CN101698692B - 一种腰部交联双亲性纳米胶束及其制备方法 - Google Patents

一种腰部交联双亲性纳米胶束及其制备方法 Download PDF

Info

Publication number
CN101698692B
CN101698692B CN2009101126928A CN200910112692A CN101698692B CN 101698692 B CN101698692 B CN 101698692B CN 2009101126928 A CN2009101126928 A CN 2009101126928A CN 200910112692 A CN200910112692 A CN 200910112692A CN 101698692 B CN101698692 B CN 101698692B
Authority
CN
China
Prior art keywords
amphiphilic
solvent
initiator
oligopolymer
waist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009101126928A
Other languages
English (en)
Other versions
CN101698692A (zh
Inventor
戴李宗
袁丛辉
张良俊
廖翌滏
林苏娟
许一婷
谢聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN2009101126928A priority Critical patent/CN101698692B/zh
Publication of CN101698692A publication Critical patent/CN101698692A/zh
Application granted granted Critical
Publication of CN101698692B publication Critical patent/CN101698692B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Medicinal Preparation (AREA)

Abstract

一种腰部交联双亲性纳米胶束及其制备方法,涉及一种纳米胶束及其合成方法。提供一种腰部交联双亲性纳米胶束及其制备方法。由一类分子链中间含有可聚合性双键且双键两端分别接有亲水和疏水链段的双亲性低聚物在交联剂的存在下经自由基引发溶液聚合而成。将分子链中间含双键的双亲性低聚物溶解于溶剂中,20~80℃下搅拌使双亲性低聚物以胶束的形式分散在溶剂中,得双亲性低聚物的胶束溶液;在氮气保护及搅拌的条件下,将交联剂、引发剂加入到双亲性低聚物的胶束溶液中,在40~100℃下反应2~48h后得腰部交联固定双亲性纳米胶束。

Description

一种腰部交联双亲性纳米胶束及其制备方法
技术领域
本发明涉及一种纳米胶束及其合成方法。
背景技术
纳米材料以其独特的纳米尺寸效应,已经成为世界级的研究热点。当物质达到纳米尺寸时,其物理性能、化学性能以及宏观形态等方面均与常规尺寸的物质有明显的不同。制备纳米材料的方法有很多,如:超细碾磨法、气相沉淀法、模板法以及自组装技术等。其中,利用双亲性分子在选择性溶液中的自组装行为来制备纳米球状、棒状、泡囊状胶束是当今制备高分子纳米材料的一重要领域(K.K.Karukstis,J.R.McDonough.Characterization of theAggregates of N-Alkyl-N-methylpyrrolidinium Bromide Surfactants in Aqueous Solution[J]Langmuir,2005,21,5716-5721)。
当前合成出来的自组装纳米胶束主要可以分为三种形态。(1)无交联纳米胶束。这类胶束的制备方法比较简单,通常将双亲性分子溶解于选择性溶剂中即可得到无交联纳米胶束。Ma和Cao等(Ma Y,Cao T,Webber S E.Polymer micelles from poly(arylic acid)-graft-polystyrene[J].Macromolecules,1998,31:1773-1778])合成了聚丙烯酸-聚苯乙烯接枝共聚物,发现(PAA-g-PS)在氯化钠水溶液中能自组装形成以PS为核、PAA为壳的球形胶束,并且该胶束的粒径取决于该共聚物溶液浓度及水溶液离子强度。(2)核交联胶束。一般这类胶束在成核链段上具有为聚合的双键,当胶束形成后,可使用引发剂引发双键交联聚合而达到对胶束核交联固定的目的。Kataoka等(Iijima M,Nagasaki Y,Okada T,Kato M,Kataoka K.Core-polymerized reactive micelles from heterotelechelic amphiphilic block copolymers[J].Macromolecules,1999,32:1140-1146)研究了聚环氧乙烷-聚乳酸嵌段共聚物(PEO-b-PLA)在水中形成PLA为核的胶束,通过自由基聚合而使核交联。通过核交联可使胶束结构稳定,有利于进一步的物理及化学改性。(3)壳交联胶束。壳交联胶束是目前研究较多的一种胶束,它是由壳层带有双键的分子间进行自由基聚合反应或在带有反应性基团(如羧基)的分子中加入交联剂交联而形成。如聚(苯乙烯-b-4-乙烯吡啶)在水中形成聚苯乙烯为核、聚4-乙烯吡啶盐为壳的胶束,其壳上的侧链苯乙烯基可在光照和引发剂下进行自由基共聚而交联(ThurmondII K B,Kowalewski T,Wooley K L.Water-soluble knedel-like structures:the preparation ofshell-crosslinked small particles[J].J Am Chem Soc,1996,118:7239-7240);Huang等(Huang H,Kowalewski T,Remsen E E,Gertzmann R,Wooley K L.Hydrogel coated glass nano spheres:anovel method for the synthesis of shell cross-linked knedels[J].J Am ChemSoc,1997,119:11653-11659)研究发现,由聚苯乙烯为核、聚丙烯酸为壳的聚合物胶束水溶液用二胺类交联剂在常温下即可发生缩合反应而使壳交联。通过壳交联,提高了胶束的稳定性,而核仍保持了一定的流动性,亲油性核可以担载大量非水溶性药物,而交联壳可以保护药物不被外界环境所破坏,并能避免高浓度药物对人体的直接刺激,减轻不适感,这种特点很适于作为药物载体。上述研究成果中,主要是利用嵌段共聚物在选择性溶剂中进行自组装,进而制备核交联或壳交联形态的纳米胶束。这种交联固定形式虽然能够对胶束起到固定的作用,但由于交联区域过大,对胶束核、壳中分子链段的流动性产生了极大的阻碍,使得胶束的功能性大大减弱。
发明内容
本发明的目的旨在提供一种腰部交联双亲性纳米胶束及其制备方法,所合成的纳米胶束具有可流动的核与壳,在药物包覆及可控释放等方面具有广泛的应用前景。
所述腰部交联双亲性纳米胶束由一类分子链中间含有可聚合性双键且双键两端分别接有亲水和疏水链段的双亲性低聚物在交联剂的存在下经自由基引发溶液聚合而成,双亲性低聚物的分子结构式如下:
Figure G2009101126928D00021
所述腰部交联双亲性纳米胶束的制备方法包括以下步骤:
1)将分子链中间含双键的双亲性低聚物溶解于溶剂中,20~80℃下搅拌使双亲性低聚物以胶束的形式分散在溶剂中,得双亲性低聚物的胶束溶液;
2)在氮气保护及搅拌的条件下,将交联剂、引发剂加入到双亲性低聚物的胶束溶液中,在40~100℃下反应2~48h后得腰部交联固定双亲性纳米胶束。
所述双亲性低聚物、交联剂、引发剂和溶剂各组分的比例按质量百分比为:双亲性低聚物0.001%~10%,交联剂0.001%~10%,引发剂0.001%~10%,余量为溶剂。
所述交联剂为带有两个双键的单体,如亚甲基双丙烯酰胺、乙二醇双甲基丙烯酸酯、多缩乙二醇双丙烯酸酯。
所述引发剂为偶氮类引发剂、有机过氧类引发剂、无机过氧类引发剂、氧化还原引发体系等,如偶氮二异丁腈、偶氮二异庚腈、过氧化苯甲酰、过硫酸钾、过硫酸铵、过硫酸钾-亚硫酸钠等中的至少一种。
所述溶剂为水、有机溶剂或混合溶剂,所述混合溶剂为水、水的盐溶液、苯、甲苯、二甲苯、苯酚、乙醇、氯仿、N,N二甲基甲酰胺等中的至少一种。
本发明所用的双亲性低聚物为马来酸长链脂肪醇聚乙二醇双酯,它是由马来酸与长链脂肪醇以及聚乙二醇经两步酯化反应而得,其分子结构式如下:
其中n为聚乙二醇的聚合度,m为长链脂肪醇的链段长度,聚乙二醇的分子量为200~20000;脂肪醇的碳链长度为12~26个碳原子。
马来酸异醇双酯的制备方法如下:
1)将马来酸酐、长链脂肪醇以及阻聚剂溶解于溶剂中,在50~120℃的环境下反应2~48h后,得马来酸单酯:
2)将马来酸单酯、聚乙二醇、阻聚剂、催化剂溶解于溶剂中,在回流温度下反应2~28h后,蒸除溶剂,得马来酸长链脂肪醇聚乙二醇双酯。
所述马来酸酐、长链脂肪醇以及聚乙二醇之间的摩尔比为1∶(0.1~9)∶(0.1~9)。
所述阻聚剂为能够稳定、捕获自由基的化合物,如酚类化合物、醌类化合物、芳香族硝基化合物、芳胺、氯化铁或氯化铜等。
所述催化剂包括有机磺酸、杂酸酯以及无机酸如对甲苯磺酸、钛酸酯或浓硫酸。
所述溶剂为甲苯或对甲苯。
所述阻聚剂的用量为各步骤原料总量的0.01%~5wt%。
所述催化剂的用量为原料总量的0.01%~5wt%。
所述溶剂的用量为各步骤原料总量的50%~500wt%。
本发明是基于在分子链中间含双键的双亲性低聚物上,疏水链段以及亲水链段之间双键的交联聚合而制备的腰部交联纳米胶束。其发生交联聚合的位置在双亲性分子疏水链段与亲水链段之间,该腰部交联结构不仅能够对纳米胶束起到固定作用,而且能赋予胶束的核和壳以足够的流动性。从而使得该纳米胶束在药物包裹及可控释放等方面有着诱人的应用前景。
附图说明
图1为马来酸十八醇聚乙二醇600双酯以及聚(马来酸十八醇聚乙二醇600双酯)腰部交联胶束的核磁图谱。在图1中,横坐标为化学位移Chemical shift(ppm);曲线a为马来酸十八醇聚乙二醇600双酯腰部交联胶束的核磁图谱,曲线b为聚(马来酸十八醇聚乙二醇600双酯)腰部交联胶束的核磁图谱;溶剂为氘仿。
图2为未交联聚合胶束以及腰部交联胶束的电镜图。在图2中,图2a为未交联聚合胶束的电镜图,图2b为腰部交联胶束的电镜图。在图2中,横坐标100nm。
具体实施方式
下面通过实施例对本发明作进一步说明。
实施例1
1、分子链中间含双键的双亲性低聚物的制备
将4.9g(0.05mol)马来酸酐、13.5g(0.05mol)十八醇、0.5g对苯二酚(阻聚剂)以及30g甲苯混合均匀;将混合液倒入圆底烧瓶中,在80℃的温度下反应8h后得马来酸十八醇单酯。取4.6g(0.0125mol)马来酸十八醇单酯、7.5g(0.0125mol)聚乙二醇600、0.5g对苯二酚、0.2g对甲苯磺酸(催化剂)以及40g甲苯混合均匀;将混合液倒入圆底烧瓶中,在回流温度下反应12h后得马来酸十八醇聚乙二醇600双酯。
2、腰部交联固定双亲性纳米胶束的制备
将0.5g马来酸十八醇聚乙二醇600双酯溶解于99.498g去离子水中,在40℃的温度下高速搅拌,使其在去离子水中形成胶束。在氮气保护以及高速搅拌的条件下,向上述溶液中加入0.001g过硫酸钾(引发剂)以及0.001g N,N’-亚甲基双丙烯酰胺(交联剂),在70℃的温度下反应12h得腰部交联双亲性纳米胶束。
通过核磁共振对双亲性纳米胶束进行结构表征,并与未交联前的马来酸十八醇聚乙二醇600双酯对比,在图1曲线a中,各峰的归属为:δ0.89(-CH3,3H),1.20-1.40((-CH2-)15,30H),1.68(-CH2,2H),3.60-3.80((-OCH2)27,54H),4.18(-OCH2,2H),4.35(-OCH2,2H),6.28(=CH,2H)。在图1(b)中,各峰的归属为:δ0.89(-CH3,3H),1.20-1.40((-CH2-)15,30H),1.60(-CH2,2H),3.52-3.88((-OCH2)27,54H),4.05(-OCH2,2H),4.25(-OCH2,2H)。
比较结果表明,图1曲线b中δ6.28处没有出现任何质子峰,这说明马来酸十八醇聚乙二醇600双酯已经聚合成功,获得了腰部交联纳米胶束。
对比未交联聚合胶束电镜图(图2a)和已腰部交联胶束的电镜图(图2b)发现,未交联的胶束完全坍塌,而腰部交联的胶束能保持良好的立体球形结构,这说明腰部交联能够对胶束起到稳定的作用。
实施例2~7
双亲性低聚物及腰部交联双亲性纳米胶束的制备条件同实施例1,各具体组分及反应用量见表1。
表1
  实施例   双亲性低聚物(g)   溶剂(g)   引发剂(g)   交联剂(g)
2   马来酸十六醇聚乙二醇400双酯0.001   去离子水99.997   过硫酸钾0.001   N,N’-亚甲基双丙烯酰胺0.001
3   马来酸十八醇聚乙二醇600双酯1   去离子水98.1   过硫酸铵0.4   N,N’-亚甲基双丙烯酰胺0.5
4   马来酸十八醇聚乙二醇400双酯4   苯93.2   偶氮二异丁腈1.6   N,N’-亚甲基双丙烯酰胺1.2
5   马来酸二十二醇聚乙二醇1000双酯6   氯仿88.3   偶氮二异庚腈2.5   乙二醇双甲基丙烯酸酯3.2
6   马来酸十八醇聚乙二醇5000双酯8   氯仿+甲苯80.3   过氧化苯甲酰5.2   乙二醇双甲基丙烯酸酯6.5
7   马来酸二十六醇聚乙二醇10000双酯10   苯酚70   过氧化苯甲酰10   乙二醇双甲基丙烯酸酯10
实施例8:将0.6g马来酸十八醇聚乙二醇600双酯溶解于90g去无水乙醇中,在20℃的温度下高速搅拌,使该双亲性低聚物在去离子水中形成胶束。在氮气保护以及高速搅拌的条件下,向上述溶液中加入0.002g过硫酸钾(引发剂)以及0.002gN,N’-亚甲基双丙烯酰胺(交联剂),在40℃的温度下反应48h得腰部交联双亲性纳米胶束。
实施例9:将0.9g马来酸十八醇聚乙二醇600双酯溶解于110g去N,N二甲基甲酰胺中,在80℃的温度下高速搅拌,使该双亲性低聚物在去离子水中形成胶束。在氮气保护以及高速搅拌的条件下,向上述溶液中加入0.004g过硫酸钾(引发剂)以及0.003gN,N’-亚甲基双丙烯酰胺(交联剂),在100℃的温度下反应2h得腰部交联双亲性纳米胶束。

Claims (5)

1.一种腰部交联双亲性纳米胶束,其特征在于由一类分子链中间含有可聚合性双键且双键两端分别接有亲水和疏水链段的双亲性低聚物在交联剂的存在下经自由基引发溶液聚合而成,双亲性低聚物的分子结构式如下:
Figure FSB00000672119400011
所述的一种腰部交联双亲性纳米胶束的制备方法包括以下步骤:
1)将分子链中间含双键的双亲性低聚物溶解于溶剂中,20~80℃下搅拌使双亲性低聚物以胶束的形式分散在溶剂中,得双亲性低聚物的胶束溶液;
2)在氮气保护及搅拌的条件下,将交联剂、引发剂加入到双亲性低聚物的胶束溶液中,在40~100℃下反应2~48h后得腰部交联固定双亲性纳米胶束;
所述双亲性低聚物、交联剂、引发剂和溶剂各组分的比例按质量百分比为双亲性低聚物0.001%~10%,交联剂0.001%~10%,引发剂0.001%~10%,余量为溶剂;所述双亲性低聚物为马来酸长链脂肪醇聚乙二醇双酯,由马来酸与长链脂肪醇以及聚乙二醇经两步酯化反应而得,其分子结构式如下:
Figure FSB00000672119400012
其中n为聚乙二醇的聚合度,m为长链脂肪醇的链段长度,聚乙二醇的分子量为200~20000;脂肪醇的碳链长度为12~26个碳原子;
所述交联剂为带有两个双键的单体,选自亚甲基双丙烯酰胺、乙二醇双甲基丙烯酸酯或多缩乙二醇双丙烯酸酯。
2.一种腰部交联双亲性纳米胶束的制备方法,其特征在于包括以下步骤:
1)将分子链中间含双键的双亲性低聚物溶解于溶剂中,20~80℃下搅拌使双亲性低聚物以胶束的形式分散在溶剂中,得双亲性低聚物的胶束溶液;
2)在氮气保护及搅拌的条件下,将交联剂、引发剂加入到双亲性低聚物的胶束溶液中,在40~100℃下反应2~48h后得腰部交联固定双亲性纳米胶束;
所述双亲性低聚物、交联剂、引发剂和溶剂各组分的比例按质量百分比为双亲性低聚物0.001%~10%,交联剂0.001%~10%,引发剂0.001%~10%,余量为溶剂;
所述交联剂为带有两个双键的单体,选自亚甲基双丙烯酰胺、乙二醇双甲基丙烯酸酯或多缩乙二醇双丙烯酸酯。
3.如权利要求2所述的一种腰部交联双亲性纳米胶束的制备方法,其特征在于所述引发剂为偶氮类引发剂、有机过氧类引发剂、无机过氧类引发剂、氧化还原引发体系。
4.如权利要求2所述的一种腰部交联双亲性纳米胶束的制备方法,其特征在于所述引发剂选自偶氮二异丁腈、偶氮二异庚腈、过氧化苯甲酰、过硫酸钾、过硫酸铵、过硫酸钾-亚硫酸钠中的至少一种。
5.如权利要求2所述的一种腰部交联双亲性纳米胶束的制备方法,其特征在于所述溶剂为水、有机溶剂或混合溶剂,所述混合溶剂为水、水的盐溶液、苯、甲苯、二甲苯、苯酚、乙醇、氯仿、N,N二甲基甲酰胺中的至少一种。
CN2009101126928A 2009-10-22 2009-10-22 一种腰部交联双亲性纳米胶束及其制备方法 Expired - Fee Related CN101698692B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009101126928A CN101698692B (zh) 2009-10-22 2009-10-22 一种腰部交联双亲性纳米胶束及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009101126928A CN101698692B (zh) 2009-10-22 2009-10-22 一种腰部交联双亲性纳米胶束及其制备方法

Publications (2)

Publication Number Publication Date
CN101698692A CN101698692A (zh) 2010-04-28
CN101698692B true CN101698692B (zh) 2012-04-25

Family

ID=42147156

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101126928A Expired - Fee Related CN101698692B (zh) 2009-10-22 2009-10-22 一种腰部交联双亲性纳米胶束及其制备方法

Country Status (1)

Country Link
CN (1) CN101698692B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102603995B (zh) * 2012-02-24 2014-10-22 厦门大学 一种多孔微凝胶及其制备方法
CN102717064B (zh) * 2012-07-06 2014-04-09 厦门大学 以两亲性高聚物为稳定剂的超支化纳米银及其制备方法
CN102731773A (zh) * 2012-07-06 2012-10-17 厦门大学 一种三嵌段可交联非离子型表面活性剂及其制备方法
CN107603241B (zh) * 2017-09-25 2019-09-13 中原工学院 一种梭形纳米胶束的制备方法
CN109233702B (zh) * 2018-09-19 2020-09-29 点铂医疗科技(常州)有限公司 一种双亲改性丙烯酸酯共聚物粘接剂及其制备方法

Also Published As

Publication number Publication date
CN101698692A (zh) 2010-04-28

Similar Documents

Publication Publication Date Title
Chan et al. Acid-labile core cross-linked micelles for pH-triggered release of antitumor drugs
Nicolas et al. Synthesis of poly (alkyl cyanoacrylate)‐based colloidal nanomedicines
Seo et al. Polymeric nanoparticles via noncovalent cross-linking of linear chains
Chen et al. Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions
Bag et al. Styrene‐Maleimide/Maleic Anhydride Alternating Copolymers: Recent Advances and Future Perspectives
Li et al. 21-Arm star polymers with different cationic groups based on cyclodextrin core for DNA delivery
CN101698692B (zh) 一种腰部交联双亲性纳米胶束及其制备方法
Tang et al. Amphiphilic Block Copolymers Bearing Ortho Ester Side‐Chains: pH‐Dependent Hydrolysis and Self‐Assembly in Water
Huang et al. Charge-reversible and pH-responsive biodegradable micelles and vesicles from linear-dendritic supramolecular amphiphiles for anticancer drug delivery
Zhang et al. Hollow spheres from shell cross-linked, noncovalently connected micelles of carboxyl-terminated polybutadiene and poly (vinyl alcohol) in water
Qiu et al. Synthesis and solution self-assembly of poly (1, 3-dioxolane)
Chen et al. Synthesis and properties of star-comb polymers and their doxorubicin conjugates
Luo et al. Novel thermo‐responsive self‐assembly micelles from a double brush‐shaped PNIPAM‐g‐(PA‐b‐PEG‐b‐PA)‐g‐PNIPAM block copolymer with PNIPAM polymers as side chains
US20180325820A1 (en) Biocompatible water-soluble polymers including sulfoxide functionality
Bi et al. Well‐defined thermoresponsive dendritic polyamide/poly (N‐vinylcaprolactam) block copolymers
AU2015288923A1 (en) Particles containing branched polymers
Yan et al. Multifunctional nanoparticles self-assembled from polyethylenimine-based graft polymers as efficient anticancer drug delivery
Li et al. pH responsive micelles based on copolymers mPEG-PCL-PDEA: The relationship between composition and properties
Smyth et al. pH-Responsive benzaldehyde-functionalized PEG-based polymeric nanoparticles for drug delivery: Effect of preparation method on morphology, dye encapsulation and attachment
Han et al. Mechanochemical drug conjugation via ph-responsive imine linkage for polyether prodrug micelles
Liang et al. Fabrication of unimolecular micelle-based nanomedicines from hyperbranched polymers containing both terminal and internal reactive groups
Gao et al. Resorcinarene-centered amphiphilic star-block copolymers: Synthesis, micellization and controlled drug release
CN102746474B (zh) 一种温度和pH敏感性的壳交联聚合物胶束的制备方法
Yi et al. Synthesis and self-assembly of the pH-responsive anionic copolymers for enhanced doxorubicin-loading capacity
Zhang et al. Y-shaped copolymers of poly (ethylene glycol)-poly (ε-caprolactone) with ketal bond as the branchpoint for drug delivery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120425

Termination date: 20151022

EXPY Termination of patent right or utility model