CN101699315A - Monitoring device and method for crop growth uniformity - Google Patents
Monitoring device and method for crop growth uniformity Download PDFInfo
- Publication number
- CN101699315A CN101699315A CN200910236520A CN200910236520A CN101699315A CN 101699315 A CN101699315 A CN 101699315A CN 200910236520 A CN200910236520 A CN 200910236520A CN 200910236520 A CN200910236520 A CN 200910236520A CN 101699315 A CN101699315 A CN 101699315A
- Authority
- CN
- China
- Prior art keywords
- ndvi
- remote sensing
- plot
- sensing image
- uniformity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000012806 monitoring device Methods 0.000 title claims abstract description 8
- 238000012545 processing Methods 0.000 claims abstract description 61
- 230000003595 spectral effect Effects 0.000 claims abstract description 46
- 238000012937 correction Methods 0.000 claims abstract description 25
- 238000012544 monitoring process Methods 0.000 claims description 29
- 238000001228 spectrum Methods 0.000 claims description 23
- 241000209140 Triticum Species 0.000 claims description 21
- 235000021307 Triticum Nutrition 0.000 claims description 21
- 238000004364 calculation method Methods 0.000 claims description 13
- 239000000284 extract Substances 0.000 claims description 13
- 230000000007 visual effect Effects 0.000 claims description 13
- 230000005855 radiation Effects 0.000 claims description 6
- 238000002310 reflectometry Methods 0.000 claims 8
- 230000010354 integration Effects 0.000 abstract description 4
- 241000196324 Embryophyta Species 0.000 description 9
- 238000011835 investigation Methods 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229920000742 Cotton Polymers 0.000 description 2
- 101100046603 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) TOM6 gene Proteins 0.000 description 2
- 101100397228 Schizosaccharomyces pombe (strain 972 / ATCC 24843) isp6 gene Proteins 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000029553 photosynthesis Effects 0.000 description 2
- 238000010672 photosynthesis Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000034303 cell budding Effects 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000035558 fertility Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 1
Images
Landscapes
- Image Processing (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种作物长势均匀度的监测装置和方法。The invention relates to a monitoring device and method for crop growth uniformity.
背景技术Background technique
农作物长势监测指对作物的苗情、生长状况及其变化的宏观监测,要求能够及时地全面反映农情。作物的长势均匀度一直是评价作物长势好坏的一个重要指标,该指标不但能够体现不同农田地块基础地力、地形的差异,也能反映出不同耕作者的管理水平。Crop growth monitoring refers to the macro-monitoring of crop seedling condition, growth status and changes, which requires timely and comprehensive reflection of agricultural conditions. The uniformity of crop growth has always been an important index to evaluate the quality of crop growth. This index can not only reflect the differences in soil fertility and topography of different farmland plots, but also reflect the management level of different cultivators.
传统作物长势均匀度多通过田间抽样调查确定。如马爱国等2001年提出的冬小麦基本苗均匀度指标P,就是采用随机取样的方法。该方法根据每个地块面积确定调查点数,然后将每块地各调查点的苗量从大到小排列。设前一半调查点苗量之和为∑a,后一半调查点苗量之和为∑b,然后代入公式(1-1)中计算获取每一地块对应的基本苗均匀度P:The growth uniformity of traditional crops is mostly determined through field sampling surveys. For example, the basic seedling uniformity index P of winter wheat proposed by Ma Aiguo et al. in 2001 is a random sampling method. This method determines the number of survey points according to the area of each plot, and then arranges the seedlings of each survey point in each plot from large to small. Assume that the sum of the seedling quantity of the first half of the survey points is ∑a, and the sum of the seedling quantity of the second half of the survey points is ∑b, and then substitute it into the formula (1-1) to calculate the basic seedling uniformity P corresponding to each plot:
其中,n为地块调查点数。Among them, n is the number of plot survey points.
此外,仲其壮等2001年也提出了棉花均匀度指标。根据棉花的生长发育、外部形态特征及栽培管理措施定义了包括出苗整齐度、留苗均匀度、现蕾整齐度、开花整齐度、吐絮整齐度以及株高均匀度等一系列评价指标,并针对这些指标提出了提高均匀度的技术措施。In addition, Zhong Qizhuang et al. 2001 also proposed cotton uniformity index. According to the growth and development, external morphological characteristics and cultivation management measures of cotton, a series of evaluation indexes including uniformity of seedling emergence, uniformity of seedling retention, budding uniformity, flowering uniformity, boll opening uniformity and plant height uniformity were defined. These indicators suggest technical measures to improve uniformity.
杨利华等2006年提出了植株田间分布均匀度的定义,将植株在田间布局近似蜂巢的程度定义为植株田间分布均匀度,并给出了植株田间分布均匀度的计算公式(1-2):Yang Lihua et al. proposed the definition of plant field distribution uniformity in 2006, defined the degree of plant field distribution similar to honeycomb as plant field distribution uniformity, and gave the calculation formula of plant field distribution uniformity (1-2):
其中,UD为植株田间分布均匀度,0<UD≤1,其值越接近1,植株分布越均匀;m为观测点数;N为平均穴株数;η(i=1,2,.....m)为每个观测点的离均系数,可以通过公式(1-3)计算得到:Among them, UD is the uniformity of plant distribution in the field, 0<UD≤1, the closer the value is to 1, the more uniform the plant distribution; m is the number of observation points; N is the average number of plants in holes; η(i=1,2,... .m) is the deviation coefficient of each observation point, which can be calculated by formula (1-3):
式中Pi为一个蜂巢观测点的12个植株观测值,p为标准行距。In the formula, P i is the observed value of 12 plants at one honeycomb observation point, and p is the standard row spacing.
在实际应用中,作物长势均匀度的监测及相关指标的获取需要耗费大量的人力物力。由于需要到野外实地调查农作物的长势差异,所以存在工作量大、自动化程度低、更新周期长等缺点。而且当需要进行大范围的作物长势均匀度调查时,其测量难度也将加大。同时,不同农田地块作物长势的差异又是普遍存在的,单纯依赖人工调查数据,已经不能够满足现代农业管理的需要。In practical applications, the monitoring of crop growth uniformity and the acquisition of related indicators require a lot of manpower and material resources. Due to the need to go to the field to investigate the differences in the growth of crops, there are disadvantages such as heavy workload, low degree of automation, and long update cycle. Moreover, when a large-scale survey of crop growth uniformity is required, the measurement difficulty will also increase. At the same time, differences in crop growth in different farmland plots are common, and relying solely on manual survey data cannot meet the needs of modern agricultural management.
发明内容Contents of the invention
针对现有技术中存在的缺陷和不足,本发明的目的是提供一种作物长势均匀度的监测装置和方法,能够通过卫星遥感获得长势均匀度。Aiming at the defects and deficiencies in the prior art, the object of the present invention is to provide a monitoring device and method for crop growth uniformity, which can obtain growth uniformity through satellite remote sensing.
为达到上述目的,本发明提出了一种作物长势均匀度的监测装置,包括:In order to achieve the above object, the present invention proposes a monitoring device for crop growth uniformity, comprising:
遥感图像处理模块,所述遥感图像处理模块根据获得的遥感图像,对遥感图像进行辐射纠正、大气纠正和几何纠正;A remote sensing image processing module, the remote sensing image processing module performs radiometric correction, atmospheric correction and geometric correction on the remote sensing image according to the obtained remote sensing image;
地块矢量数据处理模块,所述地块矢量数据处理模块根据对所述遥感图像中的农作物进行分类,以获得目标农作物的空间分布图;并将分类后的遥感图像中的栅格分类结果转化为面状矢量数据;然后对所述空间分布图的地块边界进行修正;A plot vector data processing module, the plot vector data processing module classifies the crops in the remote sensing images to obtain the spatial distribution map of the target crops; and transforms the raster classification results in the classified remote sensing images It is area vector data; then the plot boundaries of the spatial distribution map are corrected;
植被指数处理模块,所述植被参数处理模块根据所述遥感图像中的地块内的光谱特征计算该地块的植被指数NDVI(NormalizedDifference Vegetation Index):Vegetation index processing module, the vegetation parameter processing module calculates the vegetation index NDVI (Normalized Difference Vegetation Index) of this plot according to the spectral features in the plot in the remote sensing image:
其中,Rnir指遥感图像的近红外波段的反射率;Rred指遥感图像的红光波段的反射率;Among them, R nir refers to the reflectance of the near-infrared band of the remote sensing image; R red refers to the reflectance of the red band of the remote sensing image;
长势均匀度处理模块,所述长势均匀度处理模块根据植被指数NDVI计算该地块的长势均匀度指数GUI(Growth Uniformity Index);Growth uniformity processing module, said growth uniformity processing module calculates the growth uniformity index GUI (Growth Uniformity Index) of this plot according to vegetation index NDVI;
其中:in:
NDVICV是每一地块所对应的NDVI的变异系数;NDVI CV is the coefficient of variation of NDVI corresponding to each plot;
NDVICV min为同一时相所有地块NDVI变异系数中的最小值;NDVI CV min is the minimum value of the NDVI coefficient of variation of all plots in the same phase;
NDVICV max为同一时相所有地块NDVI变异系数中的最大值。NDVI CV max is the maximum value of the NDVI coefficient of variation of all plots in the same period.
其中,所述地块矢量数据处理模块包括:Wherein, the block vector data processing module includes:
空间分布图处理子模块,所述空间分布图处理子模块对所述遥感图像中的农作物进行分类,以获得目标农作物的空间分布图;并将所述空间分布图的栅格分类转化为面状矢量数据;A spatial distribution map processing submodule, the spatial distribution map processing submodule classifies the crops in the remote sensing image to obtain a spatial distribution map of the target crops; and converts the grid classification of the spatial distribution map into a planar vector data;
土地利用数据处理子模块;所述土地利用数据处理子模块根据卫星遥感图像,对所述遥感图像进行目视解译获取历年数据的参考时相土地利用专题数据;The land use data processing submodule; the land use data processing submodule performs visual interpretation on the remote sensing image according to the satellite remote sensing image to obtain the reference time phase land use special data of the historical data;
地块边界处理子模块,所述地块边界处理子模块将所述面状矢量数据和所述参考时相土地利用专题数据叠加后,通过矢量图层Intersect算法进行切割后提取地块边界;并利用本年的卫星遥感图像,通过目视解译进行地块边界修正,获取最终农作物地块边界数据。A plot boundary processing sub-module, the plot boundary processing sub-module superimposes the surface vector data and the reference phase land use thematic data, and extracts the plot boundary after cutting through the vector layer Intersect algorithm; and Using the satellite remote sensing images of this year, the land boundary correction is carried out through visual interpretation, and the final crop land boundary data are obtained.
其中,所述植被指数处理模块包括:Wherein, the vegetation index processing module includes:
光谱特征处理子模块,所述光谱特征处理子模块提取所述地块对应的遥感数据,并根据遥感数据获得农作物不同时相、不同波段光谱特征信息;The spectral feature processing sub-module, the spectral feature processing sub-module extracts the remote sensing data corresponding to the plot, and obtains the spectral feature information of different time phases and different bands of crops according to the remote sensing data;
植被参数处理子模块,所述植被参数处理子模块对光谱特征信息进行波段运算,获取植被参数NDVI;Vegetation parameter processing sub-module, the vegetation parameter processing sub-module performs band operation on spectral feature information to obtain vegetation parameter NDVI;
其中,Rnir指遥感图像的近红外波段的反射率;Rred指遥感图像的红光波段的反射率;Among them, R nir refers to the reflectance of the near-infrared band of the remote sensing image; R red refers to the reflectance of the red band of the remote sensing image;
波段计算子模块,所述波段计算子模块对不同时相、不同波段的,光谱特征信息进行波段运算,获得NDVI最小值,最大值,均值,标准偏差、变异系数NDVICV。The band calculation sub-module, the band calculation sub-module performs band calculation on the spectral feature information of different time phases and different bands to obtain the minimum value, maximum value, mean value, standard deviation, and coefficient of variation NDVI CV of NDVI.
其中,所述装置还包括:Wherein, the device also includes:
作物光谱信息模块,所述作物光谱信息模块针对每一地块,提取该地块所对应所有像元NDVI值,计算出该地块不同时相NDVI最小值、最大值、均值、标准偏差及变异系数NDVICV和冬小麦长势均匀度指数GUI,并将此信息以新的字段添加到地块矢量文件对应的记录中,生成作物长势光谱信息知识库。Crop spectral information module, the crop spectral information module extracts the NDVI values of all pixels corresponding to the plot for each plot, and calculates the minimum, maximum, mean, standard deviation and variation of NDVI in different phases of the plot Coefficient NDVI CV and winter wheat growth uniformity index GUI, and add this information as a new field to the corresponding record of the plot vector file to generate a knowledge base of crop growth spectrum information.
其中,所述装置还包括:Wherein, the device also includes:
专题图制作模块,所述专题图制作模块根据所述作物光谱信息模块生成的作物长势光谱信息知识库,对所有地块的目标农作物的长势均匀度建立专题图。A thematic map making module, the thematic map making module builds a thematic map for the growth uniformity of target crops in all plots according to the crop growth spectrum information knowledge base generated by the crop spectral information module.
同时,本发明还提出了一种作物长势均匀度的监测方法,包括:Simultaneously, the present invention also proposes a monitoring method of crop growth uniformity, comprising:
步骤1、获得卫星遥感图像,并针对所述卫星遥感图像进行辐射纠正、大气纠正和几何纠正;Step 1, obtaining satellite remote sensing images, and performing radiation correction, atmospheric correction and geometric correction on the satellite remote sensing images;
步骤2、对卫星遥感图像中的农作物进行分类,以获得目标农作物的空间分布图;Step 2, classify the crops in the satellite remote sensing images to obtain the spatial distribution map of the target crops;
步骤3、将空间分布图中的栅格分类结果转化为面状矢量数据;并对所述空间分布图进行处理以对农作物的地块边界进行修正;Step 3, transforming the grid classification result in the spatial distribution map into area vector data; and processing the spatial distribution map to correct the plot boundaries of the crops;
步骤4、根据所述遥感图像中的地块内的光谱特征计算该地块的植被指数NDVI:Step 4, calculate the vegetation index NDVI of this plot according to the spectral feature in the plot in the remote sensing image:
其中,Rnir指遥感图像的近红外波段的反射率;Rred指遥感图像的红光波段的反射率;Among them, R nir refers to the reflectance of the near-infrared band of the remote sensing image; R red refers to the reflectance of the red band of the remote sensing image;
步骤5、根据每一地块的植被指数NDVI计算长势均匀度指数GUI;Step 5, calculate the growth uniformity index GUI according to the vegetation index NDVI of each plot;
其中:in:
NDVICV是每一地块所对应的NDVI的变异系数;NDVI CV is the coefficient of variation of NDVI corresponding to each plot;
NDVICV min为同一时相所有地块NDVI变异系数中的最小值;NDVI CV min is the minimum value of the NDVI coefficient of variation of all plots in the same phase;
NDVICV max为同一时相所有地块NDVI变异系数中的最大值。NDVI CV max is the maximum value of the NDVI coefficient of variation of all plots in the same period.
其中,所述步骤3具体为:Wherein, the step 3 is specifically:
步骤31、将所述空间分布图的栅格分类转化为面状矢量数据;Step 31, converting the raster classification of the spatial distribution map into area vector data;
步骤32、通过高分辨率卫星遥感图像,对历年的遥感图像进行目视解译获取参考时相土地利用专题数据;Step 32, through high-resolution satellite remote sensing images, visually interpret the remote sensing images over the years to obtain reference time-phase land use thematic data;
步骤33、将步骤31和步骤32所得数据叠加后,通过矢量图层Intersect算法对步骤31和步骤32所得的两层矢量数据进行切割后提取地块边界;并利用本年的卫星遥感图像,通过目视解译进行地块边界修正,获取最终农作物地块边界数据。Step 33, after superimposing the data obtained in step 31 and step 32, the two-layer vector data obtained in step 31 and step 32 is cut through the vector layer Intersect algorithm to extract the plot boundary; and using the satellite remote sensing image of this year, through Visual interpretation is used to correct the plot boundaries to obtain the final crop plot boundary data.
其中,所述步骤4具体为:Wherein, the step 4 is specifically:
步骤41、提取地块对应的遥感数据,并根据遥感数据获得农作物不同时相、不同波段光谱特征信息;Step 41, extract the remote sensing data corresponding to the plot, and obtain the spectral characteristic information of different time phases and different bands of crops according to the remote sensing data;
步骤42、对光谱特征信息进行波段运算,获取植被参数NDVI;Step 42, performing band calculation on the spectral feature information to obtain the vegetation parameter NDVI;
其中,Rnir指遥感图像的近红外波段的反射率;Rred指遥感图像的红光波段的反射率;Among them, R nir refers to the reflectance of the near-infrared band of the remote sensing image; R red refers to the reflectance of the red band of the remote sensing image;
步骤43、对不同时相、不同波段的,光谱特征信息进行波段运算,获得NDVI最小值,最大值,均值,标准偏差、变异系数NDVICV。Step 43 , perform band calculation on the spectral characteristic information of different time phases and different bands, and obtain the minimum value, maximum value, mean value, standard deviation, and coefficient of variation NDVI CV of NDVI.
其中,所述方法还包括:Wherein, the method also includes:
步骤6、针对每一地块,提取该地块所对应所有像元NDVI值,计算出该地块不同时相NDVI最小值、最大值、均值、标准偏差及变异系数NDVICV和冬小麦长势均匀度指数GUI,并将此信息以新的字段添加到地块矢量文件对应的记录中,生成作物长势光谱信息知识库。Step 6. For each plot, extract the NDVI values of all pixels corresponding to the plot, and calculate the minimum, maximum, mean, standard deviation, NDVI CV and winter wheat growth uniformity of the plot in different phases Index GUI, and add this information as a new field to the record corresponding to the plot vector file to generate a knowledge base of crop growth spectrum information.
其中,所述方法还包括:Wherein, the method also includes:
步骤7、根据所述作物光谱信息模块生成的作物长势光谱信息知识库,对所有地块的目标农作物的长势均匀度建立专题图。Step 7. According to the crop growth spectrum information knowledge base generated by the crop spectrum information module, a thematic map is established for the growth uniformity of the target crops in all plots.
上述技术方案具有如下优点:本发明可以通过遥感技术获得遥感图像,并通过地块边界获得所述地块的矢量数据,再根据该地块的矢量数据获得植被参数,从而计算出计算农作物长势均匀度度指数。本发明能够解决现有技术中工作量大、自动化程度低、更新周期长等缺点,提高工作效率。本发明集成遥感及GIS技术,利用栅格与矢量数据一体化技术实现了针对自然地块的农作物长势均匀度监测,充分发挥了遥感数据在作物长势监测中的优势,提出了农作物长势均匀度评价指标,构建了基于遥感特征信息的作物长势均匀度知识库,并实现了实时、快速、准确的农作物长势均匀度的遥感监测,提高了作物长势均匀度调查的精度。The above technical solution has the following advantages: the present invention can obtain remote sensing images through remote sensing technology, and obtain the vector data of the plot through the plot boundary, and then obtain the vegetation parameters according to the vector data of the plot, so as to calculate the uniform growth of crops. degree index. The invention can solve the disadvantages of the prior art, such as heavy workload, low degree of automation, long update cycle, etc., and improve work efficiency. The invention integrates remote sensing and GIS technology, utilizes grid and vector data integration technology to realize the monitoring of crop growth uniformity for natural plots, gives full play to the advantages of remote sensing data in crop growth monitoring, and proposes the evaluation of crop growth uniformity Indexes, constructing a crop growth uniformity knowledge base based on remote sensing feature information, and realizing real-time, fast, and accurate remote sensing monitoring of crop growth uniformity, improving the accuracy of crop growth uniformity investigations.
附图说明Description of drawings
图1为本发明提出的作物长势均匀度的监测装置的结构示意图;Fig. 1 is the structural representation of the monitoring device of crop growth uniformity that the present invention proposes;
图2为本发明提出的作物长势均匀度的监测方法的流程示意图;Fig. 2 is the schematic flow sheet of the monitoring method of crop growth uniformity that the present invention proposes;
图3为本发明一个具体实施例中的提取的目标农作物的空间分布图;Fig. 3 is a spatial distribution diagram of the extracted target crops in a specific embodiment of the present invention;
图4为将图3中的该栅格数据转换为矢量数据后的地块图像;Fig. 4 is the plot image after converting the raster data in Fig. 3 into vector data;
图5为图4经过修正后的地块图像。Figure 5 is the corrected plot image of Figure 4.
具体实施方式Detailed ways
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。The specific implementation manners of the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. The following examples are used to illustrate the present invention, but are not intended to limit the scope of the present invention.
实施例1Example 1
本发明第一优选实施例提出了一种作物长势均匀度的监测装置,其结构如图1所示,包括:The first preferred embodiment of the present invention proposes a monitoring device for crop growth uniformity, its structure as shown in Figure 1, comprising:
遥感图像处理模块,所述遥感图像处理模块根据获得的遥感图像,对遥感图像进行辐射纠正、大气纠正和几何纠正;A remote sensing image processing module, the remote sensing image processing module performs radiometric correction, atmospheric correction and geometric correction on the remote sensing image according to the obtained remote sensing image;
地块矢量数据处理模块,所述地块矢量数据处理模块根据对所述遥感图像中的农作物进行分类,以获得目标农作物的空间分布图;并将分类后的遥感图像中的栅格分类结果转化为面状矢量数据;然后对所述空间分布图的地块边界进行修正;A plot vector data processing module, the plot vector data processing module classifies the crops in the remote sensing images to obtain the spatial distribution map of the target crops; and transforms the raster classification results in the classified remote sensing images It is area vector data; then the plot boundaries of the spatial distribution map are corrected;
植被指数处理模块,所述植被参数处理模块根据所述遥感图像中的地块内的光谱特征计算该地块的植被指数NDVI:Vegetation index processing module, the vegetation parameter processing module calculates the vegetation index NDVI of the plot according to the spectral features in the plot in the remote sensing image:
其中,Rnir指遥感图像的近红外波段的反射率;Rred指遥感图像的红光波段的反射率;Among them, R nir refers to the reflectance of the near-infrared band of the remote sensing image; R red refers to the reflectance of the red band of the remote sensing image;
长势均匀度处理模块,所述长势均匀度处理模块根据植被指数NDVI计算该地块的长势均匀度指数GUI;The growth uniformity processing module, the growth uniformity processing module calculates the growth uniformity index GUI of the plot according to the vegetation index NDVI;
其中:in:
NDVICV是每一地块所对应的NDVI的变异系数;NDVI CV is the coefficient of variation of NDVI corresponding to each plot;
NDVICV min为同一时相所有地块NDVI变异系数中的最小值;NDVI CV min is the minimum value of the NDVI coefficient of variation of all plots in the same phase;
NDVICV max为同一时相所有地块NDVI变异系数中的最大值。本发明第一优选实施例,可以通过遥感图像确定目标农作物的地块,并通过地块内的遥感图像中的地块内的光谱特征计算该地块的植被指数NDVI及长势均匀度指数GUI。本发明第一优选实施例利用栅格与矢量数据一体化技术实现了针对自然地块的农作物长势均匀度监测,充分发挥了遥感数据在作物长势监测中的优势。本发明实现了实时、快速、准确的农作物长势均匀度的遥感监测,提高了作物长势均匀度调查的精度。NDVI CV max is the maximum value of the NDVI coefficient of variation of all plots in the same period. In the first preferred embodiment of the present invention, the plot of the target crop can be determined through the remote sensing image, and the vegetation index NDVI and the growth uniformity index GUI of the plot can be calculated through the spectral characteristics in the plot in the remote sensing image. The first preferred embodiment of the present invention utilizes grid and vector data integration technology to realize crop growth uniformity monitoring for natural plots, and fully utilizes the advantages of remote sensing data in crop growth monitoring. The invention realizes real-time, rapid and accurate remote sensing monitoring of the uniformity of crop growth, and improves the precision of investigation of the uniformity of crop growth.
实施例2Example 2
本发明第二优选实施例是在第一优选实施例基础上改进而来,即所述地块矢量数据处理模块包括:The second preferred embodiment of the present invention is improved on the basis of the first preferred embodiment, that is, the block vector data processing module includes:
空间分布图处理子模块,所述空间分布图处理子模块对所述遥感图像中的农作物进行分类,以获得目标农作物的空间分布图;并将所述空间分布图的栅格分类转化为面状矢量数据;A spatial distribution map processing submodule, the spatial distribution map processing submodule classifies the crops in the remote sensing image to obtain a spatial distribution map of the target crops; and converts the grid classification of the spatial distribution map into a planar vector data;
土地利用数据处理子模块;所述土地利用数据处理子模块根据卫星遥感图像,对所述遥感图像进行目视解译获取历年数据的参考时相土地利用专题数据;The land use data processing submodule; the land use data processing submodule performs visual interpretation on the remote sensing image according to the satellite remote sensing image to obtain the reference time phase land use special data of the historical data;
地块边界处理子模块,所述地块边界处理子模块将所述面状矢量数据和所述参考时相土地利用专题数据叠加后,通过矢量图层Intersect算法进行切割后提取地块边界;并利用本年的卫星遥感图像,通过目视解译进行地块边界修正,获取最终农作物地块边界数据。A plot boundary processing sub-module, the plot boundary processing sub-module superimposes the surface vector data and the reference phase land use thematic data, and extracts the plot boundary after cutting through the vector layer Intersect algorithm; and Using the satellite remote sensing images of this year, the land boundary correction is carried out through visual interpretation, and the final crop land boundary data are obtained.
本发明第二优选实施例中,通过参考时相土地利用专题数据进行叠加后切割提取地块边界,以对地块边界进行更精确的修正,提高监测数据的准确性。In the second preferred embodiment of the present invention, by referring to the time-phase land use thematic data to superimpose and then cut and extract the plot boundary, the plot boundary can be corrected more accurately and the accuracy of the monitoring data can be improved.
其中“参考时相土地利用专题数据”是指利用历年的高分辨率遥感影像或者研究区历史土地利用数据,以获取的农田地块数据。由于历史数据与最新土地利用情况可能会略有出入,因此利用历史数据结合当前数据对地块边界进行修正,可以提高地块边界数据的准确性。Among them, the "reference time-phase land use thematic data" refers to the farmland plot data obtained by using the high-resolution remote sensing images over the years or the historical land use data of the research area. Since the historical data may be slightly different from the latest land use conditions, using historical data combined with current data to correct the plot boundary can improve the accuracy of the plot boundary data.
实施例3Example 3
本发明第三优选实施例是在第一优选实施例和第二优选实施例的基础上改进而来,即所述植被指数处理模块包括:The third preferred embodiment of the present invention is improved on the basis of the first preferred embodiment and the second preferred embodiment, that is, the vegetation index processing module includes:
光谱特征处理子模块,所述光谱特征处理子模块提取所述地块对应的遥感数据,并根据遥感数据获得农作物不同时相、不同波段光谱特征信息;The spectral feature processing sub-module, the spectral feature processing sub-module extracts the remote sensing data corresponding to the plot, and obtains the spectral feature information of different time phases and different bands of crops according to the remote sensing data;
植被参数处理子模块,所述植被参数处理子模块对光谱特征信息进行波段运算,获取植被参数NDVI;Vegetation parameter processing sub-module, the vegetation parameter processing sub-module performs band operation on spectral feature information to obtain vegetation parameter NDVI;
其中,Rnir指遥感图像的近红外波段的反射率;Rred指遥感图像的红光波段的反射率;Among them, R nir refers to the reflectance of the near-infrared band of the remote sensing image; R red refers to the reflectance of the red band of the remote sensing image;
波段计算子模块,所述波段计算子模块对不同时相、不同波段的,光谱特征信息进行波段运算,获得NDVI最小值,最大值,均值,标准偏差、变异系数NDVICV。The band calculation sub-module, the band calculation sub-module performs band calculation on the spectral feature information of different time phases and different bands to obtain the minimum value, maximum value, mean value, standard deviation, and coefficient of variation NDVI CV of NDVI.
其中植被参数NDVI是植被指数NDVI是可见光红波段和近红外波段两波段的归一化比值,它一方面能够反映植被光合作用的有效辐射吸收情况,另一方面能够反映作物长势、叶面积指数LAI等,是目前应用最为广泛的植被指数。本发明第三优选实施例中,应用遥感图像以及精确修正后的地块边界,获得地块内的光谱特征信息,并根据光谱特征信息计算植被参数NDVI,可以提高NDVI的准确性。Among them, the vegetation parameter NDVI is the vegetation index NDVI is the normalized ratio of the visible red band and the near-infrared band. On the one hand, it can reflect the effective radiation absorption of vegetation photosynthesis, and on the other hand, it can reflect crop growth and leaf area index LAI It is the most widely used vegetation index at present. In the third preferred embodiment of the present invention, the spectral feature information in the plot is obtained by using the remote sensing image and the accurately corrected plot boundary, and the vegetation parameter NDVI is calculated according to the spectral feature information, which can improve the accuracy of NDVI.
实施例4Example 4
本发明第四优选实施例是在上述三个优选实施例的基础上改进而来,即所述装置还包括:The fourth preferred embodiment of the present invention is improved on the basis of the above three preferred embodiments, that is, the device also includes:
作物光谱信息模块,所述作物光谱信息模块针对每一地块,提取该地块所对应所有像元NDVI值,计算出该地块不同时相NDVI最小值、最大值、均值、标准偏差及变异系数NDVICV和冬小麦长势均匀度指数GUI,并将此信息以新的字段添加到地块矢量文件对应的记录中,生成作物长势光谱信息知识库。Crop spectral information module, the crop spectral information module extracts the NDVI values of all pixels corresponding to the plot for each plot, and calculates the minimum, maximum, mean, standard deviation and variation of NDVI in different phases of the plot Coefficient NDVI CV and winter wheat growth uniformity index GUI, and add this information as a new field to the corresponding record of the plot vector file to generate a knowledge base of crop growth spectrum information.
本发明第四优选实施例利用NDVI建立作物长势光谱信息知识库,以提高长期、有效的作物长势光谱信息的监测。The fourth preferred embodiment of the present invention utilizes NDVI to establish a knowledge base of crop growth spectrum information to improve long-term and effective monitoring of crop growth spectrum information.
实施例5Example 5
本发明第五优选实施例是在上述四个优选实施例的基础上改进而来,即所述装置还包括:The fifth preferred embodiment of the present invention is improved on the basis of the above four preferred embodiments, that is, the device also includes:
专题图制作模块,所述专题图制作模块根据所述作物光谱信息模块生成的作物长势光谱信息知识库,对所有地块的目标农作物的长势均匀度建立专题图。A thematic map making module, the thematic map making module builds a thematic map for the growth uniformity of target crops in all plots according to the crop growth spectrum information knowledge base generated by the crop spectral information module.
专题图能够根据作物长势光谱信息知识库获得更为直观的图像化资料。Thematic maps can obtain more intuitive image data based on the knowledge base of crop growth spectrum information.
实施例6Example 6
本发明提出的一种作物长势均匀度的监测方法,其优选实施例流程如图2所示,包括:A kind of monitoring method of crop growth uniformity that the present invention proposes, its preferred embodiment process flow as shown in Figure 2, comprises:
步骤1、获得卫星遥感图像,并针对所述卫星遥感图像进行辐射纠正、大气纠正和几何纠正;Step 1, obtaining satellite remote sensing images, and performing radiation correction, atmospheric correction and geometric correction on the satellite remote sensing images;
步骤2、对卫星遥感图像中的农作物进行分类,以获得目标农作物的空间分布图;Step 2, classify the crops in the satellite remote sensing images to obtain the spatial distribution map of the target crops;
步骤3、对所述空间分布图进行处理以对农作物的地块边界进行修正,获得地块的矢量数据;Step 3, processing the spatial distribution map to correct the plot boundary of the crops, and obtaining the vector data of the plot;
步骤4、根据所述遥感图像中的地块内的光谱特征计算该地块的植被指数NDVI:Step 4, calculate the vegetation index NDVI of this plot according to the spectral feature in the plot in the remote sensing image:
其中,Rnir指遥感图像的近红外波段的反射率;Rred指遥感图像的红光波段的反射率;Among them, R nir refers to the reflectance of the near-infrared band of the remote sensing image; R red refers to the reflectance of the red band of the remote sensing image;
步骤5、根据每一地块的植被指数NDVI计算长势均匀度度指数GUI;Step 5, calculating the growth uniformity index GUI according to the vegetation index NDVI of each plot;
其中:in:
NDVICV是每一地块所对应的NDVI的变异系数;NDVI CV is the coefficient of variation of NDVI corresponding to each plot;
NDVICV min为同一时相所有地块NDVI变异系数中的最小值;NDVI CV min is the minimum value of the NDVI coefficient of variation of all plots in the same phase;
NDVICV max为同一时相所有地块NDVI变异系数中的最大值。NDVI CV max is the maximum value of the NDVI coefficient of variation of all plots in the same period.
本发明第六优选实施例,可以通过遥感图像确定目标农作物的地块,并通过地块内的遥感图像中的地块内的光谱特征计算该地块的植被指数NDVI及长势均匀度GUI。本发明第六优选实施例利用栅格与矢量数据一体化技术实现了针对自然地块的农作物长势均匀度监测,充分发挥了遥感数据在作物长势监测中的优势。本发明实现了实时、快速、准确的农作物长势均匀度的遥感监测,提高了作物长势均匀度调查的精度。In the sixth preferred embodiment of the present invention, the plot of the target crop can be determined through remote sensing images, and the vegetation index NDVI and growth uniformity GUI of the plot can be calculated through the spectral features in the plot in the remote sensing image. The sixth preferred embodiment of the present invention utilizes grid and vector data integration technology to realize crop growth uniformity monitoring for natural plots, and fully utilizes the advantages of remote sensing data in crop growth monitoring. The invention realizes real-time, rapid and accurate remote sensing monitoring of the uniformity of crop growth, and improves the precision of investigation of the uniformity of crop growth.
实施例7Example 7
本发明第七优选实施例是在上述第六优选实施例的基础上改进而来,即所述步骤3具体为:The seventh preferred embodiment of the present invention is improved on the basis of the sixth preferred embodiment above, that is, the step 3 is specifically:
步骤31、将所述空间分布图的栅格分类转化为面状矢量数据;Step 31, converting the raster classification of the spatial distribution map into area vector data;
步骤32、通过高分辨率卫星遥感图像,对历年的遥感图像进行目视解译获取参考时相土地利用专题数据;Step 32, through high-resolution satellite remote sensing images, visually interpret the remote sensing images over the years to obtain reference time-phase land use thematic data;
步骤33、将步骤31和步骤32所得数据叠加后,通过矢量图层Intersect算法对步骤31和步骤32所得的两层矢量数据进行切割后提取地块边界;并利用本年的卫星遥感图像,通过目视解译进行地块边界修正,获取最终农作物地块边界数据。Step 33, after superimposing the data obtained in step 31 and step 32, the two-layer vector data obtained in step 31 and step 32 is cut through the vector layer Intersect algorithm to extract the plot boundary; and using the satellite remote sensing image of this year, through Visual interpretation is used to correct the plot boundaries to obtain the final crop plot boundary data.
本发明第七优选实施例中,通过参考时相土地利用专题数据进行叠加后切割提取地块边界,以对地块边界进行更精确的修正,提高监测数据的准确性。In the seventh preferred embodiment of the present invention, by superimposing with reference to the thematic data of time-phase land use and then cutting and extracting the boundary of the plot, the boundary of the plot can be corrected more accurately and the accuracy of the monitoring data can be improved.
实施例8Example 8
本发明第八优选实施例是在上述第六或第七优选实施例的基础上改进而来,即所述步骤4具体为:The eighth preferred embodiment of the present invention is improved on the basis of the sixth or seventh preferred embodiment above, that is, the step 4 is specifically:
步骤41、提取地块对应的遥感数据,并根据遥感数据获得农作物不同时相、不同波段光谱特征信息;Step 41, extract the remote sensing data corresponding to the plot, and obtain the spectral characteristic information of different time phases and different bands of crops according to the remote sensing data;
步骤42、对光谱特征信息进行波段运算,获取植被参数NDVI;Step 42, performing band calculation on the spectral feature information to obtain the vegetation parameter NDVI;
其中,Rnir指遥感图像的近红外波段的反射率;Rred指遥感图像的红光波段的反射率;Among them, R nir refers to the reflectance of the near-infrared band of the remote sensing image; R red refers to the reflectance of the red band of the remote sensing image;
步骤43、对不同时相、不同波段的,光谱特征信息进行波段运算,获得NDVI最小值,最大值,均值,标准偏差、变异系数NDVICV。Step 43 , perform band calculation on the spectral characteristic information of different time phases and different bands, and obtain the minimum value, maximum value, mean value, standard deviation, and coefficient of variation NDVI CV of NDVI.
其中植被参数NDVI是植被指数NDVI是可见光红波段和近红外波段两波段的归一化比值,它一方面能够反映植被光合作用的有效辐射吸收情况,另一方面能够反映作物长势、叶面积指数LAI等,是目前应用最为广泛的植被指数。本发明第六优选实施例中,应用遥感图像以及精确修正后的地块边界,获得地块内的光谱特征信息,并根据光谱特征信息计算植被参数NDVI,可以提高NDVI的准确性。Among them, the vegetation parameter NDVI is the vegetation index NDVI is the normalized ratio of the visible red band and the near-infrared band. On the one hand, it can reflect the effective radiation absorption of vegetation photosynthesis, and on the other hand, it can reflect crop growth and leaf area index LAI It is the most widely used vegetation index at present. In the sixth preferred embodiment of the present invention, the spectral feature information in the plot is obtained by using the remote sensing image and the accurately corrected plot boundary, and the vegetation parameter NDVI is calculated according to the spectral feature information, which can improve the accuracy of NDVI.
实施例9Example 9
本发明第八优选实施例是在上述第六或第七或第八优选实施例的基础上改进而来,即所述方法还包括:The eighth preferred embodiment of the present invention is improved on the basis of the sixth or seventh or eighth preferred embodiment above, that is, the method further includes:
步骤6、针对每一地块,提取该地块所对应所有像元NDVI值,计算出该地块不同时相NDVI最小值、最大值、均值、标准偏差及变异系数NDVICV和冬小麦长势均匀度指数GUI,并将此信息以新的字段添加到地块矢量文件对应的记录中,生成作物长势光谱信息知识库。Step 6. For each plot, extract the NDVI values of all pixels corresponding to the plot, and calculate the minimum, maximum, mean, standard deviation, NDVI CV and winter wheat growth uniformity of the plot in different phases Index GUI, and add this information as a new field to the record corresponding to the plot vector file to generate a knowledge base of crop growth spectrum information.
本发明第四优选实施例利用NDVI建立作物长势光谱信息知识库,以提高长期、有效的作物长势光谱信息。The fourth preferred embodiment of the present invention uses NDVI to establish a knowledge base of crop growth spectrum information to improve long-term and effective crop growth spectrum information.
实施例10Example 10
本发明第八优选实施例是在上述第六或第七或第八或第九优选实施例的基础上改进而来,即所述方法还包括:The eighth preferred embodiment of the present invention is improved on the basis of the sixth or seventh or eighth or ninth preferred embodiment above, that is, the method further includes:
步骤7、根据所述作物光谱信息模块生成的作物长势光谱信息知识库,对所有地块的目标农作物的长势均匀度建立专题图。Step 7. According to the crop growth spectrum information knowledge base generated by the crop spectrum information module, a thematic map is established for the growth uniformity of the target crops in all plots.
专题图能够根据作物长势光谱信息知识库获得更为直观的图像化资料。Thematic maps can obtain more intuitive image data based on the knowledge base of crop growth spectrum information.
下面通过一个具体的实施例对本发明进行说明。The present invention will be described below through a specific embodiment.
(1)遥感图像获取及处理(1) Remote sensing image acquisition and processing
2008年度,在冬小麦生长季共获取研究区Landsat TM遥感图像3景,获取日期分别为3月27日,4月28日和5月30日,分别对应冬小麦起身期、孕穗期及冬小麦乳熟期。此外,08年7月12日还获取了研究区印度星ISP6图像一景。所有Landsat图像,采用6S模型支持下的暗目标法进行了大气纠正,ISP6图像采用ENVI软件FLAASH模块进行了大气纠正,获取了所有图像的地表反射率。图像的几何纠正采用图像对图像选取地面控制点的方法,每景图像选取超过300个地面控制点,此外,根据实际调查时所获取的卫星差分GPS控制点对整个图像进行了修正,经过几何纠正的图像精度控制在一个像元之内。In 2008, a total of 3 scenes of Landsat TM remote sensing images in the research area were obtained during the winter wheat growing season. The acquisition dates were March 27, April 28 and May 30, corresponding to the rising stage, booting stage and milky stage of winter wheat respectively. . In addition, on July 12, 2008, a scene of the ISP6 image of the Indian star in the research area was obtained. All Landsat images were atmospherically corrected using the dark target method supported by the 6S model, and the ISP6 images were atmospherically corrected using the FLAASH module of ENVI software to obtain the surface reflectance of all images. The geometric correction of the image adopts the method of selecting ground control points from image to image. More than 300 ground control points are selected for each image. In addition, the entire image is corrected according to the satellite differential GPS control points obtained during the actual survey. After geometric correction The image precision is controlled within one pixel.
(2)目标农作物提取(2) Target crop extraction
利用2008年度3月27日、4月28日以及5月30日Landsat5 TM冬小麦生长季遥感图像,以及2008年7月12日冬小麦收割后的遥感图像,采用决策树分类法,对通州地区冬小麦种植区进行了提取。提取结果如图3所示。Using the remote sensing images of Landsat5 TM winter wheat growing season on March 27, April 28 and May 30, 2008, and the remote sensing images of winter wheat harvested on July 12, 2008, the winter wheat planting in Tongzhou area was classified by decision tree classification method. area was extracted. The extraction results are shown in Figure 3.
利用ENVI软件分类后处理功能将该栅格数据转换为矢量数据,结果如图4所示。其中,ENVI(The Environment for Visualizing Images)是美国ITT Visual Information Solutions公司的遥感图像处理软件。The raster data is converted into vector data by using the classification post-processing function of ENVI software, and the result is shown in Figure 4. Among them, ENVI (The Environment for Visualizing Images) is a remote sensing image processing software of ITT Visual Information Solutions in the United States.
(3)目标农作物地块矢量数据的获取(3) Acquisition of target crop plot vector data
在ARCVIEW3.3软件中,通过与高分辨率卫星遥感图像目视解译获取的2006年北京地区农田划分类型矢量图进行叠加切割运算,获取了比较精细的农田地块矢量边界数据,同时叠加2008年冬小麦遥感图像提取信息。通过目视解译,确定2008年北京通州地区冬小麦种植地块边界。冬小麦地块数据经过修正后,如图5所示。In the ARCVIEW3.3 software, by superimposing and cutting the 2006 Beijing area farmland division type vector map obtained by visual interpretation of high-resolution satellite remote sensing images, a relatively fine vector boundary data of farmland plots was obtained, and at the same time superimposed the 2008 Information extraction from remote sensing images of winter wheat. Determination of the boundaries of winter wheat planting plots in Tongzhou, Beijing in 2008 by visual interpretation. Figure 5 shows the data of winter wheat plots after correction.
通州地区2008年冬小麦种植地块共1105块,总面积为17791公顷(26.7万亩),其中,面积小于10公顷(150亩)的小麦地块有526块,10-30公顷(150-450亩)的小麦地块有394块,30-70公顷(450-1050亩)的小麦地块有130块,大于70公顷(1050亩)的小麦地块有2块。There were 1,105 winter wheat plots in Tongzhou in 2008, with a total area of 17,791 hectares (267,000 mu), of which there were 526 wheat plots with an area of less than 10 hectares (150 mu) ), there are 394 wheat plots, 130 wheat plots of 30-70 hectares (450-1050 mu), and 2 wheat plots larger than 70 hectares (1050 mu).
(4)对于每一地块,利用VB结合GIS二次开发控件MO编程提取地块所对应所有像元NDVI值,计算出该地块不同时相NDVI最小值、最大值、均值、标准偏差及变异系数NDVICV,并将此信息以新的字段添加到地块矢量文件对应的记录中,生成作物光谱信息知识库。(4) For each plot, use VB combined with GIS secondary development control MO programming to extract the NDVI values of all pixels corresponding to the plot, and calculate the minimum, maximum, mean, standard deviation and Variation coefficient NDVI CV , and this information is added to the record corresponding to the plot vector file as a new field to generate a knowledge base of crop spectral information.
(5)基于地块的作物长势均匀度指标的确定(5) Determination of crop growth uniformity index based on plots
为了对所有地块的长势情况进行综合考察,本研究根据同一时相所有地块的变异系数NDVICV构建了冬小麦长势均匀度指数GUI(Growth Uniformity Index)根据该指数的大小,评价不同地块冬小麦的长势,GUI的定义如下所示,GUI的值介于0-1之间,GUI值越大,说明地块长势越好,NDVI值高且长势越均匀。In order to comprehensively examine the growth conditions of all plots, this study constructed the growth uniformity index GUI (Growth Uniformity Index) of winter wheat based on the variation coefficient NDVI CV of all plots in the same phase. The growth trend of , the definition of GUI is as follows, the value of GUI is between 0-1, the larger the GUI value, the better the growth of the plot, the higher the NDVI value and the more uniform the growth.
其中,in,
NDVICV是每一地块所对应的NDVI的变异系数;NDVI CV is the coefficient of variation of NDVI corresponding to each plot;
NDVICV min为同一时相所有地块NDVI变异系数中的最小值;NDVI CV min is the minimum value of the NDVI coefficient of variation of all plots in the same phase;
NDVICV max为同一时相所有地块NDVI变异系数中的最大值;NDVI CV max is the maximum value of the NDVI coefficient of variation of all plots in the same phase;
(6)生成作物光谱信息知识库;(6) Generate crop spectral information knowledge base;
对于每一地块,利用VB结合GIS二次开发控件MO编程提取地块所对应所有像元NDVI值,计算出该地块不同时相NDVI最小值、最大值、均值、标准偏差及变异系数NDVICV和冬小麦长势均匀度指数GUI,并将此信息以新的字段添加到地块矢量文件对应的记录中,生成作物光谱信息知识库。For each plot, use VB combined with GIS secondary development control MO programming to extract the NDVI values of all pixels corresponding to the plot, and calculate the minimum, maximum, mean, standard deviation and variation coefficient NDVI of the plot in different phases of NDVI CV and winter wheat growth uniformity index GUI, and this information is added as a new field to the record corresponding to the plot vector file to generate a knowledge base of crop spectral information.
(7)生成专题图;(7) generate thematic maps;
根据区域内不同地块不同时相作物长势均匀度专题图。According to the thematic map of crop growth uniformity in different plots and different phases in the region.
本实例利用本发明提出的方法,实现了基于农田地块的农作物长势均匀度的遥感监测,本发明提出的技术方案充分利用了遥感图像数据能够多次、瞬时、无损的获取大范围“面状”地物光谱信息的特点,针对自然地块开展作物长势均匀度的评价,克服了以往作物长势均匀度的调查费时费力,效率低的缺点,在提高工作效率,减轻工作强度的同时,有效的提高了大范围作物长势均匀度监测的准确性与精度。This example uses the method proposed by the present invention to realize the remote sensing monitoring of the uniformity of crop growth based on farmland plots. The technical solution proposed by the present invention makes full use of the remote sensing image data to obtain multiple, instantaneous and non-destructive acquisitions of large-scale "area-shaped "The characteristics of ground object spectral information, the evaluation of crop growth uniformity for natural plots, overcomes the shortcomings of time-consuming, laborious and low-efficiency investigations of crop growth uniformity in the past, and effectively improves work efficiency and reduces work intensity. The accuracy and precision of monitoring the uniformity of crop growth in a wide range are improved.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the technical principle of the present invention, some improvements and modifications can also be made, these improvements and modifications It should also be regarded as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009102365201A CN101699315B (en) | 2009-10-23 | 2009-10-23 | A monitoring device and method for crop growth uniformity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009102365201A CN101699315B (en) | 2009-10-23 | 2009-10-23 | A monitoring device and method for crop growth uniformity |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101699315A true CN101699315A (en) | 2010-04-28 |
CN101699315B CN101699315B (en) | 2012-04-25 |
Family
ID=42147778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009102365201A Active CN101699315B (en) | 2009-10-23 | 2009-10-23 | A monitoring device and method for crop growth uniformity |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101699315B (en) |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101825702A (en) * | 2010-05-24 | 2010-09-08 | 福州大学 | Method for adjusting and optimizing terrain by utilizing terrain adjusting vegetation index |
CN102013047A (en) * | 2010-09-10 | 2011-04-13 | 北京农业信息技术研究中心 | Method for monitoring yield variation degree of crops |
CN102012528A (en) * | 2010-11-23 | 2011-04-13 | 北京理工大学 | Hyperspectral remote sensing oil-gas exploration method for vegetation sparse area |
CN102928847A (en) * | 2012-11-12 | 2013-02-13 | 中国热带农业科学院橡胶研究所 | A Method of Extracting the Pixel Value of the Corresponding Pixel of Rubber Forest from Remote Sensing Image |
CN102954816A (en) * | 2012-01-13 | 2013-03-06 | 北京盈胜泰科技术有限公司 | Crop growth monitoring method |
CN103335953A (en) * | 2013-06-04 | 2013-10-02 | 中国科学院遥感与数字地球研究所 | Remote sensing evaluation method for crop growing trend combined with characters of individuals and groups |
CN103914755A (en) * | 2014-03-18 | 2014-07-09 | 北京农业信息技术研究中心 | Method and system for determining spatial scales of field investigation and field management |
CN104089647A (en) * | 2014-07-01 | 2014-10-08 | 北京农业信息技术研究中心 | Crop disease occurrence range monitoring method and system |
CN104198342A (en) * | 2014-08-27 | 2014-12-10 | 北京市环境保护监测中心 | Method for calculating atmospheric particles in bare building site by integrating ground monitoring and satellite image |
CN106600434A (en) * | 2016-10-18 | 2017-04-26 | 河南省农业科学院农业经济与信息研究所 | Remote crop growth status monitoring method based on crop model and assimilation technology |
CN106918816A (en) * | 2017-03-21 | 2017-07-04 | 中国科学院遥感与数字地球研究所 | crop growth monitoring system and its data processing method and module |
CN107145872A (en) * | 2017-05-12 | 2017-09-08 | 河海大学 | A Method for Obtaining Spatial Distribution of Desert Riparian Forest Based on GIS Buffer Analysis |
CN107273820A (en) * | 2017-05-26 | 2017-10-20 | 中国科学院遥感与数字地球研究所 | A kind of Land Cover Classification method and system |
CN107274384A (en) * | 2017-05-17 | 2017-10-20 | 扬州大学 | A kind of wheat is emerged cloud test method |
CN108764643A (en) * | 2018-04-27 | 2018-11-06 | 浙江水利水电学院 | A wide range of crop disease methods of risk assessment |
CN108844912A (en) * | 2018-04-19 | 2018-11-20 | 中科谱光科技(北京)有限公司 | A kind of crop growing state spectrum intelligent analysis system and method |
CN108986040A (en) * | 2018-06-12 | 2018-12-11 | 南京大学 | A kind of NDVI shadow effect minimizing technology based on remote sensing multispectral image |
CN110110595A (en) * | 2019-03-28 | 2019-08-09 | 国智恒北斗好年景农业科技有限公司 | A kind of farmland portrait and medicine hypertrophy data analysing method based on satellite remote-sensing image |
CN110348314A (en) * | 2019-06-14 | 2019-10-18 | 中国资源卫星应用中心 | A kind of method and system using multi- source Remote Sensing Data data monitoring vegetation growing way |
CN111507833A (en) * | 2020-06-30 | 2020-08-07 | 浙江网商银行股份有限公司 | Credit limit processing method and device and crop identification method and device |
CN111521562A (en) * | 2020-03-19 | 2020-08-11 | 航天信德智图(北京)科技有限公司 | Cotton vegetation index remote sensing detection method based on Sentinel-2 satellite |
US10779485B2 (en) | 2015-01-08 | 2020-09-22 | Powwow Energy, Inc. | Automated distribution uniformity measurements and farming prescriptions using aerial imagery and pump energy data |
WO2020215148A1 (en) * | 2019-04-26 | 2020-10-29 | Farmers Edge Inc. | Refined average for zoning method and system |
CN111967440A (en) * | 2020-09-04 | 2020-11-20 | 郑州轻工业大学 | Comprehensive identification and treatment method for crop diseases |
CN112446339A (en) * | 2020-12-04 | 2021-03-05 | 中国科学院东北地理与农业生态研究所 | Crop remote sensing classification method for hierarchical deep learning |
CN112988003A (en) * | 2019-12-13 | 2021-06-18 | 广州极飞科技股份有限公司 | Farming information display method and device, storage medium and processor |
CN113362192A (en) * | 2021-07-07 | 2021-09-07 | 中国工商银行股份有限公司 | Agricultural insurance underwriting method, system, equipment and storage medium |
CN113467519A (en) * | 2021-08-13 | 2021-10-01 | 北京爱科农科技有限公司 | Automatic cruising method and system for unmanned aerial vehicle |
WO2021207977A1 (en) * | 2020-04-15 | 2021-10-21 | 深圳市大疆创新科技有限公司 | Movable platform operation method, movable platform and electronic device |
CN114005039A (en) * | 2021-12-31 | 2022-02-01 | 成都国星宇航科技有限公司 | Crop growth assessment method and device based on remote sensing image and electronic equipment |
CN114359725A (en) * | 2021-12-30 | 2022-04-15 | 黑龙江省农业科学院农业遥感与信息研究所 | Crop growth remote sensing monitoring system and method based on crop model and assimilation technology |
CN115578641A (en) * | 2022-11-08 | 2023-01-06 | 中化现代农业有限公司 | Crop shoveling progress monitoring method and device, electronic equipment and storage medium |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1704758A (en) * | 2004-05-28 | 2005-12-07 | 北京农业信息技术研究中心 | Method for realizing wheat behavior monitoring and forecasting by utilizing remote sensing and geographical information system technology |
CN100394212C (en) * | 2005-08-19 | 2008-06-11 | 广州地理研究所 | A method for remote sensing detection and estimation of planting area and yield of large-scale crops |
-
2009
- 2009-10-23 CN CN2009102365201A patent/CN101699315B/en active Active
Cited By (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101825702B (en) * | 2010-05-24 | 2012-11-21 | 福州大学 | Method for adjusting and optimizing terrain by utilizing terrain adjusting vegetation index |
CN101825702A (en) * | 2010-05-24 | 2010-09-08 | 福州大学 | Method for adjusting and optimizing terrain by utilizing terrain adjusting vegetation index |
CN102013047A (en) * | 2010-09-10 | 2011-04-13 | 北京农业信息技术研究中心 | Method for monitoring yield variation degree of crops |
CN102012528A (en) * | 2010-11-23 | 2011-04-13 | 北京理工大学 | Hyperspectral remote sensing oil-gas exploration method for vegetation sparse area |
CN102012528B (en) * | 2010-11-23 | 2013-03-13 | 北京理工大学 | Hyperspectral remote sensing oil-gas exploration method for vegetation sparse area |
CN102954816B (en) * | 2012-01-13 | 2015-03-11 | 北京安赛博技术有限公司 | Crop growth monitoring method |
CN102954816A (en) * | 2012-01-13 | 2013-03-06 | 北京盈胜泰科技术有限公司 | Crop growth monitoring method |
CN102928847A (en) * | 2012-11-12 | 2013-02-13 | 中国热带农业科学院橡胶研究所 | A Method of Extracting the Pixel Value of the Corresponding Pixel of Rubber Forest from Remote Sensing Image |
CN102928847B (en) * | 2012-11-12 | 2014-03-26 | 中国热带农业科学院橡胶研究所 | Method for extracting corresponding pixel value of rubber forest from remote sensing image |
CN103335953A (en) * | 2013-06-04 | 2013-10-02 | 中国科学院遥感与数字地球研究所 | Remote sensing evaluation method for crop growing trend combined with characters of individuals and groups |
CN103335953B (en) * | 2013-06-04 | 2016-03-23 | 中国科学院遥感与数字地球研究所 | A kind of Grain Growth Situation remoteensing evaluation method that individual and group feature combines |
CN103914755A (en) * | 2014-03-18 | 2014-07-09 | 北京农业信息技术研究中心 | Method and system for determining spatial scales of field investigation and field management |
CN104089647B (en) * | 2014-07-01 | 2016-07-06 | 北京农业信息技术研究中心 | A kind of crop pest occurrence scope monitoring method and system |
CN104089647A (en) * | 2014-07-01 | 2014-10-08 | 北京农业信息技术研究中心 | Crop disease occurrence range monitoring method and system |
CN104198342B (en) * | 2014-08-27 | 2017-05-24 | 北京市环境保护监测中心 | Method for calculating atmospheric particles in bare building site by integrating ground monitoring and satellite image |
CN104198342A (en) * | 2014-08-27 | 2014-12-10 | 北京市环境保护监测中心 | Method for calculating atmospheric particles in bare building site by integrating ground monitoring and satellite image |
US10779485B2 (en) | 2015-01-08 | 2020-09-22 | Powwow Energy, Inc. | Automated distribution uniformity measurements and farming prescriptions using aerial imagery and pump energy data |
CN106600434A (en) * | 2016-10-18 | 2017-04-26 | 河南省农业科学院农业经济与信息研究所 | Remote crop growth status monitoring method based on crop model and assimilation technology |
CN106600434B (en) * | 2016-10-18 | 2021-04-23 | 河南省农业科学院农业经济与信息研究所 | Crop growth remote sensing monitoring method based on crop model and assimilation technology |
CN106918816B (en) * | 2017-03-21 | 2019-08-02 | 中国科学院遥感与数字地球研究所 | Crop growth monitoring system and its data processing method and module |
CN106918816A (en) * | 2017-03-21 | 2017-07-04 | 中国科学院遥感与数字地球研究所 | crop growth monitoring system and its data processing method and module |
CN107145872A (en) * | 2017-05-12 | 2017-09-08 | 河海大学 | A Method for Obtaining Spatial Distribution of Desert Riparian Forest Based on GIS Buffer Analysis |
CN107274384B (en) * | 2017-05-17 | 2020-09-22 | 扬州大学 | A kind of determination method of wheat emergence uniformity |
CN107274384A (en) * | 2017-05-17 | 2017-10-20 | 扬州大学 | A kind of wheat is emerged cloud test method |
CN107273820A (en) * | 2017-05-26 | 2017-10-20 | 中国科学院遥感与数字地球研究所 | A kind of Land Cover Classification method and system |
CN108844912A (en) * | 2018-04-19 | 2018-11-20 | 中科谱光科技(北京)有限公司 | A kind of crop growing state spectrum intelligent analysis system and method |
CN108764643B (en) * | 2018-04-27 | 2022-05-06 | 浙江水利水电学院 | Large-scale crop disease risk assessment method |
CN108764643A (en) * | 2018-04-27 | 2018-11-06 | 浙江水利水电学院 | A wide range of crop disease methods of risk assessment |
CN108986040A (en) * | 2018-06-12 | 2018-12-11 | 南京大学 | A kind of NDVI shadow effect minimizing technology based on remote sensing multispectral image |
CN108986040B (en) * | 2018-06-12 | 2022-02-01 | 南京大学 | NDVI shadow influence removing method based on remote sensing multispectral image |
CN110110595B (en) * | 2019-03-28 | 2023-05-26 | 国智恒北斗好年景农业科技有限公司 | Farmland image and medicine hypertrophy data analysis method based on satellite remote sensing image |
CN110110595A (en) * | 2019-03-28 | 2019-08-09 | 国智恒北斗好年景农业科技有限公司 | A kind of farmland portrait and medicine hypertrophy data analysing method based on satellite remote-sensing image |
WO2020215148A1 (en) * | 2019-04-26 | 2020-10-29 | Farmers Edge Inc. | Refined average for zoning method and system |
US11409982B2 (en) | 2019-04-26 | 2022-08-09 | Farmers Edge Inc. | Refined average for zoning method and system |
CN110348314A (en) * | 2019-06-14 | 2019-10-18 | 中国资源卫星应用中心 | A kind of method and system using multi- source Remote Sensing Data data monitoring vegetation growing way |
CN112988003A (en) * | 2019-12-13 | 2021-06-18 | 广州极飞科技股份有限公司 | Farming information display method and device, storage medium and processor |
CN112988003B (en) * | 2019-12-13 | 2023-07-21 | 广州极飞科技股份有限公司 | Agronomic information display method, device, storage medium and processor |
CN111521562A (en) * | 2020-03-19 | 2020-08-11 | 航天信德智图(北京)科技有限公司 | Cotton vegetation index remote sensing detection method based on Sentinel-2 satellite |
WO2021207977A1 (en) * | 2020-04-15 | 2021-10-21 | 深圳市大疆创新科技有限公司 | Movable platform operation method, movable platform and electronic device |
CN111507833A (en) * | 2020-06-30 | 2020-08-07 | 浙江网商银行股份有限公司 | Credit limit processing method and device and crop identification method and device |
CN111967440B (en) * | 2020-09-04 | 2023-10-27 | 郑州轻工业大学 | A comprehensive identification and treatment method for crop diseases |
CN111967440A (en) * | 2020-09-04 | 2020-11-20 | 郑州轻工业大学 | Comprehensive identification and treatment method for crop diseases |
CN112446339A (en) * | 2020-12-04 | 2021-03-05 | 中国科学院东北地理与农业生态研究所 | Crop remote sensing classification method for hierarchical deep learning |
CN113362192A (en) * | 2021-07-07 | 2021-09-07 | 中国工商银行股份有限公司 | Agricultural insurance underwriting method, system, equipment and storage medium |
CN113467519A (en) * | 2021-08-13 | 2021-10-01 | 北京爱科农科技有限公司 | Automatic cruising method and system for unmanned aerial vehicle |
CN114359725A (en) * | 2021-12-30 | 2022-04-15 | 黑龙江省农业科学院农业遥感与信息研究所 | Crop growth remote sensing monitoring system and method based on crop model and assimilation technology |
CN114359725B (en) * | 2021-12-30 | 2024-03-26 | 黑龙江省农业科学院农业遥感与信息研究所 | Crop growth condition remote sensing monitoring system and method based on crop model and assimilation technology |
CN114005039A (en) * | 2021-12-31 | 2022-02-01 | 成都国星宇航科技有限公司 | Crop growth assessment method and device based on remote sensing image and electronic equipment |
CN115578641B (en) * | 2022-11-08 | 2023-06-20 | 中化现代农业有限公司 | Crop eradication progress monitoring method and device, electronic equipment and storage medium |
CN115578641A (en) * | 2022-11-08 | 2023-01-06 | 中化现代农业有限公司 | Crop shoveling progress monitoring method and device, electronic equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN101699315B (en) | 2012-04-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101699315B (en) | A monitoring device and method for crop growth uniformity | |
Yan et al. | Multiple cropping intensity in China derived from agro-meteorological observations and MODIS data | |
Xiao et al. | A continuous measure of gross primary production for the conterminous United States derived from MODIS and AmeriFlux data | |
Zhou et al. | Perspective of Chinese GF-1 high-resolution satellite data in agricultural remote sensing monitoring | |
Azar et al. | Assessing in-season crop classification performance using satellite data: A test case in Northern Italy | |
CN109829234A (en) | A kind of across scale Dynamic High-accuracy crop condition monitoring and yield estimation method based on high-definition remote sensing data and crop modeling | |
CN106908415B (en) | A kind of big region crops time of infertility Soil Moisture Monitoring method based on amendment NDVI time series | |
CN110909933B (en) | Agricultural drought rapid diagnosis and evaluation method coupling crop model and machine learning language | |
CN107527014A (en) | Crops planting area RS statistics scheme of sample survey design method at county level | |
CN105372672B (en) | Southern winter kind crops planting area extracting method based on time series data | |
CN102592181A (en) | Method for optimizing spatial distribution of statistical data about crop planting area | |
CN109063553A (en) | Field-crop growth defect area's remote sensing fast diagnosis method after a kind of land control | |
CN109211791A (en) | Crop condition monitoring method and system | |
CN110598514B (en) | Method for monitoring plot scale crop seeding area of land reclamation project area | |
CN107831168A (en) | The method that remote sensing technology measures paddy field shelter-forest protection effect | |
Asam et al. | Estimation of grassland use intensities based on high spatial resolution LAI time series | |
CN104951772A (en) | Winter wheat extraction method based on NDVI (normalized difference vegetation index) time series curve integral | |
Bolun et al. | Estimating rice paddy areas in China using multi-temporal cloud-free normalized difference vegetation index (NDVI) imagery based on change detection | |
Zhu et al. | UAV flight height impacts on wheat biomass estimation via machine and deep learning | |
LI et al. | Estimating rice yield by HJ-1A satellite images | |
CN106447079A (en) | Prediction method for tobacco production of karst mountainous area based on Radarsat-2 | |
CN116246168A (en) | A time-series detection method of cultivated land non-grain by remote sensing | |
Huang et al. | Recognition and counting of pitaya trees in karst mountain environment based on unmanned aerial vehicle RGB images | |
Zhang et al. | Extraction of winter wheat planting area based on fused active and passive remote sensing images | |
Tang et al. | UAV-based high spatial and temporal resolution monitoring and mapping of surface moisture status in a vineyard |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20201010 Address after: No. 301-a315, floor 03, No. 11, Shuguang garden middle road, Haidian District, Beijing 100097 Patentee after: NONGXIN TECHNOLOGY (BEIJING) Co.,Ltd. Address before: 100097, Haidian District, Beijing West plate wells village Patentee before: BEIJING RESEARCH CENTER FOR INFORMATION TECHNOLOGY IN AGRICULTURE |
|
TR01 | Transfer of patent right |