光谱特征计算该地块的植被指数NDVI:Step 4, calculate the vegetation index NDVI of this plot according to the spectral feature in the plot in the remote sensing image:

NDVINDVI == (( RR nirnir -- RR redred )) (( RR nirnir ++ RR redred ))

其中,Rnir指遥感图像的近红外波段的反射率;Rred指遥感图像的红光波段的反射率;Among them, R nir refers to the reflectance of the near-infrared band of the remote sensing image; R red refers to the reflectance of the red band of the remote sensing image;

步骤5、根据每一地块的植被指数NDVI计算长势均匀度指数GUI;Step 5, calculate the growth uniformity index GUI according to the vegetation index NDVI of each plot;

GUIGUI == 11 -- NDVINDVI CVcv (( NDVINDVI CVcv minmin ++ NDVINDVI CVcv maxmax ))

其中:in:

NDVICV是每一地块所对应的NDVI的变异系数;NDVI CV is the coefficient of variation of NDVI corresponding to each plot;

NDVICV min为同一时相所有地块NDVI变异系数中的最小值;NDVI CV min is the minimum value of the NDVI coefficient of variation of all plots in the same phase;

NDVICV max为同一时相所有地块NDVI变异系数中的最大值。NDVI CV max is the maximum value of the NDVI coefficient of variation of all plots in the same period.

其中,所述步骤3具体为:Wherein, the step 3 is specifically:

步骤31、将所述空间分布图的栅格分类转化为面状矢量数据;Step 31, converting the raster classification of the spatial distribution map into area vector data;

步骤32、通过高分辨率卫星遥感图像,对历年的遥感图像进行目视解译获取参考时相土地利用专题数据;Step 32, through high-resolution satellite remote sensing images, visually interpret the remote sensing images over the years to obtain reference time-phase land use thematic data;

步骤33、将步骤31和步骤32所得数据叠加后,通过矢量图层Intersect算法对步骤31和步骤32所得的两层矢量数据进行切割后提取地块边界;并利用本年的卫星遥感图像,通过目视解译进行地块边界修正,获取最终农作物地块边界数据。Step 33, after superimposing the data obtained in step 31 and step 32, the two-layer vector data obtained in step 31 and step 32 is cut through the vector layer Intersect algorithm to extract the plot boundary; and using the satellite remote sensing image of this year, through Visual interpretation is used to correct the plot boundaries to obtain the final crop plot boundary data.

其中,所述步骤4具体为:Wherein, the step 4 is specifically:

步骤41、提取地块对应的遥感数据,并根据遥感数据获得农作物不同时相、不同波段光谱特征信息;Step 41, extract the remote sensing data corresponding to the plot, and obtain the spectral characteristic information of different time phases and different bands of crops according to the remote sensing data;

步骤42、对光谱特征信息进行波段运算,获取植被参数NDVI;Step 42, performing band calculation on the spectral feature information to obtain the vegetation parameter NDVI;

NDVINDVI == (( RR nirnir -- RR redred )) (( RR nirnir ++ RR redred ))

其中,Rnir指遥感图像的近红外波段的反射率;Rred指遥感图像的红光波段的反射率;Among them, R nir refers to the reflectance of the near-infrared band of the remote sensing image; R red refers to the reflectance of the red band of the remote sensing image;

步骤43、对不同时相、不同波段的,光谱特征信息进行波段运算,获得NDVI最小值,最大值,均值,标准偏差、变异系数NDVICVStep 43 , perform band calculation on the spectral characteristic information of different time phases and different bands, and obtain the minimum value, maximum value, mean value, standard deviation, and coefficient of variation NDVI CV of NDVI.

其中,所述方法还包括:Wherein, the method also includes:

步骤6、针对每一地块,提取该地块所对应所有像元NDVI值,计算出该地块不同时相NDVI最小值、最大值、均值、标准偏差及变异系数NDVICV和冬小麦长势均匀度指数GUI,并将此信息以新的字段添加到地块矢量文件对应的记录中,生成作物长势光谱信息知识库。Step 6. For each plot, extract the NDVI values of all pixels corresponding to the plot, and calculate the minimum, maximum, mean, standard deviation, NDVI CV and winter wheat growth uniformity of the plot in different phases Index GUI, and add this information as a new field to the record corresponding to the plot vector file to generate a knowledge base of crop growth spectrum information.

其中,所述方法还包括:Wherein, the method also includes:

步骤7、根据所述作物光谱信息模块生成的作物长势光谱信息知识库,对所有地块的目标农作物的长势均匀度建立专题图。Step 7. According to the crop growth spectrum information knowledge base generated by the crop spectrum information module, a thematic map is established for the growth uniformity of the target crops in all plots.

上述技术方案具有如下优点:本发明可以通过遥感技术获得遥感图像,并通过地块边界获得所述地块的矢量数据,再根据该地块的矢量数据获得植被参数,从而计算出计算农作物长势均匀度度指数。本发明能够解决现有技术中工作量大、自动化程度低、更新周期长等缺点,提高工作效率。本发明集成遥感及GIS技术,利用栅格与矢量数据一体化技术实现了针对自然地块的农作物长势均匀度监测,充分发挥了遥感数据在作物长势监测中的优势,提出了农作物长势均匀度评价指标,构建了基于遥感特征信息的作物长势均匀度知识库,并实现了实时、快速、准确的农作物长势均匀度的遥感监测,提高了作物长势均匀度调查的精度。The above technical solution has the following advantages: the present invention can obtain remote sensing images through remote sensing technology, and obtain the vector data of the plot through the plot boundary, and then obtain the vegetation parameters according to the vector data of the plot, so as to calculate the uniform growth of crops. degree index. The invention can solve the disadvantages of the prior art, such as heavy workload, low degree of automation, long update cycle, etc., and improve work efficiency. The invention integrates remote sensing and GIS technology, utilizes grid and vector data integration technology to realize the monitoring of crop growth uniformity for natural plots, gives full play to the advantages of remote sensing data in crop growth monitoring, and proposes the evaluation of crop growth uniformity Indexes, constructing a crop growth uniformity knowledge base based on remote sensing feature information, and realizing real-time, fast, and accurate remote sensing monitoring of crop growth uniformity, improving the accuracy of crop growth uniformity investigations.

附图说明Description of drawings

图1为本发明提出的作物长势均匀度的监测装置的结构示意图;Fig. 1 is the structural representation of the monitoring device of crop growth uniformity that the present invention proposes;

图2为本发明提出的作物长势均匀度的监测方法的流程示意图;Fig. 2 is the schematic flow sheet of the monitoring method of crop growth uniformity that the present invention proposes;

图3为本发明一个具体实施例中的提取的目标农作物的空间分布图;Fig. 3 is a spatial distribution diagram of the extracted target crops in a specific embodiment of the present invention;

图4为将图3中的该栅格数据转换为矢量数据后的地块图像;Fig. 4 is the plot image after converting the raster data in Fig. 3 into vector data;

图5为图4经过修正后的地块图像。Figure 5 is the corrected plot image of Figure 4.

具体实施方式Detailed ways

下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. The following examples are used to illustrate the present invention, but are not intended to limit the scope of the present invention.

实施例1Example 1

本发明第一优选实施例提出了一种作物长势均匀度的监测装置,其结构如图1所示,包括:The first preferred embodiment of the present invention proposes a monitoring device for crop growth uniformity, its structure as shown in Figure 1, comprising:

遥感图像处理模块,所述遥感图像处理模块根据获得的遥感图像,对遥感图像进行辐射纠正、大气纠正和几何纠正;A remote sensing image processing module, the remote sensing image processing module performs radiometric correction, atmospheric correction and geometric correction on the remote sensing image according to the obtained remote sensing image;

地块矢量数据处理模块,所述地块矢量数据处理模块根据对所述遥感图像中的农作物进行分类,以获得目标农作物的空间分布图;并将分类后的遥感图像中的栅格分类结果转化为面状矢量数据;然后对所述空间分布图的地块边界进行修正;A plot vector data processing module, the plot vector data processing module classifies the crops in the remote sensing images to obtain the spatial distribution map of the target crops; and transforms the raster classification results in the classified remote sensing images It is area vector data; then the plot boundaries of the spatial distribution map are corrected;

植被指数处理模块,所述植被参数处理模块根据所述遥感图像中的地块内的光谱特征计算该地块的植被指数NDVI:Vegetation index processing module, the vegetation parameter processing module calculates the vegetation index NDVI of the plot according to the spectral features in the plot in the remote sensing image:

NDVINDVI == (( RR nirnir -- RR redred )) (( RR nirnir ++ RR redred ))

其中,Rnir指遥感图像的近红外波段的反射率;Rred指遥感图像的红光波段的反射率;Among them, R nir refers to the reflectance of the near-infrared band of the remote sensing image; R red refers to the reflectance of the red band of the remote sensing image;

长势均匀度处理模块,所述长势均匀度处理模块根据植被指数NDVI计算该地块的长势均匀度指数GUI;The growth uniformity processing module, the growth uniformity processing module calculates the growth uniformity index GUI of the plot according to the vegetation index NDVI;

GUIGUI == 11 -- NDVINDVI CVcv (( NDVINDVI CVcv minmin ++ NDVINDVI CVcv maxmax ))

其中:in:

NDVICV是每一地块所对应的NDVI的变异系数;NDVI CV is the coefficient of variation of NDVI corresponding to each plot;

NDVICV min为同一时相所有地块NDVI变异系数中的最小值;NDVI CV min is the minimum value of the NDVI coefficient of variation of all plots in the same phase;

NDVICV max为同一时相所有地块NDVI变异系数中的最大值。本发明第一优选实施例,可以通过遥感图像确定目标农作物的地块,并通过地块内的遥感图像中的地块内的光谱特征计算该地块的植被指数NDVI及长势均匀度指数GUI。本发明第一优选实施例利用栅格与矢量数据一体化技术实现了针对自然地块的农作物长势均匀度监测,充分发挥了遥感数据在作物长势监测中的优势。本发明实现了实时、快速、准确的农作物长势均匀度的遥感监测,提高了作物长势均匀度调查的精度。NDVI CV max is the maximum value of the NDVI coefficient of variation of all plots in the same period. In the first preferred embodiment of the present invention, the plot of the target crop can be determined through the remote sensing image, and the vegetation index NDVI and the growth uniformity index GUI of the plot can be calculated through the spectral characteristics in the plot in the remote sensing image. The first preferred embodiment of the present invention utilizes grid and vector data integration technology to realize crop growth uniformity monitoring for natural plots, and fully utilizes the advantages of remote sensing data in crop growth monitoring. The invention realizes real-time, rapid and accurate remote sensing monitoring of the uniformity of crop growth, and improves the precision of investigation of the uniformity of crop growth.

实施例2Example 2

本发明第二优选实施例是在第一优选实施例基础上改进而来,即所述地块矢量数据处理模块包括:The second preferred embodiment of the present invention is improved on the basis of the first preferred embodiment, that is, the block vector data processing module includes:

空间分布图处理子模块,所述空间分布图处理子模块对所述遥感图像中的农作物进行分类,以获得目标农作物的空间分布图;并将所述空间分布图的栅格分类转化为面状矢量数据;A spatial distribution map processing submodule, the spatial distribution map processing submodule classifies the crops in the remote sensing image to obtain a spatial distribution map of the target crops; and converts the grid classification of the spatial distribution map into a planar vector data;

土地利用数据处理子模块;所述土地利用数据处理子模块根据卫星遥感图像,对所述遥感图像进行目视解译获取历年数据的参考时相土地利用专题数据;The land use data processing submodule; the land use data processing submodule performs visual interpretation on the remote sensing image according to the satellite remote sensing image to obtain the reference time phase land use special data of the historical data;

地块边界处理子模块,所述地块边界处理子模块将所述面状矢量数据和所述参考时相土地利用专题数据叠加后,通过矢量图层Intersect算法进行切割后提取地块边界;并利用本年的卫星遥感图像,通过目视解译进行地块边界修正,获取最终农作物地块边界数据。A plot boundary processing sub-module, the plot boundary processing sub-module superimposes the surface vector data and the reference phase land use thematic data, and extracts the plot boundary after cutting through the vector layer Intersect algorithm; and Using the satellite remote sensing images of this year, the land boundary correction is carried out through visual interpretation, and the final crop land boundary data are obtained.

本发明第二优选实施例中,通过参考时相土地利用专题数据进行叠加后切割提取地块边界,以对地块边界进行更精确的修正,提高监测数据的准确性。In the second preferred embodiment of the present invention, by referring to the time-phase land use thematic data to superimpose and then cut and extract the plot boundary, the plot boundary can be corrected more accurately and the accuracy of the monitoring data can be improved.

其中“参考时相土地利用专题数据”是指利用历年的高分辨率遥感影像或者研究区历史土地利用数据,以获取的农田地块数据。由于历史数据与最新土地利用情况可能会略有出入,因此利用历史数据结合当前数据对地块边界进行修正,可以提高地块边界数据的准确性。Among them, the "reference time-phase land use thematic data" refers to the farmland plot data obtained by using the high-resolution remote sensing images over the years or the historical land use data of the research area. Since the historical data may be slightly different from the latest land use conditions, using historical data combined with current data to correct the plot boundary can improve the accuracy of the plot boundary data.

实施例3Example 3

本发明第三优选实施例是在第一优选实施例和第二优选实施例的基础上改进而来,即所述植被指数处理模块包括:The third preferred embodiment of the present invention is improved on the basis of the first preferred embodiment and the second preferred embodiment, that is, the vegetation index processing module includes:

光谱特征处理子模块,所述光谱特征处理子模块提取所述地块对应的遥感数据,并根据遥感数据获得农作物不同时相、不同波段光谱特征信息;The spectral feature processing sub-module, the spectral feature processing sub-module extracts the remote sensing data corresponding to the plot, and obtains the spectral feature information of different time phases and different bands of crops according to the remote sensing data;

植被参数处理子模块,所述植被参数处理子模块对光谱特征信息进行波段运算,获取植被参数NDVI;Vegetation parameter processing sub-module, the vegetation parameter processing sub-module performs band operation on spectral feature information to obtain vegetation parameter NDVI;

NDVINDVI == (( RR nirnir -- RR redred )) (( RR nirnir ++ RR redred ))

其中,Rnir指遥感图像的近红外波段的反射率;Rred指遥感图像的红光波段的反射率;Among them, R nir refers to the reflectance of the near-infrared band of the remote sensing image; R red refers to the reflectance of the red band of the remote sensing image;

波段计算子模块,所述波段计算子模块对不同时相、不同波段的,光谱特征信息进行波段运算,获得NDVI最小值,最大值,均值,标准偏差、变异系数NDVICVThe band calculation sub-module, the band calculation sub-module performs band calculation on the spectral feature information of different time phases and different bands to obtain the minimum value, maximum value, mean value, standard deviation, and coefficient of variation NDVI CV of NDVI.

其中植被参数NDVI是植被指数NDVI是可见光红波段和近红外波段两波段的归一化比值,它一方面能够反映植被光合作用的有效辐射吸收情况,另一方面能够反映作物长势、叶面积指数LAI等,是目前应用最为广泛的植被指数。本发明第三优选实施例中,应用遥感图像以及精确修正后的地块边界,获得地块内的光谱特征信息,并根据光谱特征信息计算植被参数NDVI,可以提高NDVI的准确性。Among them, the vegetation parameter NDVI is the vegetation index NDVI is the normalized ratio of the visible red band and the near-infrared band. On the one hand, it can reflect the effective radiation absorption of vegetation photosynthesis, and on the other hand, it can reflect crop growth and leaf area index LAI It is the most widely used vegetation index at present. In the third preferred embodiment of the present invention, the spectral feature information in the plot is obtained by using the remote sensing image and the accurately corrected plot boundary, and the vegetation parameter NDVI is calculated according to the spectral feature information, which can improve the accuracy of NDVI.

实施例4Example 4

本发明第四优选实施例是在上述三个优选实施例的基础上改进而来,即所述装置还包括:The fourth preferred embodiment of the present invention is improved on the basis of the above three preferred embodiments, that is, the device also includes:

作物光谱信息模块,所述作物光谱信息模块针对每一地块,提取该地块所对应所有像元NDVI值,计算出该地块不同时相NDVI最小值、最大值、均值、标准偏差及变异系数NDVICV和冬小麦长势均匀度指数GUI,并将此信息以新的字段添加到地块矢量文件对应的记录中,生成作物长势光谱信息知识库。Crop spectral information module, the crop spectral information module extracts the NDVI values of all pixels corresponding to the plot for each plot, and calculates the minimum, maximum, mean, standard deviation and variation of NDVI in different phases of the plot Coefficient NDVI CV and winter wheat growth uniformity index GUI, and add this information as a new field to the corresponding record of the plot vector file to generate a knowledge base of crop growth spectrum information.

本发明第四优选实施例利用NDVI建立作物长势光谱信息知识库,以提高长期、有效的作物长势光谱信息的监测。The fourth preferred embodiment of the present invention utilizes NDVI to establish a knowledge base of crop growth spectrum information to improve long-term and effective monitoring of crop growth spectrum information.

实施例5Example 5

本发明第五优选实施例是在上述四个优选实施例的基础上改进而来,即所述装置还包括:The fifth preferred embodiment of the present invention is improved on the basis of the above four preferred embodiments, that is, the device also includes:

专题图制作模块,所述专题图制作模块根据所述作物光谱信息模块生成的作物长势光谱信息知识库,对所有地块的目标农作物的长势均匀度建立专题图。A thematic map making module, the thematic map making module builds a thematic map for the growth uniformity of target crops in all plots according to the crop growth spectrum information knowledge base generated by the crop spectral information module.

专题图能够根据作物长势光谱信息知识库获得更为直观的图像化资料。Thematic maps can obtain more intuitive image data based on the knowledge base of crop growth spectrum information.

实施例6Example 6

本发明提出的一种作物长势均匀度的监测方法,其优选实施例流程如图2所示,包括:A kind of monitoring method of crop growth uniformity that the present invention proposes, its preferred embodiment process flow as shown in Figure 2, comprises:

步骤1、获得卫星遥感图像,并针对所述卫星遥感图像进行辐射纠正、大气纠正和几何纠正;Step 1, obtaining satellite remote sensing images, and performing radiation correction, atmospheric correction and geometric correction on the satellite remote sensing images;

步骤2、对卫星遥感图像中的农作物进行分类,以获得目标农作物的空间分布图;Step 2, classify the crops in the satellite remote sensing images to obtain the spatial distribution map of the target crops;

步骤3、对所述空间分布图进行处理以对农作物的地块边界进行修正,获得地块的矢量数据;Step 3, processing the spatial distribution map to correct the plot boundary of the crops, and obtaining the vector data of the plot;

步骤4、根据所述遥感图像中的地块内的光谱特征计算该地块的植被指数NDVI:Step 4, calculate the vegetation index NDVI of this plot according to the spectral feature in the plot in the remote sensing image:

NDVINDVI == (( RR nirnir -- RR redred )) (( RR nirnir ++ RR redred ))

其中,Rnir指遥感图像的近红外波段的反射率;Rred指遥感图像的红光波段的反射率;Among them, R nir refers to the reflectance of the near-infrared band of the remote sensing image; R red refers to the reflectance of the red band of the remote sensing image;

步骤5、根据每一地块的植被指数NDVI计算长势均匀度度指数GUI;Step 5, calculating the growth uniformity index GUI according to the vegetation index NDVI of each plot;

GUIGUI == 11 -- NDVINDVI CVcv (( NDVINDVI CVcv minmin ++ NDVINDVI CVcv maxmax ))

其中:in:

NDVICV是每一地块所对应的NDVI的变异系数;NDVI CV is the coefficient of variation of NDVI corresponding to each plot;

NDVICV min为同一时相所有地块NDVI变异系数中的最小值;NDVI CV min is the minimum value of the NDVI coefficient of variation of all plots in the same phase;

NDVICV max为同一时相所有地块NDVI变异系数中的最大值。NDVI CV max is the maximum value of the NDVI coefficient of variation of all plots in the same period.

本发明第六优选实施例,可以通过遥感图像确定目标农作物的地块,并通过地块内的遥感图像中的地块内的光谱特征计算该地块的植被指数NDVI及长势均匀度GUI。本发明第六优选实施例利用栅格与矢量数据一体化技术实现了针对自然地块的农作物长势均匀度监测,充分发挥了遥感数据在作物长势监测中的优势。本发明实现了实时、快速、准确的农作物长势均匀度的遥感监测,提高了作物长势均匀度调查的精度。In the sixth preferred embodiment of the present invention, the plot of the target crop can be determined through remote sensing images, and the vegetation index NDVI and growth uniformity GUI of the plot can be calculated through the spectral features in the plot in the remote sensing image. The sixth preferred embodiment of the present invention utilizes grid and vector data integration technology to realize crop growth uniformity monitoring for natural plots, and fully utilizes the advantages of remote sensing data in crop growth monitoring. The invention realizes real-time, rapid and accurate remote sensing monitoring of the uniformity of crop growth, and improves the precision of investigation of the uniformity of crop growth.

实施例7Example 7

本发明第七优选实施例是在上述第六优选实施例的基础上改进而来,即所述步骤3具体为:The seventh preferred embodiment of the present invention is improved on the basis of the sixth preferred embodiment above, that is, the step 3 is specifically:

步骤31、将所述空间分布图的栅格分类转化为面状矢量数据;Step 31, converting the raster classification of the spatial distribution map into area vector data;

步骤32、通过高分辨率卫星遥感图像,对历年的遥感图像进行目视解译获取参考时相土地利用专题数据;Step 32, through high-resolution satellite remote sensing images, visually interpret the remote sensing images over the years to obtain reference time-phase land use thematic data;

步骤33、将步骤31和步骤32所得数据叠加后,通过矢量图层Intersect算法对步骤31和步骤32所得的两层矢量数据进行切割后提取地块边界;并利用本年的卫星遥感图像,通过目视解译进行地块边界修正,获取最终农作物地块边界数据。Step 33, after superimposing the data obtained in step 31 and step 32, the two-layer vector data obtained in step 31 and step 32 is cut through the vector layer Intersect algorithm to extract the plot boundary; and using the satellite remote sensing image of this year, through Visual interpretation is used to correct the plot boundaries to obtain the final crop plot boundary data.

本发明第七优选实施例中,通过参考时相土地利用专题数据进行叠加后切割提取地块边界,以对地块边界进行更精确的修正,提高监测数据的准确性。In the seventh preferred embodiment of the present invention, by superimposing with reference to the thematic data of time-phase land use and then cutting and extracting the boundary of the plot, the boundary of the plot can be corrected more accurately and the accuracy of the monitoring data can be improved.

实施例8Example 8

本发明第八优选实施例是在上述第六或第七优选实施例的基础上改进而来,即所述步骤4具体为:The eighth preferred embodiment of the present invention is improved on the basis of the sixth or seventh preferred embodiment above, that is, the step 4 is specifically:

步骤41、提取地块对应的遥感数据,并根据遥感数据获得农作物不同时相、不同波段光谱特征信息;Step 41, extract the remote sensing data corresponding to the plot, and obtain the spectral characteristic information of different time phases and different bands of crops according to the remote sensing data;

步骤42、对光谱特征信息进行波段运算,获取植被参数NDVI;Step 42, performing band calculation on the spectral feature information to obtain the vegetation parameter NDVI;

NDVINDVI == (( RR nirnir -- RR redred )) (( RR nirnir ++ RR redred ))

其中,Rnir指遥感图像的近红外波段的反射率;Rred指遥感图像的红光波段的反射率;Among them, R nir refers to the reflectance of the near-infrared band of the remote sensing image; R red refers to the reflectance of the red band of the remote sensing image;

步骤43、对不同时相、不同波段的,光谱特征信息进行波段运算,获得NDVI最小值,最大值,均值,标准偏差、变异系数NDVICVStep 43 , perform band calculation on the spectral characteristic information of different time phases and different bands, and obtain the minimum value, maximum value, mean value, standard deviation, and coefficient of variation NDVI CV of NDVI.

其中植被参数NDVI是植被指数NDVI是可见光红波段和近红外波段两波段的归一化比值,它一方面能够反映植被光合作用的有效辐射吸收情况,另一方面能够反映作物长势、叶面积指数LAI等,是目前应用最为广泛的植被指数。本发明第六优选实施例中,应用遥感图像以及精确修正后的地块边界,获得地块内的光谱特征信息,并根据光谱特征信息计算植被参数NDVI,可以提高NDVI的准确性。Among them, the vegetation parameter NDVI is the vegetation index NDVI is the normalized ratio of the visible red band and the near-infrared band. On the one hand, it can reflect the effective radiation absorption of vegetation photosynthesis, and on the other hand, it can reflect crop growth and leaf area index LAI It is the most widely used vegetation index at present. In the sixth preferred embodiment of the present invention, the spectral feature information in the plot is obtained by using the remote sensing image and the accurately corrected plot boundary, and the vegetation parameter NDVI is calculated according to the spectral feature information, which can improve the accuracy of NDVI.

实施例9Example 9

本发明第八优选实施例是在上述第六或第七或第八优选实施例的基础上改进而来,即所述方法还包括:The eighth preferred embodiment of the present invention is improved on the basis of the sixth or seventh or eighth preferred embodiment above, that is, the method further includes:

步骤6、针对每一地块,提取该地块所对应所有像元NDVI值,计算出该地块不同时相NDVI最小值、最大值、均值、标准偏差及变异系数NDVICV和冬小麦长势均匀度指数GUI,并将此信息以新的字段添加到地块矢量文件对应的记录中,生成作物长势光谱信息知识库。Step 6. For each plot, extract the NDVI values of all pixels corresponding to the plot, and calculate the minimum, maximum, mean, standard deviation, NDVI CV and winter wheat growth uniformity of the plot in different phases Index GUI, and add this information as a new field to the record corresponding to the plot vector file to generate a knowledge base of crop growth spectrum information.

本发明第四优选实施例利用NDVI建立作物长势光谱信息知识库,以提高长期、有效的作物长势光谱信息。The fourth preferred embodiment of the present invention uses NDVI to establish a knowledge base of crop growth spectrum information to improve long-term and effective crop growth spectrum information.

实施例10Example 10

本发明第八优选实施例是在上述第六或第七或第八或第九优选实施例的基础上改进而来,即所述方法还包括:The eighth preferred embodiment of the present invention is improved on the basis of the sixth or seventh or eighth or ninth preferred embodiment above, that is, the method further includes:

步骤7、根据所述作物光谱信息模块生成的作物长势光谱信息知识库,对所有地块的目标农作物的长势均匀度建立专题图。Step 7. According to the crop growth spectrum information knowledge base generated by the crop spectrum information module, a thematic map is established for the growth uniformity of the target crops in all plots.

专题图能够根据作物长势光谱信息知识库获得更为直观的图像化资料。Thematic maps can obtain more intuitive image data based on the knowledge base of crop growth spectrum information.

下面通过一个具体的实施例对本发明进行说明。The present invention will be described below through a specific embodiment.

(1)遥感图像获取及处理(1) Remote sensing image acquisition and processing

2008年度,在冬小麦生长季共获取研究区Landsat TM遥感图像3景,获取日期分别为3月27日,4月28日和5月30日,分别对应冬小麦起身期、孕穗期及冬小麦乳熟期。此外,08年7月12日还获取了研究区印度星ISP6图像一景。所有Landsat图像,采用6S模型支持下的暗目标法进行了大气纠正,ISP6图像采用ENVI软件FLAASH模块进行了大气纠正,获取了所有图像的地表反射率。图像的几何纠正采用图像对图像选取地面控制点的方法,每景图像选取超过300个地面控制点,此外,根据实际调查时所获取的卫星差分GPS控制点对整个图像进行了修正,经过几何纠正的图像精度控制在一个像元之内。In 2008, a total of 3 scenes of Landsat TM remote sensing images in the research area were obtained during the winter wheat growing season. The acquisition dates were March 27, April 28 and May 30, corresponding to the rising stage, booting stage and milky stage of winter wheat respectively. . In addition, on July 12, 2008, a scene of the ISP6 image of the Indian star in the research area was obtained. All Landsat images were atmospherically corrected using the dark target method supported by the 6S model, and the ISP6 images were atmospherically corrected using the FLAASH module of ENVI software to obtain the surface reflectance of all images. The geometric correction of the image adopts the method of selecting ground control points from image to image. More than 300 ground control points are selected for each image. In addition, the entire image is corrected according to the satellite differential GPS control points obtained during the actual survey. After geometric correction The image precision is controlled within one pixel.

(2)目标农作物提取(2) Target crop extraction

利用2008年度3月27日、4月28日以及5月30日Landsat5 TM冬小麦生长季遥感图像,以及2008年7月12日冬小麦收割后的遥感图像,采用决策树分类法,对通州地区冬小麦种植区进行了提取。提取结果如图3所示。Using the remote sensing images of Landsat5 TM winter wheat growing season on March 27, April 28 and May 30, 2008, and the remote sensing images of winter wheat harvested on July 12, 2008, the winter wheat planting in Tongzhou area was classified by decision tree classification method. area was extracted. The extraction results are shown in Figure 3.

利用ENVI软件分类后处理功能将该栅格数据转换为矢量数据,结果如图4所示。其中,ENVI(The Environment for Visualizing Images)是美国ITT Visual Information Solutions公司的遥感图像处理软件。The raster data is converted into vector data by using the classification post-processing function of ENVI software, and the result is shown in Figure 4. Among them, ENVI (The Environment for Visualizing Images) is a remote sensing image processing software of ITT Visual Information Solutions in the United States.

(3)目标农作物地块矢量数据的获取(3) Acquisition of target crop plot vector data

在ARCVIEW3.3软件中,通过与高分辨率卫星遥感图像目视解译获取的2006年北京地区农田划分类型矢量图进行叠加切割运算,获取了比较精细的农田地块矢量边界数据,同时叠加2008年冬小麦遥感图像提取信息。通过目视解译,确定2008年北京通州地区冬小麦种植地块边界。冬小麦地块数据经过修正后,如图5所示。In the ARCVIEW3.3 software, by superimposing and cutting the 2006 Beijing area farmland division type vector map obtained by visual interpretation of high-resolution satellite remote sensing images, a relatively fine vector boundary data of farmland plots was obtained, and at the same time superimposed the 2008 Information extraction from remote sensing images of winter wheat. Determination of the boundaries of winter wheat planting plots in Tongzhou, Beijing in 2008 by visual interpretation. Figure 5 shows the data of winter wheat plots after correction.

通州地区2008年冬小麦种植地块共1105块,总面积为17791公顷(26.7万亩),其中,面积小于10公顷(150亩)的小麦地块有526块,10-30公顷(150-450亩)的小麦地块有394块,30-70公顷(450-1050亩)的小麦地块有130块,大于70公顷(1050亩)的小麦地块有2块。There were 1,105 winter wheat plots in Tongzhou in 2008, with a total area of 17,791 hectares (267,000 mu), of which there were 526 wheat plots with an area of less than 10 hectares (150 mu) ), there are 394 wheat plots, 130 wheat plots of 30-70 hectares (450-1050 mu), and 2 wheat plots larger than 70 hectares (1050 mu).

(4)对于每一地块,利用VB结合GIS二次开发控件MO编程提取地块所对应所有像元NDVI值,计算出该地块不同时相NDVI最小值、最大值、均值、标准偏差及变异系数NDVICV,并将此信息以新的字段添加到地块矢量文件对应的记录中,生成作物光谱信息知识库。(4) For each plot, use VB combined with GIS secondary development control MO programming to extract the NDVI values of all pixels corresponding to the plot, and calculate the minimum, maximum, mean, standard deviation and Variation coefficient NDVI CV , and this information is added to the record corresponding to the plot vector file as a new field to generate a knowledge base of crop spectral information.

(5)基于地块的作物长势均匀度指标的确定(5) Determination of crop growth uniformity index based on plots

为了对所有地块的长势情况进行综合考察,本研究根据同一时相所有地块的变异系数NDVICV构建了冬小麦长势均匀度指数GUI(Growth Uniformity Index)根据该指数的大小,评价不同地块冬小麦的长势,GUI的定义如下所示,GUI的值介于0-1之间,GUI值越大,说明地块长势越好,NDVI值高且长势越均匀。In order to comprehensively examine the growth conditions of all plots, this study constructed the growth uniformity index GUI (Growth Uniformity Index) of winter wheat based on the variation coefficient NDVI CV of all plots in the same phase. The growth trend of , the definition of GUI is as follows, the value of GUI is between 0-1, the larger the GUI value, the better the growth of the plot, the higher the NDVI value and the more uniform the growth.

GUIGUI == 11 -- NDVINDVI CVcv (( NDVINDVI CVcv minmin ++ NDVINDVI CVcv maxmax ))

其中,in,

NDVICV是每一地块所对应的NDVI的变异系数;NDVI CV is the coefficient of variation of NDVI corresponding to each plot;

NDVICV min为同一时相所有地块NDVI变异系数中的最小值;NDVI CV min is the minimum value of the NDVI coefficient of variation of all plots in the same phase;

NDVICV max为同一时相所有地块NDVI变异系数中的最大值;NDVI CV max is the maximum value of the NDVI coefficient of variation of all plots in the same phase;

(6)生成作物光谱信息知识库;(6) Generate crop spectral information knowledge base;

对于每一地块,利用VB结合GIS二次开发控件MO编程提取地块所对应所有像元NDVI值,计算出该地块不同时相NDVI最小值、最大值、均值、标准偏差及变异系数NDVICV和冬小麦长势均匀度指数GUI,并将此信息以新的字段添加到地块矢量文件对应的记录中,生成作物光谱信息知识库。For each plot, use VB combined with GIS secondary development control MO programming to extract the NDVI values of all pixels corresponding to the plot, and calculate the minimum, maximum, mean, standard deviation and variation coefficient NDVI of the plot in different phases of NDVI CV and winter wheat growth uniformity index GUI, and this information is added as a new field to the record corresponding to the plot vector file to generate a knowledge base of crop spectral information.

(7)生成专题图;(7) generate thematic maps;

根据区域内不同地块不同时相作物长势均匀度专题图。According to the thematic map of crop growth uniformity in different plots and different phases in the region.

本实例利用本发明提出的方法,实现了基于农田地块的农作物长势均匀度的遥感监测,本发明提出的技术方案充分利用了遥感图像数据能够多次、瞬时、无损的获取大范围“面状”地物光谱信息的特点,针对自然地块开展作物长势均匀度的评价,克服了以往作物长势均匀度的调查费时费力,效率低的缺点,在提高工作效率,减轻工作强度的同时,有效的提高了大范围作物长势均匀度监测的准确性与精度。This example uses the method proposed by the present invention to realize the remote sensing monitoring of the uniformity of crop growth based on farmland plots. The technical solution proposed by the present invention makes full use of the remote sensing image data to obtain multiple, instantaneous and non-destructive acquisitions of large-scale "area-shaped "The characteristics of ground object spectral information, the evaluation of crop growth uniformity for natural plots, overcomes the shortcomings of time-consuming, laborious and low-efficiency investigations of crop growth uniformity in the past, and effectively improves work efficiency and reduces work intensity. The accuracy and precision of monitoring the uniformity of crop growth in a wide range are improved.

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the technical principle of the present invention, some improvements and modifications can also be made, these improvements and modifications It should also be regarded as the protection scope of the present invention.

Claims (10)

1. A monitoring device for the uniformity of crop growth, comprising:
the remote sensing image processing module is used for carrying out radiation correction, atmospheric correction and geometric correction on the remote sensing image according to the obtained remote sensing image;
the plot vector data processing module classifies crops in the remote sensing image to obtain a spatial distribution map of a target crop; converting the classified grid classification result in the remote sensing image into planar vector data; then correcting the boundary of the land parcel of the space distribution map;
the vegetation index processing module is used for calculating the vegetation index NDVI of the plot according to the spectral characteristics in the plot in the remote sensing image:
NDVI = ( R nir - R red ) ( R nir + R red )
wherein R isnirThe reflectivity of a near infrared band of a remote sensing image is referred to; rredThe reflectivity of a red light wave band of a remote sensing image is referred to;
the growth uniformity processing module is used for calculating a growth uniformity index GUI of the plot according to the vegetation index NDVI;
GUI = 1 - NDVI CV ( NDVI CV min + NDVI CV max )
wherein:
NDVICVis the coefficient of variation of the corresponding NDVI for each plot;
NDVICVminthe minimum value of the NDVI (normalized difference of absolute difference) coefficients of all the plots in the same time phase;
NDVICVmaxthe maximum value of the NDVI variation coefficients of all the plots in the same time phase.
2. The device for monitoring the uniformity of crop growth as claimed in claim 1, wherein said block vector data processing module comprises:
the spatial distribution map processing submodule classifies crops in the remote sensing image to obtain a spatial distribution map of a target crop; and converting the grid classification of the space distribution map into planar vector data;
a land utilization data processing submodule; the land utilization data processing submodule performs visual interpretation on the remote sensing image according to the satellite remote sensing image to obtain reference time phase land utilization thematic data based on the data of the past year;
the land parcel boundary processing submodule is used for superposing the planar vector data and the reference time phase land utilization thematic data and cutting the data through a vector layer Intersect algorithm to extract a land parcel boundary; and correcting the plot boundary by visual interpretation by using the satellite remote sensing image of the year to obtain final crop plot boundary data.
3. The device for monitoring the uniformity of crop growth according to claim 1 or 2, wherein the vegetation index processing module comprises:
the spectral feature processing submodule extracts remote sensing data corresponding to the plot and obtains spectral feature information of different time phases and different wave bands of crops according to the remote sensing data;
the vegetation parameter processing submodule carries out band operation on the spectral characteristic information to obtain a vegetation parameter NDVI;
NDVI = ( R nir - R red ) ( R nir + R red )
wherein R isnirThe reflectivity of a near infrared band of a remote sensing image is referred to; rredThe reflectivity of a red light wave band of a remote sensing image is referred to;
the waveband calculation sub-module carries out waveband calculation on the spectral characteristic information of different time phases and different wavebands to obtain the NDVI minimum value, the maximum value, the mean value, the standard deviation and the variation coefficient NDVI of the remote sensing imageCV
4. The apparatus for monitoring the uniformity of growth of a crop as claimed in claim 1, further comprising:
the crop spectrum information module extracts all pixel NDVI values corresponding to each plot aiming at each plot, and calculates the minimum value, the maximum value, the mean value, the standard deviation and the variation coefficient NDVI of the plot in different time phasesCVAnd adding the information into a record corresponding to the plot vector file by a new field to generate a crop growth spectrum information knowledge base.
5. The apparatus for monitoring the uniformity of growth of a crop as claimed in claim 4, further comprising:
and the thematic map making module is used for establishing a thematic map for the growth uniformity of the target crops in all plots according to the crop growth spectrum information knowledge base generated by the crop spectrum information module.
6. A method for monitoring the growth uniformity of crops comprises the following steps:
step 1, obtaining a satellite remote sensing image, and performing radiation correction, atmospheric correction and geometric correction on the satellite remote sensing image;
step 2, classifying crops in the satellite remote sensing image to obtain a spatial distribution map of the target crops;
step 3, converting the grid classification result in the spatial distribution map into planar vector data; processing the spatial distribution map to correct the plot boundary of the crops;
step 4, calculating the vegetation index NDVI of the plot according to the spectral characteristics in the plot in the remote sensing image:
NDVI = ( R nir - R red ) ( R nir + R red )
wherein R isnirThe reflectivity of a near infrared band of a remote sensing image is referred to; rredThe reflectivity of a red light wave band of a remote sensing image is referred to;
step 5, calculating a growth uniformity index GUI according to the vegetation index NDVI of each plot,
GUI = 1 - NDVI CV ( NDVI CV min + NDVI CV max )
wherein:
NDVICVis the coefficient of variation of the corresponding NDVI for each plot;
NDVICVminthe minimum value of the NDVI (normalized difference of absolute difference) coefficients of all the plots in the same time phase;
NDVICVmaxthe maximum value of the NDVI variation coefficients of all the plots in the same time phase.
7. The method for monitoring the uniformity of crop growth according to claim 6, wherein the step 3 is specifically as follows:
step 31, converting the grid classification of the spatial distribution map into planar vector data;
step 32, carrying out visual interpretation on the remote sensing images of the past year through the high-resolution satellite remote sensing image to obtain reference time phase land utilization thematic data;
step 33, after the data obtained in the step 31 and the step 32 are superposed, cutting the two layers of vector data obtained in the step 31 and the step 32 through a vector layer Intersect algorithm, and then extracting a land boundary; and correcting the plot boundary by visual interpretation by using the satellite remote sensing image of the year to obtain final crop plot boundary data.
8. The method for monitoring the uniformity of crop growth according to claim 6 or 7, wherein the step 4 is specifically as follows:
step 41, extracting remote sensing data corresponding to the plots, and obtaining spectral feature information of different time phases and different wave bands of crops according to the remote sensing data;
step 42, performing band operation on the spectral characteristic information to obtain a vegetation parameter NDVI;
NDVI = ( R nir - R red ) ( R nir + R red )
wherein R isnirThe reflectivity of a near infrared band of a remote sensing image is referred to; rredThe reflectivity of a red light wave band of a remote sensing image is referred to;
step 43, performing band operation on the spectral characteristic information of different time phases and different bands to obtain NDVI minimum value, maximum value, mean value, standard deviation and variation coefficient NDVICV
9. The method for monitoring the uniformity of crop growth as claimed in claim 6, further comprising:
step 6, aiming at each land block, extracting all pixel NDVI values corresponding to the land block, and calculating the NDVI minimum value, maximum value, mean value, standard deviation and variation coefficient NDVI of the land block at different time phasesCVAnd winter wheat growth uniformity index GUIAnd adding the information into a record corresponding to the block vector file by a new field to generate a crop growth spectrum information knowledge base.
10. The method for monitoring the uniformity of crop growth as claimed in claim 9, further comprising:
and 7, establishing thematic maps for the growth uniformity of the target crops in all plots according to the crop growth spectrum information knowledge base generated by the crop spectrum information module.
CN2009102365201A 2009-10-23 2009-10-23 A monitoring device and method for crop growth uniformity Active CN101699315B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009102365201A CN101699315B (en) 2009-10-23 2009-10-23 A monitoring device and method for crop growth uniformity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102365201A CN101699315B (en) 2009-10-23 2009-10-23 A monitoring device and method for crop growth uniformity

Publications (2)

Publication Number Publication Date
CN101699315A true CN101699315A (en) 2010-04-28
CN101699315B CN101699315B (en) 2012-04-25

Family

ID=42147778

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102365201A Active CN101699315B (en) 2009-10-23 2009-10-23 A monitoring device and method for crop growth uniformity

Country Status (1)

Country Link
CN (1) CN101699315B (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825702A (en) * 2010-05-24 2010-09-08 福州大学 Method for adjusting and optimizing terrain by utilizing terrain adjusting vegetation index
CN102013047A (en) * 2010-09-10 2011-04-13 北京农业信息技术研究中心 Method for monitoring yield variation degree of crops
CN102012528A (en) * 2010-11-23 2011-04-13 北京理工大学 Hyperspectral remote sensing oil-gas exploration method for vegetation sparse area
CN102928847A (en) * 2012-11-12 2013-02-13 中国热带农业科学院橡胶研究所 A Method of Extracting the Pixel Value of the Corresponding Pixel of Rubber Forest from Remote Sensing Image
CN102954816A (en) * 2012-01-13 2013-03-06 北京盈胜泰科技术有限公司 Crop growth monitoring method
CN103335953A (en) * 2013-06-04 2013-10-02 中国科学院遥感与数字地球研究所 Remote sensing evaluation method for crop growing trend combined with characters of individuals and groups
CN103914755A (en) * 2014-03-18 2014-07-09 北京农业信息技术研究中心 Method and system for determining spatial scales of field investigation and field management
CN104089647A (en) * 2014-07-01 2014-10-08 北京农业信息技术研究中心 Crop disease occurrence range monitoring method and system
CN104198342A (en) * 2014-08-27 2014-12-10 北京市环境保护监测中心 Method for calculating atmospheric particles in bare building site by integrating ground monitoring and satellite image
CN106600434A (en) * 2016-10-18 2017-04-26 河南省农业科学院农业经济与信息研究所 Remote crop growth status monitoring method based on crop model and assimilation technology
CN106918816A (en) * 2017-03-21 2017-07-04 中国科学院遥感与数字地球研究所 crop growth monitoring system and its data processing method and module
CN107145872A (en) * 2017-05-12 2017-09-08 河海大学 A Method for Obtaining Spatial Distribution of Desert Riparian Forest Based on GIS Buffer Analysis
CN107273820A (en) * 2017-05-26 2017-10-20 中国科学院遥感与数字地球研究所 A kind of Land Cover Classification method and system
CN107274384A (en) * 2017-05-17 2017-10-20 扬州大学 A kind of wheat is emerged cloud test method
CN108764643A (en) * 2018-04-27 2018-11-06 浙江水利水电学院 A wide range of crop disease methods of risk assessment
CN108844912A (en) * 2018-04-19 2018-11-20 中科谱光科技(北京)有限公司 A kind of crop growing state spectrum intelligent analysis system and method
CN108986040A (en) * 2018-06-12 2018-12-11 南京大学 A kind of NDVI shadow effect minimizing technology based on remote sensing multispectral image
CN110110595A (en) * 2019-03-28 2019-08-09 国智恒北斗好年景农业科技有限公司 A kind of farmland portrait and medicine hypertrophy data analysing method based on satellite remote-sensing image
CN110348314A (en) * 2019-06-14 2019-10-18 中国资源卫星应用中心 A kind of method and system using multi- source Remote Sensing Data data monitoring vegetation growing way
CN111507833A (en) * 2020-06-30 2020-08-07 浙江网商银行股份有限公司 Credit limit processing method and device and crop identification method and device
CN111521562A (en) * 2020-03-19 2020-08-11 航天信德智图(北京)科技有限公司 Cotton vegetation index remote sensing detection method based on Sentinel-2 satellite
US10779485B2 (en) 2015-01-08 2020-09-22 Powwow Energy, Inc. Automated distribution uniformity measurements and farming prescriptions using aerial imagery and pump energy data
WO2020215148A1 (en) * 2019-04-26 2020-10-29 Farmers Edge Inc. Refined average for zoning method and system
CN111967440A (en) * 2020-09-04 2020-11-20 郑州轻工业大学 Comprehensive identification and treatment method for crop diseases
CN112446339A (en) * 2020-12-04 2021-03-05 中国科学院东北地理与农业生态研究所 Crop remote sensing classification method for hierarchical deep learning
CN112988003A (en) * 2019-12-13 2021-06-18 广州极飞科技股份有限公司 Farming information display method and device, storage medium and processor
CN113362192A (en) * 2021-07-07 2021-09-07 中国工商银行股份有限公司 Agricultural insurance underwriting method, system, equipment and storage medium
CN113467519A (en) * 2021-08-13 2021-10-01 北京爱科农科技有限公司 Automatic cruising method and system for unmanned aerial vehicle
WO2021207977A1 (en) * 2020-04-15 2021-10-21 深圳市大疆创新科技有限公司 Movable platform operation method, movable platform and electronic device
CN114005039A (en) * 2021-12-31 2022-02-01 成都国星宇航科技有限公司 Crop growth assessment method and device based on remote sensing image and electronic equipment
CN114359725A (en) * 2021-12-30 2022-04-15 黑龙江省农业科学院农业遥感与信息研究所 Crop growth remote sensing monitoring system and method based on crop model and assimilation technology
CN115578641A (en) * 2022-11-08 2023-01-06 中化现代农业有限公司 Crop shoveling progress monitoring method and device, electronic equipment and storage medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1704758A (en) * 2004-05-28 2005-12-07 北京农业信息技术研究中心 Method for realizing wheat behavior monitoring and forecasting by utilizing remote sensing and geographical information system technology
CN100394212C (en) * 2005-08-19 2008-06-11 广州地理研究所 A method for remote sensing detection and estimation of planting area and yield of large-scale crops

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101825702B (en) * 2010-05-24 2012-11-21 福州大学 Method for adjusting and optimizing terrain by utilizing terrain adjusting vegetation index
CN101825702A (en) * 2010-05-24 2010-09-08 福州大学 Method for adjusting and optimizing terrain by utilizing terrain adjusting vegetation index
CN102013047A (en) * 2010-09-10 2011-04-13 北京农业信息技术研究中心 Method for monitoring yield variation degree of crops
CN102012528A (en) * 2010-11-23 2011-04-13 北京理工大学 Hyperspectral remote sensing oil-gas exploration method for vegetation sparse area
CN102012528B (en) * 2010-11-23 2013-03-13 北京理工大学 Hyperspectral remote sensing oil-gas exploration method for vegetation sparse area
CN102954816B (en) * 2012-01-13 2015-03-11 北京安赛博技术有限公司 Crop growth monitoring method
CN102954816A (en) * 2012-01-13 2013-03-06 北京盈胜泰科技术有限公司 Crop growth monitoring method
CN102928847A (en) * 2012-11-12 2013-02-13 中国热带农业科学院橡胶研究所 A Method of Extracting the Pixel Value of the Corresponding Pixel of Rubber Forest from Remote Sensing Image
CN102928847B (en) * 2012-11-12 2014-03-26 中国热带农业科学院橡胶研究所 Method for extracting corresponding pixel value of rubber forest from remote sensing image
CN103335953A (en) * 2013-06-04 2013-10-02 中国科学院遥感与数字地球研究所 Remote sensing evaluation method for crop growing trend combined with characters of individuals and groups
CN103335953B (en) * 2013-06-04 2016-03-23 中国科学院遥感与数字地球研究所 A kind of Grain Growth Situation remoteensing evaluation method that individual and group feature combines
CN103914755A (en) * 2014-03-18 2014-07-09 北京农业信息技术研究中心 Method and system for determining spatial scales of field investigation and field management
CN104089647B (en) * 2014-07-01 2016-07-06 北京农业信息技术研究中心 A kind of crop pest occurrence scope monitoring method and system
CN104089647A (en) * 2014-07-01 2014-10-08 北京农业信息技术研究中心 Crop disease occurrence range monitoring method and system
CN104198342B (en) * 2014-08-27 2017-05-24 北京市环境保护监测中心 Method for calculating atmospheric particles in bare building site by integrating ground monitoring and satellite image
CN104198342A (en) * 2014-08-27 2014-12-10 北京市环境保护监测中心 Method for calculating atmospheric particles in bare building site by integrating ground monitoring and satellite image
US10779485B2 (en) 2015-01-08 2020-09-22 Powwow Energy, Inc. Automated distribution uniformity measurements and farming prescriptions using aerial imagery and pump energy data
CN106600434A (en) * 2016-10-18 2017-04-26 河南省农业科学院农业经济与信息研究所 Remote crop growth status monitoring method based on crop model and assimilation technology
CN106600434B (en) * 2016-10-18 2021-04-23 河南省农业科学院农业经济与信息研究所 Crop growth remote sensing monitoring method based on crop model and assimilation technology
CN106918816B (en) * 2017-03-21 2019-08-02 中国科学院遥感与数字地球研究所 Crop growth monitoring system and its data processing method and module
CN106918816A (en) * 2017-03-21 2017-07-04 中国科学院遥感与数字地球研究所 crop growth monitoring system and its data processing method and module
CN107145872A (en) * 2017-05-12 2017-09-08 河海大学 A Method for Obtaining Spatial Distribution of Desert Riparian Forest Based on GIS Buffer Analysis
CN107274384B (en) * 2017-05-17 2020-09-22 扬州大学 A kind of determination method of wheat emergence uniformity
CN107274384A (en) * 2017-05-17 2017-10-20 扬州大学 A kind of wheat is emerged cloud test method
CN107273820A (en) * 2017-05-26 2017-10-20 中国科学院遥感与数字地球研究所 A kind of Land Cover Classification method and system
CN108844912A (en) * 2018-04-19 2018-11-20 中科谱光科技(北京)有限公司 A kind of crop growing state spectrum intelligent analysis system and method
CN108764643B (en) * 2018-04-27 2022-05-06 浙江水利水电学院 Large-scale crop disease risk assessment method
CN108764643A (en) * 2018-04-27 2018-11-06 浙江水利水电学院 A wide range of crop disease methods of risk assessment
CN108986040A (en) * 2018-06-12 2018-12-11 南京大学 A kind of NDVI shadow effect minimizing technology based on remote sensing multispectral image
CN108986040B (en) * 2018-06-12 2022-02-01 南京大学 NDVI shadow influence removing method based on remote sensing multispectral image
CN110110595B (en) * 2019-03-28 2023-05-26 国智恒北斗好年景农业科技有限公司 Farmland image and medicine hypertrophy data analysis method based on satellite remote sensing image
CN110110595A (en) * 2019-03-28 2019-08-09 国智恒北斗好年景农业科技有限公司 A kind of farmland portrait and medicine hypertrophy data analysing method based on satellite remote-sensing image
WO2020215148A1 (en) * 2019-04-26 2020-10-29 Farmers Edge Inc. Refined average for zoning method and system
US11409982B2 (en) 2019-04-26 2022-08-09 Farmers Edge Inc. Refined average for zoning method and system
CN110348314A (en) * 2019-06-14 2019-10-18 中国资源卫星应用中心 A kind of method and system using multi- source Remote Sensing Data data monitoring vegetation growing way
CN112988003A (en) * 2019-12-13 2021-06-18 广州极飞科技股份有限公司 Farming information display method and device, storage medium and processor
CN112988003B (en) * 2019-12-13 2023-07-21 广州极飞科技股份有限公司 Agronomic information display method, device, storage medium and processor
CN111521562A (en) * 2020-03-19 2020-08-11 航天信德智图(北京)科技有限公司 Cotton vegetation index remote sensing detection method based on Sentinel-2 satellite
WO2021207977A1 (en) * 2020-04-15 2021-10-21 深圳市大疆创新科技有限公司 Movable platform operation method, movable platform and electronic device
CN111507833A (en) * 2020-06-30 2020-08-07 浙江网商银行股份有限公司 Credit limit processing method and device and crop identification method and device
CN111967440B (en) * 2020-09-04 2023-10-27 郑州轻工业大学 A comprehensive identification and treatment method for crop diseases
CN111967440A (en) * 2020-09-04 2020-11-20 郑州轻工业大学 Comprehensive identification and treatment method for crop diseases
CN112446339A (en) * 2020-12-04 2021-03-05 中国科学院东北地理与农业生态研究所 Crop remote sensing classification method for hierarchical deep learning
CN113362192A (en) * 2021-07-07 2021-09-07 中国工商银行股份有限公司 Agricultural insurance underwriting method, system, equipment and storage medium
CN113467519A (en) * 2021-08-13 2021-10-01 北京爱科农科技有限公司 Automatic cruising method and system for unmanned aerial vehicle
CN114359725A (en) * 2021-12-30 2022-04-15 黑龙江省农业科学院农业遥感与信息研究所 Crop growth remote sensing monitoring system and method based on crop model and assimilation technology
CN114359725B (en) * 2021-12-30 2024-03-26 黑龙江省农业科学院农业遥感与信息研究所 Crop growth condition remote sensing monitoring system and method based on crop model and assimilation technology
CN114005039A (en) * 2021-12-31 2022-02-01 成都国星宇航科技有限公司 Crop growth assessment method and device based on remote sensing image and electronic equipment
CN115578641B (en) * 2022-11-08 2023-06-20 中化现代农业有限公司 Crop eradication progress monitoring method and device, electronic equipment and storage medium
CN115578641A (en) * 2022-11-08 2023-01-06 中化现代农业有限公司 Crop shoveling progress monitoring method and device, electronic equipment and storage medium

Also Published As

Publication number Publication date
CN101699315B (en) 2012-04-25

Similar Documents

Publication Publication Date Title
CN101699315B (en) A monitoring device and method for crop growth uniformity
Yan et al. Multiple cropping intensity in China derived from agro-meteorological observations and MODIS data
Xiao et al. A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data
Zhou et al. Perspective of Chinese GF-1 high-resolution satellite data in agricultural remote sensing monitoring
Azar et al. Assessing in-season crop classification performance using satellite data: A test case in Northern Italy
CN109829234A (en) A kind of across scale Dynamic High-accuracy crop condition monitoring and yield estimation method based on high-definition remote sensing data and crop modeling
CN106908415B (en) A kind of big region crops time of infertility Soil Moisture Monitoring method based on amendment NDVI time series
CN110909933B (en) Agricultural drought rapid diagnosis and evaluation method coupling crop model and machine learning language
CN107527014A (en) Crops planting area RS statistics scheme of sample survey design method at county level
CN105372672B (en) Southern winter kind crops planting area extracting method based on time series data
CN102592181A (en) Method for optimizing spatial distribution of statistical data about crop planting area
CN109063553A (en) Field-crop growth defect area&#39;s remote sensing fast diagnosis method after a kind of land control
CN109211791A (en) Crop condition monitoring method and system
CN110598514B (en) Method for monitoring plot scale crop seeding area of land reclamation project area
CN107831168A (en) The method that remote sensing technology measures paddy field shelter-forest protection effect
Asam et al. Estimation of grassland use intensities based on high spatial resolution LAI time series
CN104951772A (en) Winter wheat extraction method based on NDVI (normalized difference vegetation index) time series curve integral
Bolun et al. Estimating rice paddy areas in China using multi-temporal cloud-free normalized difference vegetation index (NDVI) imagery based on change detection
Zhu et al. UAV flight height impacts on wheat biomass estimation via machine and deep learning
LI et al. Estimating rice yield by HJ-1A satellite images
CN106447079A (en) Prediction method for tobacco production of karst mountainous area based on Radarsat-2
CN116246168A (en) A time-series detection method of cultivated land non-grain by remote sensing
Huang et al. Recognition and counting of pitaya trees in karst mountain environment based on unmanned aerial vehicle RGB images
Zhang et al. Extraction of winter wheat planting area based on fused active and passive remote sensing images
Tang et al. UAV-based high spatial and temporal resolution monitoring and mapping of surface moisture status in a vineyard

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201010

Address after: No. 301-a315, floor 03, No. 11, Shuguang garden middle road, Haidian District, Beijing 100097

Patentee after: NONGXIN TECHNOLOGY (BEIJING) Co.,Ltd.

Address before: 100097, Haidian District, Beijing West plate wells village

Patentee before: BEIJING RESEARCH CENTER FOR INFORMATION TECHNOLOGY IN AGRICULTURE

TR01 Transfer of patent right