CN101698116B - Method for preparing biodegradable magnesium or magnesium alloy and tricalcium phosphate composite material - Google Patents

Method for preparing biodegradable magnesium or magnesium alloy and tricalcium phosphate composite material Download PDF

Info

Publication number
CN101698116B
CN101698116B CN 200910191305 CN200910191305A CN101698116B CN 101698116 B CN101698116 B CN 101698116B CN 200910191305 CN200910191305 CN 200910191305 CN 200910191305 A CN200910191305 A CN 200910191305A CN 101698116 B CN101698116 B CN 101698116B
Authority
CN
China
Prior art keywords
tricalcium phosphate
magnesium
base substrate
magnesium alloy
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 200910191305
Other languages
Chinese (zh)
Other versions
CN101698116A (en
Inventor
吴泽宏
王勇
周红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN 200910191305 priority Critical patent/CN101698116B/en
Publication of CN101698116A publication Critical patent/CN101698116A/en
Application granted granted Critical
Publication of CN101698116B publication Critical patent/CN101698116B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

The invention discloses a method for preparing a biodegradable magnesium or magnesium alloy and tricalcium phosphate composite material, which comprises the following steps: (1) preparing a porous tricalcium phosphate blank, which is to prepare a porous tricalcium phosphate blank by using an organic foam impregnation method; and (2) permeating magnesium or a magnesium alloy, which is to permeate magnesium or a magnesium alloy into the porous tricalcium phosphate blank by using a fusant permeation method to preparing the magnesium or magnesium alloy and tricalcium phosphate composite material. The method has the advantages that: the prepared composite material has high degree of communication as well as well-guaranteed osteoinductive performance and biodegradability and can be used as material for hard tissue replacement and bone repair, completely degrade after being transplanted into a body for a certain time period and induce the formation of new bones; the production process is simple and does not need special equipment and production cost is low; and the method is suitable to prepare biodegradable composite materials with different properties.

Description

The preparation method of biodegradable magnesium or magnesium alloy and tricalcium phosphate composite material
Technical field
The present invention relates to biodegradable composite manufacture method, be specifically related to the preparation method of biodegradable magnesium or magnesium alloy and tricalcium phosphate composite material.
Background technology
Magnesium is one of macroelement of needed by human, and everyone the daily requirement amount of being grown up surpasses 350mg; It participates in a series of metabolic processes in the body, comprises the formation of osteocyte, the healing of accelerated bone damage, etc.Make hard tissue implanting material with magnesium or magnesium alloy, can not consider its trace metal ion to the toxicity of cell, and the elastic modelling quantity lower (about 45GPa) that closes of magnesium or magnesium; Therefore, utilize magnesium or magnesium to run jointly to send out the problems such as stress shielding that the inert metal material implants such as rustless steel that metal implant material can solve present wide clinical application, titanium alloy, cochrome exist, harmful element stripping.In addition, magnesium or magnesium close has the advantages that to corrode degraded in physiological environment, behind implant into body, be degraded and absorbed along with the self-healing of human body or discharge, take out thereby need not to carry out second operation, for degradable metallic hard tissue substitute material has been showed a tempting prospect.Yet, studies show that at present the corrosion in human body environment (the about 7.4-7.6 of pH, high chlorine) of available magnesium alloy is too fast, produce easily excessive hydrogen and high pH value in the part, thereby affect biocompatibility and the mechanical property of material.This shows that the degradation speed of control magnesium alloy is the primary goal of improving Properties of Magnesium Alloy, its method mainly contains alloying, Composite and surface modification.
Tricalcium phosphate (TCP) composition is similar to osseous tissue, has good biocompatibility, easily biodegradation absorbs, has osteoinductive and have no side effect, and is regarded as good bone alternate material.Experiment and clinical practice also show in numerous animal bodies: this material non-toxic, and without local irritation, unlikely haemolysis or blood coagulation, not mutagenesis or canceration.But its fatigue strength is low, and fragility is large, and anti-folding and shock resistance far can not satisfy the requirement of high load capacity artificial bone.
To have the magnesium of good biocompatibility or magnesium alloy and tricalcium phosphate and be prepared into composite, can utilize the advantage of the two, and satisfy bone and induce requirement with controllable biodegradable.At present, the someone adopts mixing, compacting, the sintering technology of prior powder metallurgy to prepare magnesium/tricalcium phosphate, magnesium/hydroxylapatite biology degrading composite (Chinese patent, publication number CN101524558A, CN101524559A, CN101347639A).But, the prior powder metallurgy method of employing, when sintering, severe oxidation occurs in pulverous raw material easily, thereby affects the performance of its performance.
Summary of the invention
The preparation method that the purpose of this invention is to provide a kind of biodegradable magnesium or magnesium alloy and tricalcium phosphate composite material, the method can avoid raw material that the highly oxidized phenomenon occurs when sintering easily, can more effectively guarantee the biocompatibility of tricalcium phosphate, bring into play the osteoinductive of tricalcium phosphate better, and simple process is easily gone, and production cost is lower.
The preparation method of biodegradable magnesium of the present invention or magnesium alloy and tricalcium phosphate composite material, its step is as follows:
(1) preparation porous tricalcium phosphate base substrate: adopt the standby porous tricalcium phosphate base substrate of foam impregnation legal system;
A, pretreatment polyurethane sponge first with the polyurethane sponge excision forming, are soaked in it percentage by weight again and are in 30%~40% the NaOH solution, at 60 ℃ of lower 2~4h that soak, then, clean with clear water, dry for subsequent use;
B, preparation polyvinyl alcohol (PVA) solution, with polyvinyl alcohol and deionized water in mass ratio 1: 10 ratio add in the dissolution kettle, warming while stirring to 95 ℃, and be incubated to PVA and be dissolved in fully in the deionized water, obtaining concentration is the PVA solution of 0.1g/ml;
C, preparation tricalcium phosphate slurry are that the PVA solution of 0.1g/ml mixes in ceramic pot with tricalcium phosphate powder and concentration, and both ratios are to add 50~70g tricalcium phosphate powder in the PVA solution of every 100ml; Press again 1/5th of PVA liquor capacity and add dehydrated alcohol in ceramic pot, to eliminate foam; Then, add Ceramic Balls and make abrasive body, by Ceramic Balls: the adding of 10: 1 ratio of the mass ratio of tricalcium phosphate powder ball milling 3-8 hour, makes the tricalcium phosphate slurry of mix homogeneously;
D, soaking paste calcining are immersed pretreated polyurethane sponge in the tricalcium phosphate slurry, soak after 24 hours, taking-up also squeezes out unnecessary slurry, carries out dried, then again, be placed in the tube furnace, 1150 ℃ of calcinings 4~6 hours, make the porous tricalcium phosphate base substrate;
E, measure porosity, measure first the size of porous tricalcium phosphate base substrate with micrometer, and calculate its volume V with this, claim its weight M at balance again 1, be calculated as follows out porosity θ at last:
θ = ( 1 - M 1 V × ρ 1 ) × 100 % - - - ( 1 )
In the formula, V is the porous tricalcium phosphate volume, ρ 1Solid density 3.18g/cm for tricalcium phosphate 3
(2) infiltrate magnesium or magnesium alloy: adopt the melt infiltration method that magnesium or magnesium alloy are penetrated in the porous tricalcium phosphate base substrate, its method is:
A, according to the porosity of porous tricalcium phosphate base substrate with intend the magnesium of infiltration or the densimeter of magnesium alloy is calculated the weight of required magnesium or magnesium alloy, in order to make the composite of high compaction, actual magnesium or the magnesium alloy that should get excessive 10~20% bulk, therefore, infiltration is with magnesium or magnesium alloy weight M 2Computing formula is:
M 2=V×θ×ρ 2×(1.1~1.2) (2)
In the formula, V is the porous tricalcium phosphate volume; θ is porosity; ρ 2The density under infiltrating temperature for magnesium or magnesium alloy during Practical Calculation, can directly be got the density 1.74g/cm of pure magnesium under the room temperature 3
B, the porous tricalcium phosphate base substrate is placed corundum crucible, and magnesium or magnesium alloy piece are placed on the top of porous tricalcium phosphate base substrate, cover with coverture (composition sees Table 1);
Table 1 test coverture composition (% by weight)
Figure G2009101913054D00041
C, the corundum crucible that will fill porous tricalcium phosphate base substrate and magnesium or magnesium alloy briquet place tube-type atmosphere furnace; pass into high-purity argon gas (purity 99.999%) protection; be heated to 700~800 ℃; insulation infiltration 1-8 hour fully penetrates in the hole of porous tricalcium phosphate base substrate, then magnesium metal or magnesium alloy; cut off the electricity supply but keep the ventilation; cool to the furnace below 100 ℃, close argon and come out of the stove, namely make magnesium or magnesium alloy and tricalcium phosphate composite material.
The present invention adopts the melt infiltration method to realize the compound of pure magnesium or magnesium alloy and tricalcium phosphate, namely by in the interconnected pore of porous tricalcium phosphate, infiltrating magnesium or magnesium alloy, guaranteed magnesium and tricalcium phosphate interconnection separately, biological degradability and the osteoinductive of material are coordinated better, so the composite prepared of this law more is conducive to the replacement of osseous tissue.The present invention is by the percentage composition of magnesium or magnesium alloy and tricalcium phosphate in the porosity control composite of adjusting porous tricalcium phosphate, the purpose that reaches control material degradation speed and obtain suitable mechanical property.Harmful interfacial reaction does not occur with tricalcium phosphate in the composite that adopts technique of the present invention to prepare, magnesium metal or magnesium alloy, and the interface bond strength between magnesium or magnesium alloy and the tricalcium phosphate is higher.The tricalcium phosphate of the present invention's preparation strengthens magnesium base composite material can satisfy the medical application fields such as bone tissue engineering scaffold, the interior fixation fastener of bone better to the requirement of material comprehensive mechanical property and biology performance, is particularly suitable for replacement and the reparation of osseous tissue.
Beneficial effect of the present invention: tricalcium phosphate and magnesium (magnesium alloy) all have good degree of communication in the composite that makes, osteoinductive energy and degradation property have good assurance, can be used as the material that sclerous tissues replaces or bone is repaired, implant behind the rear certain hour, can be degradable, and induce the formation of new bone; Production technology is fairly simple, does not need special installation, has the low advantage of production cost; Be applicable to magnesium and multiple magnesium alloy in the porous tricalcium phosphate sintered body infiltration with the biological degradable composite material of preparation different performance.
The specific embodiment
Embodiment one: prepare biodegradable magnesium and tricalcium phosphate composite material, its step is as follows:
(1) preparation porous tricalcium phosphate base substrate: adopt the standby porous tricalcium phosphate base substrate of foam impregnation legal system;
A, pretreatment polyurethane sponge cut into polyurethane sponge first the type body of 2cm * 2cm * 1cm, it are soaked in percentage by weight again and are in 35% the NaOH solution, at 60 ℃ of lower 2h that soak, then, clean with clear water, dry for subsequent use;
B, preparation polyvinyl alcohol (PVA) solution, first with polyvinyl alcohol: deionized water adds in the dissolution kettle in 1: 10 ratio of quality, warming while stirring to 95 ℃, and be incubated to polyvinyl alcohol and be dissolved in fully in the deionized water, obtaining concentration is the PVA solution of 0.1g/ml;
C, preparation tricalcium phosphate slurry are that the PVA solution of 0.1g/ml mixes in ceramic pot with tricalcium phosphate powder and concentration, and both ratios are adding 50g tricalcium phosphate powder in the poly-vinyl alcohol solution of 100ml; / 5th (20ml) that press again the poly-vinyl alcohol solution volume add dehydrated alcohol in ceramic pot, to eliminate foam; Then, add Ceramic Balls and make abrasive body, by Ceramic Balls: the adding of 10: 1 ratio of the mass ratio of tricalcium phosphate powder, ball milling 3 hours makes the tricalcium phosphate slurry;
D, soaking paste calcining, pretreated polyurethane sponge is immersed in the tricalcium phosphate slurry, soak after 24 hours, take out and squeeze out unnecessary slurry, carry out again dried, then, be placed in the tube furnace, 1150 ℃ of calcinings 4 hours, make the porous tricalcium phosphate base substrate with the three-dimensional pore space structure of connection;
E, measure porosity, measure first the size (2cm * 2cm * 1cm), and take this volume V that calculates sample as 4cm of porous body with micrometer 3, claim to such an extent that the mass M of porous tricalcium phosphate base substrate is 1.78g at balance again, as follows
θ = ( 1 - M 1 V × ρ 1 ) × 100 %
Calculate porosity θ=86%.
(2) infiltrate magnesium: adopt the melt infiltration method that pure magnesium (purity 〉=99.95%) is penetrated in the porous tricalcium phosphate base substrate, its method is:
A, calculate the quality of required magnesium according to the porosity of porous tricalcium phosphate base substrate and the densimeter of intending the magnesium of infiltration, and in order to make the composite of high compaction, take by weighing excessive 20% block pure magnesium, therefore, the weight M of required pure magnesium is calculated as follows by formula (2):
M=4cm 3×86%×1.74g/cm 3×1.2≈7.2g
B; the porous tricalcium phosphate base substrate is placed corundum crucible; and the pure MAG block of 7.2g is placed the top of porous tricalcium phosphate base substrate; cover with coverture (composition sees Table 1); place tube-type atmosphere furnace; pass into high-purity argon gas (purity 99.999%) protection; be heated to 700 ℃; insulation infiltration 1 hour; magnesium metal is fully penetrated in the hole of porous tricalcium phosphate base substrate; then, cut off the electricity supply but keep the ventilation, cool to the furnace below 100 ℃; close argon and come out of the stove, obtain relative density (real density/solid density) and be magnesium/tricalcium phosphate composite material of 98.4%.
Place chemical composition and the essentially identical simulated body fluid of human body fluid (composition sees Table 2) immersion after 30 days this magnesium/tricalcium phosphate composite material, detect and find that material surface has the deposition of hydroxyapatite.
Table 2 experiment simulated body fluid proportioning (g/L)
Figure G2009101913054D00062
Embodiment two: prepare biodegradable magnesium calcium alloy and tricalcium phosphate composite material, its step is as follows:
(1) preparing porosity by embodiment one same procedure is 86% porous tricalcium phosphate base substrate;
(2) infiltrate the Mg-1.0Ca alloy: adopt the melt infiltration method that Mg-1.0Ca alloy (be that the Ca percentage by weight is about 1.0%, all the other are the alloy of Mg) is penetrated in the porous tricalcium phosphate base substrate, its method is:
A, calculate the quality of required alloy according to the porosity of porous tricalcium phosphate base substrate and the densimeter of intending the Mg-1.0Ca alloy of infiltration, and in order to make the composite of high compaction, should take by weighing excessive 10% Mg-1.0Ca alloy, therefore, the weight M of required Mg-1.0Ca alloy is calculated as follows by formula (2):
M=4cm 3×86%×1.74g/cm 3×1.1≈6.6g
B; the porous tricalcium phosphate base substrate is placed corundum crucible; and the Mg-1.0Ca alloy 6.6g that weighs up is placed the top of porous tricalcium phosphate base substrate; cover with coverture (composition sees Table 1); place tube-type atmosphere furnace; pass into high-purity argon gas (purity 99.999%) protection; be heated to 730 ℃; insulation infiltration 2 hours; the Mg-1.0Ca alloy is fully penetrated in the hole of porous tricalcium phosphate base substrate; then, cut off the electricity supply but keep the ventilation, cool to the furnace below 100 ℃; close argon and come out of the stove, obtain relative density (real density/solid density) and be Mg-1.0Ca alloy/tricalcium phosphate composite material of 98.5%.
Place chemical composition and the essentially identical simulated body fluid of human body fluid (composition sees Table 2) immersion after 30 days this Mg-1.0Ca alloy/tricalcium phosphate composite material, detect and find that material surface has the deposition of hydroxyapatite.
Embodiment three: prepare biodegradable Mg-Zn-Mn alloy and tricalcium phosphate composite material, its step is as follows:
(1) preparation porous tricalcium phosphate base substrate: adopt the standby porous tricalcium phosphate base substrate of foam impregnation legal system;
A, pretreatment polyurethane sponge, different from embodiment one is: polyurethane sponge is Φ 50 * 20mm 3The type body, in percentage by weight is 35% NaOH solution, be 3h 60 ℃ of lower soak times;
B, press embodiment one same procedure preparation polyvinyl alcohol (PVA) solution;
C, preparation tricalcium phosphate slurry, different from embodiment one is: the mixed proportion of tricalcium phosphate powder and PVA solution is for adding the 70g tricalcium phosphate powder in the PVA of 100ml solution, add again the 20ml dehydrated alcohol, mix through ball milling, make the tricalcium phosphate slurry with better flowability;
D, preparation porous tricalcium phosphate base substrate, different from embodiment one is: the porous body sintering schedule is 1150 ℃ of calcinings 5 hours, makes to have the porous tricalcium phosphate base substrate that is communicated with three-dimensional pore space structure;
The porosity of e, mensuration porous tricalcium phosphate base substrate is measured porous body size (Φ 50 * 20mm with micrometer first 3), and be about 40cm with this volume V that calculates sample 3, claim to such an extent that the mass M of sample is 33g at balance again, calculate porosity θ=74% by formula (1).
(2) infiltrate the Mg-6.0Zn-1.0Mn alloy: adopt the melt infiltration method that Mg-6.0Zn-1.0Mn alloy (be that the Zn percentage by weight is about 6.0%, Mn and is about 1.0%, all the other are the alloy of Mg) is penetrated in the porous tricalcium phosphate base substrate, its method is:
A, in order to make the composite of high compaction, should take by weighing excessive 10% Mg-6.0Zn-1.0Mn alloy, therefore, required alloy mass M is calculated as follows by formula (2):
M=40cm 3×74%×1.74g/cm 3×1.1≈57g
B; the porous tricalcium phosphate base substrate is placed corundum crucible; the Mg-6.0Zn-1.0Mn alloy 57g that weighs up is placed the top of porous tricalcium phosphate base substrate; cover with coverture (composition sees Table 1); place tube-type atmosphere furnace; pass into high-purity argon gas (purity 99.999%) protection; be heated to 730 ℃; insulation infiltration 6 hours; the Mg-6.0Zn-1.0Mn alloy is fully penetrated in the hole of porous tricalcium phosphate base substrate; then cut off the electricity supply but keep the ventilation; cool to the furnace below 100 ℃, close argon and come out of the stove, obtain relative density (real density/solid density) and be Mg-6.0Zn-1.0Mn alloy/tricalcium phosphate composite material of 98.5%.
Place chemical composition and the essentially identical simulated body fluid of human body fluid (composition sees Table 2) immersion after 30 days this Mg-6.0Zn-1.0Mn alloy/tricalcium phosphate composite material, detect and find that material surface has the deposition of hydroxyapatite.
Embodiment four: prepare biodegradable magnesium calcium alloy and tricalcium phosphate composite material, its step is as follows:
(1) preparation porous tricalcium phosphate base substrate: adopt the standby porous tricalcium phosphate base substrate of foam impregnation legal system;
A, pretreatment polyurethane sponge, different from embodiment one is: polyurethane sponge is the type body of 5cm * 5cm * 2cm, in percentage by weight is 35% NaOH solution, is 4h 60 ℃ of lower soak times;
B, press embodiment one same procedure preparation polyvinyl alcohol (PVA) solution;
C, prepare the tricalcium phosphate slurry by embodiment one same procedure;
D, preparation porous tricalcium phosphate base substrate, different from embodiment one is: the porous body sintering schedule is 1150 ℃ of calcinings 6 hours, makes to have the porous tricalcium phosphate base substrate that is communicated with three-dimensional pore space structure;
E, measure the porosity of porous tricalcium phosphate base substrate, measure porous body size (5cm * 5cm * 2cm), and take this volume V that calculates sample as 50cm with micrometer first 3, claim to such an extent that the mass M of sample is 35g at balance again, calculate porosity θ=78% by formula (1).
(2) infiltrate the Mg-1.0Ca alloy: adopt the melt infiltration method that Mg-1.0Ca alloy (be that the Ca percentage by weight is about 1.0%, all the other are the alloy of Mg) is penetrated in the porous tricalcium phosphate base substrate, its method is:
A, calculate the quality of required alloy according to the porosity of porous tricalcium phosphate base substrate and the densimeter of intending the Mg-1.0Ca alloy of infiltration, and in order to make the composite of high compaction, should take by weighing excessive 15% Mg-1.0Ca alloy, therefore, required alloy mass M is calculated as follows by formula (2):
M=50cm 3×78%×1.74g/cm 3×1.15≈78g
B; the porous tricalcium phosphate base substrate is placed corundum crucible; the Mg-1.0Ca alloy 78g that weighs up is placed the top of porous tricalcium phosphate base substrate; cover with coverture (composition sees Table 1); place tube-type atmosphere furnace; pass into high-purity argon gas (purity 99.999%) protection; be heated to 730 ℃; insulation infiltration 4 hours; the Mg-1.0Ca alloy is fully penetrated in the hole of porous tricalcium phosphate base substrate; then, cut off the electricity supply but keep the ventilation, cool to the furnace below 100 ℃; close argon and come out of the stove, obtain relative density (real density/solid density) and be Mg-1.0Ca alloy/tricalcium phosphate composite material of 96.7%.
Place chemical composition and the essentially identical simulated body fluid of human body fluid (composition sees Table 2) immersion after 30 days this Mg-1.0Ca alloy/tricalcium phosphate composite material, detect and find that material surface has the deposition of hydroxyapatite.
Embodiment five: prepare biodegradable Mg-2.0Zn-1.0Ca alloy and tricalcium phosphate composite material, its step is as follows:
(1) prepares the porous tricalcium phosphate base substrate by embodiment four same procedure;
(2) infiltrate the Mg-2.0Zn-1.0Ca alloy: adopt the melt infiltration method that Mg-2.0Zn-1.0Ca alloy (be that the Zn percentage by weight is about 2.0%, Ca and is about 1.0%, all the other are the alloy of Mg) is penetrated in the porous tricalcium phosphate base substrate, its method is:
A, calculate the quality of required alloy according to the porosity of porous tricalcium phosphate base substrate and the densimeter of intending the Mg-2.0Zn-1.0Ca alloy of infiltration, and in order to make the composite of high compaction, take by weighing excessive 15% block Mg-2.0Zn-1.0Ca alloy, therefore, required alloy mass M is calculated as follows by formula (2):
M=50cm 3×78%×1.74g/cm 3×1.15≈78g
B; the porous tricalcium phosphate base substrate is placed corundum crucible; the Mg-2.0Zn-1.0Ca alloy 78g that weighs up is placed the top of porous tricalcium phosphate base substrate; cover with coverture (composition sees Table 1); place tube-type atmosphere furnace; pass into high-purity argon gas (purity 99.999%) protection; be heated to 760 ℃; insulation infiltration 8 hours; the Mg-2.0Zn-1.0Ca alloy is fully penetrated in the hole of porous tricalcium phosphate base substrate; then, cut off the electricity supply but keep the ventilation, cool to the furnace below 100 ℃; close argon and come out of the stove, obtain relative density (real density/solid density) and be Mg-2.0Zn-1.0Ca alloy/tricalcium phosphate composite material of 97.8%.
Place chemical composition and the essentially identical simulated body fluid of human body fluid (composition sees Table 2) immersion after 30 days this Mg-2.0Zn-1.0Ca alloy/tricalcium phosphate composite material, detect and find that material surface has the deposition of hydroxyapatite.
Conclusion: the magnesium/tricalcium phosphate composite material of infiltrating method preparation provided by the invention has the advantages such as technique is simple, material density is high, good biocompatibility, can induce the deposition of natural bone mineralogical composition hydroxyapatite in the simulation physiological environment.

Claims (3)

1. the preparation method of biodegradable magnesium or magnesium alloy and tricalcium phosphate composite material, its step is as follows:
(1) preparation porous tricalcium phosphate base substrate: adopt the standby porous tricalcium phosphate base substrate of foam impregnation legal system;
A, pretreatment polyurethane sponge first with the polyurethane sponge excision forming, are soaked in it percentage by weight again and are in 30%~40% the NaOH solution, at 60 ℃ of lower 2~4h that soak, then, clean with clear water, dry for subsequent use;
B, preparation poly-vinyl alcohol solution, with polyvinyl alcohol and deionized water in mass ratio the ratio of 1:10 add in the dissolution kettle, warming while stirring to 95 ℃, and be incubated to PVA and be dissolved in fully in the deionized water obtains the poly-vinyl alcohol solution that concentration is 0.1g/mL;
C, preparation tricalcium phosphate slurry are that the poly-vinyl alcohol solution of 0.1g/mL mixes in ceramic pot with tricalcium phosphate powder and concentration, and both ratios are to add 50~70g tricalcium phosphate powder in the poly-vinyl alcohol solution of per 100 mL; Press again 1/5th of poly-vinyl alcohol solution volume and add dehydrated alcohol in ceramic pot; Then, add Ceramic Balls and make abrasive body, ball milling 3-8 hour, make the tricalcium phosphate slurry of mix homogeneously;
D, soaking paste calcining are immersed pretreated polyurethane sponge in the tricalcium phosphate slurry, soak after 24 hours, taking-up also squeezes out unnecessary slurry, carries out dried, then again, be placed in the tube furnace, 1150 ℃ of calcinings 4~6 hours, make the porous tricalcium phosphate base substrate;
E, measure porosity, measure first the size of porous tricalcium phosphate base substrate with micrometer, and calculate its volume V with this, claim its weight M at balance again 1, be calculated as follows out porosity θ at last:
Figure 2009101913054100001DEST_PATH_IMAGE002
(1)
In the formula, V is the volume of porous tricalcium phosphate base substrate, ρ 1Solid density 3.18g/cm for tricalcium phosphate 3
(2) infiltrate magnesium or magnesium alloy: adopt the melt infiltration method that magnesium or magnesium alloy are penetrated in the porous tricalcium phosphate base substrate, its method is:
A, calculate the weight of required magnesium or magnesium alloy, infiltration is with magnesium or magnesium alloy weight M 2Computing formula is:
Figure DEST_PATH_IMAGE004
(2)
In the formula, V is the volume of porous tricalcium phosphate base substrate; θ is porosity; ρ 2Density 1.74g/cm for pure magnesium under the room temperature 3
B, the porous tricalcium phosphate base substrate is placed corundum crucible, and with the top that magnesium or the magnesium alloy piece of above-mentioned weight is placed on the porous tricalcium phosphate base substrate, cover with coverture;
C, the corundum crucible that will fill porous tricalcium phosphate base substrate and magnesium or magnesium alloy briquet place tube-type atmosphere furnace; pass into the high-purity argon gas protection; be heated to 700~800 ℃; insulation infiltration 1-8 hour fully penetrates in the hole of porous tricalcium phosphate base substrate, then magnesium metal or magnesium alloy; cut off the electricity supply but keep the ventilation; cool to the furnace below 100 ℃, close argon and come out of the stove, namely make biodegradable magnesium or magnesium alloy and tricalcium phosphate composite material.
2. the preparation method of biodegradable magnesium according to claim 1 or magnesium alloy and tricalcium phosphate composite material is characterized in that the Ceramic Balls of adding: the mass ratio of tricalcium phosphate powder is 10:1 in the step of preparation tricalcium phosphate slurry.
3. the preparation method of biodegradable magnesium according to claim 1 or magnesium alloy and tricalcium phosphate composite material is characterized in that the coverture model of using is RJ-2 in the step of infiltrating magnesium or magnesium alloy, and the percentage by weight of composition is: 45% MgCl 2, 37% KCl, 8% NaCl, 4% CaF 2, 6% BaCl 2
CN 200910191305 2009-10-30 2009-10-30 Method for preparing biodegradable magnesium or magnesium alloy and tricalcium phosphate composite material Expired - Fee Related CN101698116B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910191305 CN101698116B (en) 2009-10-30 2009-10-30 Method for preparing biodegradable magnesium or magnesium alloy and tricalcium phosphate composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910191305 CN101698116B (en) 2009-10-30 2009-10-30 Method for preparing biodegradable magnesium or magnesium alloy and tricalcium phosphate composite material

Publications (2)

Publication Number Publication Date
CN101698116A CN101698116A (en) 2010-04-28
CN101698116B true CN101698116B (en) 2013-04-17

Family

ID=42146582

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910191305 Expired - Fee Related CN101698116B (en) 2009-10-30 2009-10-30 Method for preparing biodegradable magnesium or magnesium alloy and tricalcium phosphate composite material

Country Status (1)

Country Link
CN (1) CN101698116B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560310B (en) * 2012-02-16 2013-12-18 常州大学 Hot dip plating Zn-Al-Si-Mg alloy plating and hot dip plating method thereof
CN102634716B (en) * 2012-04-28 2013-08-07 中南大学 Preparation method of magnesium-zinc-tricalcium phosphate composite material by powder hot pressed sintering
CN103170011B (en) * 2013-04-10 2014-06-18 浙江大学 In situ-coated biological ceramic artificial magnesium bone and preparation method thereof
CN104147638B (en) * 2014-07-18 2016-05-04 中国科学院金属研究所 A kind of three-dimensional connected porous artificial bone scaffold and its preparation method and application
CN108057133A (en) * 2018-01-24 2018-05-22 山东建筑大学 A kind of preparation method of the compound bone material of renewable magnesium-based
CN109020701A (en) * 2018-09-11 2018-12-18 浙江世佳科技有限公司 A kind of high-performance bio bacterial manure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101524558A (en) * 2009-03-11 2009-09-09 重庆大学 Biodegradable hydroxylapatite-magnesium and calcium metallic matrix composite

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101524558A (en) * 2009-03-11 2009-09-09 重庆大学 Biodegradable hydroxylapatite-magnesium and calcium metallic matrix composite

Also Published As

Publication number Publication date
CN101698116A (en) 2010-04-28

Similar Documents

Publication Publication Date Title
Razavi et al. Bio-corrosion behavior of magnesium-fluorapatite nanocomposite for biomedical applications
CN101698116B (en) Method for preparing biodegradable magnesium or magnesium alloy and tricalcium phosphate composite material
Zhao et al. Mechanical properties and in vitro biodegradation of newly developed porous Zn scaffolds for biomedical applications
Li et al. Corrosion and biocompatibility improvement of magnesium-based alloys as bone implant materials: a review
CN106310381B (en) A kind of calcium sulfate porous compound bio bracket of the degradable calcium phosphate-containing magnesium
Parai et al. Engineered bio-nanocomposite magnesium scaffold for bone tissue regeneration
Aghion et al. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology
Pan et al. Preparation and bioactivity of micro-arc oxidized calcium phosphate coatings
Pan et al. Microstructure and biological properties of micro‐arc oxidation coatings on ZK60 magnesium alloy
CN103599561B (en) A kind of preparation method of magnesium alloy/hydroxyapatite composite
CN102727937B (en) Biodegradable zinc (or zinc alloy) and porous biphase calcium phosphate composite material and preparation method thereof
Seyedraoufi et al. Effects of pulse electrodeposition parameters and alkali treatment on the properties of nano hydroxyapatite coating on porous Mg–Zn scaffold for bone tissue engineering application
Yazici et al. Biodegradability and antibacterial properties of MAO coatings formed on Mg-Sr-Ca alloys in an electrolyte containing Ag doped hydroxyapatite
CN102580143A (en) Medical degradable and absorbable Mg-Sr system magnesium alloy implant and preparation method thereof
CN102552973A (en) Medical degradable and absorbable Mg-Sr-Ca series magnesium alloy implant and preparation method thereof
CN102978495A (en) Mg-Sr-Zn alloy and preparation method thereof
CN104818414A (en) Metal bone graft material with porous structure, and preparation and application thereof
Li et al. Preparing Ca-P coating on biodegradable magnesium alloy by hydrothermal method: In vitro degradation behavior
Pan et al. Improvement of corrosion and biological properties of microarc oxidized coatings on Mg–Zn–Zr alloy by optimizing negative power density parameters
Singh et al. Synthesis and characterization of a novel open cellular Mg-based scaffold for tissue engineering application
CN102978494B (en) Mg-Ge magnesium alloy and preparation method thereof
Mutlu Production and fluoride treatment of Mg-Ca-Zn-Co alloy foam for tissue engineering applications
Zheng et al. Research activities of biomedical magnesium alloys in China
CN101156960B (en) Degradable stephanoporate magnesium basis complex tissue project bracket stuff within biosome
CN104532058A (en) Medical implanted porous cobalt-titanium alloy material and preparation method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130417

Termination date: 20141030

EXPY Termination of patent right or utility model