CN101686215B - 一种信号编码调制方法及装置 - Google Patents

一种信号编码调制方法及装置 Download PDF

Info

Publication number
CN101686215B
CN101686215B CN200810166915A CN200810166915A CN101686215B CN 101686215 B CN101686215 B CN 101686215B CN 200810166915 A CN200810166915 A CN 200810166915A CN 200810166915 A CN200810166915 A CN 200810166915A CN 101686215 B CN101686215 B CN 101686215B
Authority
CN
China
Prior art keywords
signal
modulation
scm
digital signal
bit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200810166915A
Other languages
English (en)
Other versions
CN101686215A (zh
Inventor
王兴林
樊绍群
薛义生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Ltd China
Siemens AG
Original Assignee
Siemens Ltd China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Ltd China filed Critical Siemens Ltd China
Priority to CN200810166915A priority Critical patent/CN101686215B/zh
Publication of CN101686215A publication Critical patent/CN101686215A/zh
Application granted granted Critical
Publication of CN101686215B publication Critical patent/CN101686215B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明提供了一种信号编码调制SCM方法,其中包括:对SCM源端信号进行信号变换,得到数字信号和模拟信号;其中,所述数字信号携带的比特用于指示所述SCM源端信号所在的映射区域,所述模拟信号携带的比特用于指示所述SCM源端信号在所述映射区域内的位置;在对所述SCM源端信号进行信号变换时,在所述数字信号携带的比特所指示的各个映射区域内,所述模拟信号携带的比特所采用的映射顺序一致。此外,本发明还提供了一种信号编码调制SCM装置。本发明的技术方案可以使所述数字信号的检测结果对BER性能的影响与所述模拟信号的检测结果对BER性能的影响相互无关,进而降低应用SCM调制方案时的误比特率。

Description

一种信号编码调制方法及装置
技术领域
本发明涉及通信技术,特别涉及一种信号编码调制(SCM,Signal Code Modulation)方法和装置。
背景技术
在数字通信系统中,为了提高信道的利用率,通常对信号进行多进制数字调制。例如,在M进制数字调制中,每个符号间隔内,可能发送的符号有M种:s1(t),s2(t),...,sM(t)。在实际应用中,通常取M=2n,n为正整数,则每个符号可以携带log2 M比特信息。当携带信息的参数分别为载波的幅度、频率或相位时,可以有M进制幅度键控(MASK)、M进制频移键控(MFSK)或M进制相移键控(MPSK)之分;也可以把其中的两个参数组合起来使用,例如,把幅度和相位组合起来得到M进制幅相键控(MAPK)或它的特殊形式M进制正交幅度调制(MQAM)等。若将一种调制方案中的各符号用矢量图来描述,则得到该调制方案的调制星座图。在M进制数字调制中,M种符号中的每个符号分别对应星座图中的一个点,如图1所示,图1为现有技术中采用格雷(Gray)映射时的16QAM星座图。在M进制数字调制中,M的选择与通信链路的信噪比相关。对于具有多个网络节点的多跳(Multihop)系统来说,由于各通信链路的信噪比通常不同,因此在各通信链路中使用的调制阶数可能不同。在两条具有不同调制阶数的通信链路上,通常需要对第一条链路的调制信号进行解调/重调制处理后,再在第二条链路上传输。但解调/重调制过程较复杂,例如,为了进行解调还需进行信道估计及载波同步等处理,因此现有技术中提出了一种SCM调制方案。
SCM是一种模拟-数字混合调制方案,通常应用于具有不同SNR的通信链路中。图2为现有技术中一种应用SCM调制方案的信号传输流程示意图。图2中,第一条链路具有高SNR,第二条链路具有低SNR,源节点对信号进行调制后,通过第一条链路向SCM发送节点发送,此处假设源节点采用图1所示的16QAM调制方案对信号进行调制。SCM发送节点接收到来自第一条链路的16QAM信号x(t)后,对所述16QAM信号x(t)进行SCM调制,具体SCM调制过程包括:对该16QAM信号x(t)按照采样定律进行采样,得到x(n);假设SCM调制中需得到4QAM的数字调制信号,则每个x(n)被表示成一个4QAM的数字符号和一个模拟信号,即x(n)=xa(n)+γqi(n),i=1,…,4;其中,γqi(n)为x(n)经量化后得到的4QAM数字符号,xa(n)为对x(n)进行量化后的量化误差。图3为SCM调制中基于图1所示星座图的16QAM信号被量化为4QAM数字符号的示意图,在图3中,标记为“★”的点为4QAM星座点,标记为“●”的点为16QAM星座点。从图3中可见,每个“★”周围的4个“●”对应的16QAM信号x(n)被量化后均得到该“★”对应的4QAM符号,假设x(n)对应16QAM星座图中的a点,则qi(n)对应4QAM星座图中的A点。之后,数字符号γqi(n)将使用数字传输技术在第二条链路的信道2中传输,量化误差xa(n)被作为模拟信号在第二条链路的信道1中传输,为了使该模拟信号和信号x(n)有相同的功率,可将xa(n)乘以增益ga后传输。SCM调制后的数字信号和模拟信号在两个信道上传输时,这两个信道可以是不同的时隙、频率或者空间等。SCM接收节点接收到第二条链路上的SCM调制信号后,对所接收的数字信号和模拟信号进行SCM解调,分别得到数字信号的检测值
Figure GSB00000740967400021
和模拟信号的检测值
Figure GSB00000740967400022
然后,将模拟信号的检测值和数字信号的检测值进行叠加,得到x(n)的检测值
Figure GSB00000740967400023
上述的SCM调制过程被称为SCM-AD,AD表示每个输入采样信号被分成一个模拟信号和一个数字信号。此外,还存在SCM的一个变种叫做SCM-ADk,即将量化后的数字信号进一步表示成k个低阶数字调制信号,比如,将一个16QAM信号表示成2个4QAM信号。另外还存在一个变种是SCM-AkD,即将量化后的k个低阶数字调制信号表示成一个高阶数字调制信号,比如将两个4QAM信号表示成一个16QAM信号。有关SCM调制的详细说明可参见论文“A transparent repeater for digital communication signals”,B.Friedlander,E.Pasternak,IEEE Trans.,vol.55,no.4,July 2006以及专利申请WO2001071965A1。
仍以图3中所示的16QAM星座点和4QAM星座点为例。图3中,在每个“★”的周围有4个“●”,其中各“●”对应的16QAM符号的前两个比特相同而后两个比特不同,前两个比特指示了每个“★”的位置,由每个“★”对应的4QAM符号携带,后两个比特进而指示了每个“★”周围的各个“●”的位置,由SCM调制后得到的模拟信号xa(n)携带。若将图3中以每个“★”为中心四个“●”所在的范围称为一个“映射区域”,如图3所示的灰色区域,则由图3可以看出,四个“映射区域”内用于指示各个“●”的位置的两个比特的映射顺序均不相同。若SCM发送节点接收的来自第一条链路的16QAM信号对应图3中的a点“0010”,则经过SCM调制后,将产生如图3中所示A点对应的4QAM数字信号γqi(n)和模拟符号xa(n),在SCM接收节点,如果数字信号γqi(n)被正确检测,则误比特率将主要由模拟信号xa(n)的检测结果决定,即最多只有a点的后两个比特被错误检测。但是如果数字符号γqi(n)未被正确检测,假设被误检成图4中的B点,则即使模拟符号xa(n)被正确检测,也无法正确得到图4所示a点的后两个比特“10”,此时将会得到图4中的b点“0111”,该b点与a点相比,有三个错误比特。可见,基于这种传统格雷映射的星座图进行SCM调制后产生的数字符号和模拟符号在BER上相互依赖,因而使得应用SCM调制方案时具有较大的误比特率。
发明内容
针对上述现有SCM调制方案中存在的问题,本发明的目的在于提供一种SCM调制方法和装置,以降低应用SCM调制方案时的误比特率。
本发明的上述目的通过以下的技术方案实现:一种信号编码调制SCM方法,该方法包括:对SCM源端信号进行信号变换,得到数字信号和模拟信号;其中,所述SCM源端信号通过对一个高阶数字调制信号进行采样获得,所述高阶数字调制信号的调制阶数大于所述数字信号的调制阶数;所述数字信号携带的比特用于指示所述SCM源端信号所在的映射区域,所述模拟信号携带的比特用于指示所述SCM源端信号在所述映射区域内的位置;在对所述SCM源端信号进行信号变换时,在所述数字信号携带的比特所指示的各个映射区域内,所述模拟信号携带的比特所采用的映射顺序一致。
根据本发明的方法,所述数字信号和所述模拟信号分别在一个链路上的两个信道中传送。
根据本发明的方法,所述数字信号携带的比特为所述高阶数字调制信号使用的调制星座图中的星座点在所述映射区域内所共有的比特。
根据本发明的方法,所述高阶数字调制信号为一个2K进制的调制信号,所述数字信号为一个2K1进制的调制信号;在所述数字信号携带的K1个比特所指示的各个映射区域内,所述模拟信号携带的K2个比特所采用的映射顺序一致,K2=K-K1。
根据本发明的方法,所述链路中设定使用2K2进制的数字调制;所述数字信号在被分割/合并为2K2进制的调制信号后才在所述链路中传送。
根据本发明的方法,所述SCM源端信号为x(n),所述数字信号为γqi(n),所述模拟信号为xa(n),x(n)=xa(n)+γqi(n);其中,γ是标量,γ的取值使得在所述SCM源端信号x(n)所在的映射区域中所述数字信号γqi(n)使用的调制星座图中的星座点位于所述映射区域的中心。
根据本发明的方法,所述数字信号和所述模拟信号在所述链路上的两个信道中传送时的功率相等。
根据本发明的方法,所述两个信道为两个相邻的时隙、两个相邻的频率和两个相邻的空间中的任一种。
根据本发明的方法,所述数字信号在所述链路上传送时存在纠错码保护。
一种信号编码调制SCM装置,该装置包括:一个输入单元,用于输入SCM源端信号;一个信号变换单元,用于对所述SCM源端信号进行信号变换,得到数字信号和模拟信号;其中,所述输入单元输入的SCM源端信号为一个高阶数字调制信号的采样信号,所述高阶数字调制信号的调制阶数大于所述数字信号的调制阶数;所述数字信号携带的比特用于指示所述SCM源端信号所在的映射区域,所述模拟信号携带的比特用于指示所述SCM源端信号在所述映射区域内的位置;一个输出单元,用于输出所述数字信号和所述模拟信号;其中,在所述信号变换单元对所述SCM源端信号进行信号变换时,在所述数字信号携带的比特所指示的各个映射区域内,所述模拟信号携带的比特所采用的映射顺序一致。
根据本发明的装置,所述输出单元将所述数字信号和所述模拟信号分别输出到一个链路上的两个信道中以进行传送。
根据本发明的装置,所述数字信号携带的比特为所述高阶数字调制信号使用的调制星座图中的星座点在所述映射区域内所共有的比特。
根据本发明的装置,所述高阶数字调制信号为一个2K进制的调制信号,所述数字信号为一个2K1进制的调制信号;在所述数字信号携带的K1个比特所指示的各个映射区域内,所述模拟信号携带的K2个比特所采用的映射顺序一致,K2=K-K1。
根据本发明的装置,所述链路中设定使用2K2进制的数字调制;所述信号变换单元进一步用于将所述数字信号分割/合并为2K2进制的调制信号;所述输出单元用于在所述数字信号被分割/合并为2K2进制的调制信号后才将其输出。
根据本发明的装置,所述SCM源端信号为x(n),所述数字信号为γqi(n),所述模拟信号为xa(n),x(n)=xa(n)+γqi(n);其中,γ是标量,γ的取值使得在所述SCM源端信号x(n)所在的映射区域中所述数字信号γqi(n)使用的调制星座图中的星座点位于所述映射区域的中心。
从上述方案可以看出,本发明在进行SCM调制时,在所述数字信号携带的比特所指示的各个映射区域内,所述模拟信号携带的比特所采用的映射顺序一致,因而可以使得在SCM调制信号的接收端,所述数字信号的检测结果对BER性能的影响与所述模拟信号的检测结果对BER性能的影响相互独立,进而降低应用SCM调制方案时的误比特率。
附图说明
下面将通过参照附图详细描述本发明的示例性实施例,使本领域的普通技术人员更清楚本发明的上述及其他特征和优点,附图中:
图1为现有技术中采用Gray映射时的16QAM星座图;
图2为现有技术中应用SCM调制方案的信号传输流程示意图;
图3为基于图1所示星座图上符号的SCM量化得到数字符号的示意图;
图4为基于图3所示星座图上符号的SCM检测出现误差时的示意图;
图5为本发明实施例中的16QAM信号变换示意图;
图6为本发明实施例中的64QAM信号变换示意图;
图7为本发明实施例中的另一种64QAM信号变换示意图;
图8为根据本发明的一种应用场景示意图;
图9为根据本发明的另一种应用场景示意图;
图10为根据本发明的再一种应用场景示意图。
具体实施方式
在本发明中,为了降低应用SCM调制方案时的误比特率,在进行SCM调制时,在所述数字信号携带的比特所指示的各个映射区域内,所述模拟信号携带的比特所采用的映射顺序一致,这样的话,就会使得在SCM调制信号的接收端,所述数字信号的检测结果对BER性能的影响与所述模拟信号的检测结果对BER性能的影响相互独立,进而降低应用SCM调制方案时的误比特率。
在本发明的上述技术构思下,本发明的SCM调制方法包括步骤如下:
对SCM源端信号进行信号变换,得到数字信号和模拟信号;其中,所述数字信号携带的比特用于指示所述SCM源端信号所在的映射区域,所述模拟信号携带的比特用于指示所述SCM源端信号在所述映射区域内的位置;并且,在对所述SCM源端信号进行信号变换时,在所述数字信号携带的比特所指示的各个映射区域内,所述模拟信号携带的比特所采用的映射顺序一致。
在应用本发明的方法时,所述SCM源端信号一般是一个高阶数字调制信号的采样信号,所述高阶数字调制信号相对于所述数字信号而言,即所述高阶数字调制信号的调制阶数大于所述数字信号的调制阶数。在对所述高阶数字调制信号的采样信号进行信号变换后,所述数字信号和所述模拟信号将分别在一个链路上的两个信道中传送,其中,这两个信道可以是不同的时隙、频率或者空间等。
在对所述高阶数字调制信号的采样信号进行信号变换时,所述数字信号携带的比特为所述高阶数字调制信号使用的调制星座图中的星座点在所述映射区域内所共有的比特,这些共有的比特通常为所述高阶数字调制信号使用的调制星座图中的星座点在所述映射区域内的前若干个连续比特。当然,本领域的技术人员应当明了,所述数字信号携带的比特并非必须是所述高阶数字调制信号使用的调制星座图中的星座点在所述映射区域内的前若干个连续比特,例如也可是后若干个连续比特,或是前后各若干个比特,只要所述数字信号携带的比特为所述高阶数字调制信号使用的调制星座图中的星座点在所述映射区域内所共有的比特即可。
具体的,在应用本发明的方法时,若所述SCM发送节点收到一个2K进制的数字调制信号,如2KQAM调制信号,则所述SCM发送节点首先按照采样定律对所述2K进制的调制信号进行采样,得到的采样信号即是所述的SCM源端信号。接下来,根据本发明的方法,所述采样信号在经过信号变换后被变换成所述数字信号和所述模拟信号,其中,所述数字信号为2K1进制的数字调制信号,如2K1QAM调制信号,K1小于K。则所述数字信号携带的比特数为K1,所述模拟信号携带的比特数为K2,K2=K-K1。这样,在所述2K进制的调制信号所使用的调制星座图中的2K个星座点就被分为2K1个映射区域,每个映射区域内包2K-K1个2K进制的星座点,这2K-K1个2K进制的星座点通常以所述2K1进制的调制信号所使用的调制星座图中的星座点为中心。所述映射区域由所述数字信号携带的K1个比特进行指示,所述采样信号在所述映射区域内的位置由所述模拟信号携带的K-K1个比特进行指示,并且在所述数字信号携带的K1个比特所指示的各个映射区域内,所述模拟信号携带的K-K1个比特所采用的映射顺序一致。
仍以所述源节点发送16QAM调制信号为例,当所述SCM发送节点收到所述源节点发送的16QAM调制信号后,所述SCM发送节点首先按照采样定律对所述16QAM调制信号进行采样,得到所述的SCM源端信号。假设在SCM调制中需得到4QAM的数字调制信号,则所述采样信号在经过信号变换后被变换成一个数字信号和一个模拟信号,所述数字信号为4QAM的调制信号,所述数字信号与所述模拟信号分别携带2个比特。这样,在SCM调制中,所述16QAM调制信号所使用的调制星座图中的16个星座点就被分为4个映射区域,每个映射区域内包4个16QAM星座点,这4个16QAM星座点以所述4QAM调制信号所对应的4QAM星座点为中心。所述数字信号携带的2个比特用于指示所述映射区域,所述模拟信号携带的2个比特用于指示所述采样信号在所述映射区域内的位置,并且,与现有的SCM调制方法中所采用的格雷映射方式不同,在所述4个映射区域内,所述模拟信号携带的2个比特所采用的映射顺序一致。参考图5,可知16QAM星座点的前2个比特由SCM调制后产生的数字信号携带,后2个比特由SCM调制产生的模拟信号携带,且后2个比特在4个映射区域内的映射顺序一致。
作为图5所示调制星座图的一种变形,可以把所述16QAM星座点的前2个比特重新布置在第1和第3个比特位置,把剩余的2个比特重新布置在第2和第4个比特位置。这样变形后的星座图也同样可以用于实现本发明并达到本发明的目的。推而广之,只要SCM调制产生的模拟信号携带的比特在每个映射区域内映射顺序一致,还可以把SCM调制产生的数字信号携带的比特重新布置在指定的位置,而把SCM调制产生的模拟信号携带的比特布置在其余的位置。
由于所述模拟信号携带的比特在所述各个映射区域内所采用的映射顺序一致,因此,当SCM接收节点接收到所述数字信号和所述模拟信号后,如果所述数字信号在解调、解码等过程中发生错误,进而选择了错误的映射区域,但所述SCM源端信号在映射区域中的位置被正确确定,则由所述模拟信号携带的比特仍旧能够被正确的恢复出来,这样就去除了所述数字信号和所述模拟信号在接收时的相互依赖性,使所述数字信号的检测结果对BER的影响与所述模拟信号的检测结果对BER的影响相互无关。
与现有的SCM调制方法相同,本发明的方法在具体实施时也可以有SCM-ADk和SCM-AkD这两种具体的调制过程。假设所述源节点在第一条链路上传送2K进制的数字调制信号,而第二条链路能够支持2K2进制的数字调制,则在所述SCM发送节点收到所述2K进制的数字调制信号后,所述SCM发送节点对所述2K进制的调制信号进行采样并对所述采样信号进行信号变换,变换所得的数字信号携带K1个比特,模拟信号携带K2个比特,K1=K-K2。如果K1≠K2,则所述数字信号被进而组合或分割成2K2进制的调制信号,其中,当K1>K2时,所述数字信号被分割成2K2进制的调制信号,即所述的SCM-ADk,当K2>K1时,所述数字信号被合并成2K2进制的调制信号,即所述的SCM-AkD。然后,所述分割/合并后的数字信号和所述模拟信号在第二条链路上被发送给所述SCM接收节点。通过SCM-ADk和SCM-AkD这两种具体的调制过程,可使第二条链路上传送的数字信号和模拟信号包含相同的比特数,这样,在对所述数字信号不使用信道编码的情况下,可使所述SCM接收节点处的所述数字信号的BER性能与所述模拟信号的BER性能基本相同。
例如,若第一条链路上进行信号传送时所使用的调制星座图为64QAM星座图,而在第二条链路上支持4QAM调制。则在进行SCM调制时,将来自于第一条链路的64QAM调制信号的采样信号先转换成一个16QAM的数字调制信号和一个模拟信号,然后再将所述16QAM调制信号分割成二个4QAM的数字信号,这就是SCM-ADD(即SCM-AD2)调制过程。此时,如图6所示的星座图,在各个以16QAM星座点为中心的4个64QAM星座点所构成的映射区域中,用于指示64QAM星座点的位置的各64QAM星座点的最后两个比特的映射顺序一致,所述最后两个比特即为所述模拟信号携带的比特。
又如,若在第二条链路上支持16QAM调制。则来自于第一条链路的64QAM调制信号的采样信号先被转换成一个4QAM的数字调制信号和一个模拟信号,然后两个所述4QAM的数字调制信号被进而合并成一个16QAM的数字信号,这就是SCM-AAD(即SCM-A2D)调制过程。此时,如图7所示的星座图,在各个以4QAM星座点为中心的16个64QAM星座点所构成的映射区域中,用于指示64QAM星座点的位置的各64QAM星座点的最后四个比特的映射顺序一致,所述最后四个比特即为所述模拟信号携带的比特。
此外,对于128QAM、256QAM等调制星座图也可依此类推。当然,除了上述所列举的这些QAM调制方案外,在本发明的技术构思下,本发明的方法对于其它的数字调制方案同样适用,例如MPSK调制,具体的实施方式在此不再赘述。
本发明的方法在具体实施时,在对所述SCM源端信号进行信号变换时,为了使所述数字信号与所述模拟信号具有较好的传输性能,通常使所述数字信号使用的调制星座图中的星座点位于所述映射区域的中心。如果将所述SCM源端信号表示为x(n),x(n)=xa(n)+γqi(n),其中,γqi(n)表示所述数字信号,xa(n)表示所述模拟信号,则可通过标量γ的适当取值,使得在所述SCM源端信号x(n)所在的映射区域中所述数字信号γqi(n)使用的调制星座图中的星座点位于所述映射区域的中心。
在对所述SCM源端信号进行信号变换后,由于所述数字信号和所述模拟信号在传送时的功率配比会影响所述SCM接收节点的接收性能,因此为了获得较优的性能,在第二条链路中没有纠错码保护时,可在所述数字信号和所述模拟信号的传送中对二者进行等功率分配,以使所述数字信号和所述模拟信号在接收时的BER性能基本相同。若第二条链路中存在纠错码保护,则也可按照使所述数字信号和所述模拟信号的BER性能相同的原则对其二者的功率进行分配。此外,为了使所述数字信号和所述模拟信号在传送时经历的信道衰落基本相同,可以使用第二条链路上的两个相邻的时隙、两个相邻的频率或两个相邻的空间进行传送。
通过实验仿真可知,使用本发明方法的信号传输性能与应用传统的解调/重调制信号传输方法的信号传输性能相类似。
以上对本发明方法的具体实施方式进行了详细描述。在本发明的技术构思下,本发明还提出了一种信号编码调制SCM装置,该装置包括:一个输入单元,用于输入SCM源端信号;一个信号变换单元,用于对所述SCM源端信号进行信号变换,得到数字信号和模拟信号;其中,所述数字信号携带的比特用于指示所述SCM源端信号所在的映射区域,所述模拟信号携带的比特用于指示所述SCM源端信号在所述映射区域内的位置;一个输出单元,用于输出所述数字信号和所述模拟信号;其中,在所述信号变换单元对所述SCM源端信号进行信号变换时,在所述数字信号携带的比特所指示的各个映射区域内,所述模拟信号携带的比特所采用的映射顺序一致。
本发明装置中的各功能单元在实施时的具体操作可参照上述本发明方法的具体实施方式中的有关说明,此处不再赘述。
本发明可应用于各种具有多条不同SNR的通信链路的场景中,下面列举几种应用情况。
如图8所示,图8为应用本发明的一个系统结构示意图。其中,作为源节点的有线调制解调终端系统(CMTS)以42Mb/s的比特速率在6MHz的共享有线信道上发送256QAM信号,信号通过光纤和同轴电缆进行传输,即混合光纤同轴(HFC)网络。光纤由于噪声低,因此可以在长距离上提供较大的带宽。同轴电缆将信号从光纤传送到每个用户。为了将信号传送到现有HFC网络覆盖范围之外的地区,有线运营商在与该地区有视距的HFC网络的某个地点,安装一个基于SCM的点到多点的无线接入系统,即如图8中所示包括一个SCM发送节点和多个SCM接收节点,使该地区的所有用户能够共享该SCM无线信号。用户使用低成本的有线调制解调器,通过共享的同轴电缆连接到SCM的无线收发机。
SCM调制的一个重要特性是它可以把256QAM信号处理后,在仅支持低阶调制,例如16QAM的无线信道上传输。SCM调制可以提供额外的抵抗噪声的能力,因为SCM调制会扩展带宽来提高目的站点的SNR。
在这个例子中,如果使用传统的解调/重调制方法,则256QAM信号首先被解调成原始数据比特,然后再调制成16QAM信号并在无线链路上传输,最后在目的站点重构成256QAM。这个解调/重调制的方法比SCM需要更多的处理过程,如果在转发过程中改变了前向纠错码(FEC),会在信息传输过程中引入很大的时延。此外,由于传统的方法需要对信息比特进行解码和重编码,而SCM可以对产生的数字信号直接进行编码,并且,由于SCM对具体的通信协议的演进或变化提供了透明链路,因此SCM更有吸引力。
此外,本发明还可应用于存在中继站(RS)的多跳无线通信系统中。例如,如图9所示,对于基站(BS)和移动台(MS)之间存在两个中继站RS1和RS2的三跳无线通信系统,假设BS与RS1之间链路的SNR大于RS1与RS2之间链路的SNR,RS1与RS2之间链路的SNR大于RS2与MS之间链路的SNR。则在上行链路中,首先可以根据RS2与RS1之间上行链路的SNR以及RS1与BS之间上行链路的SNR设定所述两条链路上能够支持的调制方式,例如,BS与RS1之间可支持16QAM,RS1与RS2之间可支持4QAM。在确定了所述两条链路上的调制方式后,RS2首先将MS发送过来的信号进行信道估计和补偿、解调和解码等操作,恢复出信息比特流。然后,RS2将所述比特流调制成16QAM信号,再对该16QAM信号的采样信号进行SCM调制,产生4QAM数字信号和模拟信号,即此时RS2为SCM发送节点。接下来,RS2将所述数字信号和所述模拟信号放在两个相邻的载波或时隙上发送给RS1,以保证两者经历的信道衰落基本相同。RS1作为SCM接收节点在收到所述RS2发送的所述数字信号和所述模拟信号后,不需要进行信道估计和补偿,直接将所述模拟信号和所述数字信号叠加后转发给BS。这样,BS在收到所述叠加信号后通过信道估计和补偿操作恢复出所述16QAM信号,并进而通过解调和解码等操作检测得到所述比特流。在下行链路中,可将RS1作为SCM发送节点,RS2作为SCM接收节点,BS为源节点。
又如,如图10所示,对于BS和MS之间存在一个中继站RS的两跳无线通信网络系统,假设设定在BS与RS之间的链路上可支持16QAM调制,在RS与MS之间的链路上可支持4QAM调制。在上行链路中,MS将信息比特流直接调制成16QAM符号,然后进行SCM调制,产生4QAM数字信号和模拟信号,并将所述数字信号和所述模拟信号在相邻的时隙或载波上发送,即此时MS为SCM发送节点。RS作为SCM接收节点在收到所述数字信号和所述模拟信号后,将所述数字信号和所述模拟信号叠加,然后将所述叠加信号转发给BS。BS收到所述叠加信号后,通过信道估计和补偿等操作就可得到16QAM信号。这样,BS可直接接收到高阶调制信号(16QAM信号),并且由RS造成的时延比使用传统的解调/重调处理方式的时延低很多。因此,SCM非常适合上行的快速反馈。在下行链路中,可将RS作为SCM发送节点,MS作为SCM接收节点,BS为源节点。
在上述两个多跳无线通信系统的示例中,BS可以不做任何改变,同时对网络架构没有任何影响。多跳网络可以是BS中心控制,也可以是BS和RS分布控制,或其它方式。SCM仅用来进行信息传输,并具有实现简单,时延小的特点。
以上所述仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换以及改进等,均应包含在本发明的保护范围之内。

Claims (15)

1.一种信号编码调制SCM方法,该方法包括:
对SCM源端信号进行信号变换,得到数字信号和模拟信号;其中,所述SCM源端信号通过对一个高阶数字调制信号进行采样获得,所述高阶数字调制信号的调制阶数大于所述数字信号的调制阶数;所述数字信号携带的比特用于指示所述SCM源端信号所在的映射区域,所述模拟信号携带的比特用于指示所述SCM源端信号在所述映射区域内的位置;其特征在于:
在对所述SCM源端信号进行信号变换时,在所述数字信号携带的比特所指示的各个映射区域内,所述模拟信号携带的比特所采用的映射顺序一致。
2.根据权利要求1所述的方法,其特征在于,所述数字信号和所述模拟信号分别在一个链路上的两个信道中传送。
3.根据权利要求2所述的方法,其特征在于,所述数字信号携带的比特为所述高阶数字调制信号使用的调制星座图中的星座点在所述映射区域内所共有的比特。
4.根据权利要求2所述的方法,其特征在于,所述高阶数字调制信号为一个2K进制的调制信号,所述数字信号为一个2K1进制的调制信号;在所述数字信号携带的K1个比特所指示的各个映射区域内,所述模拟信号携带的K2个比特所采用的映射顺序一致,K2=K-K1。
5.根据权利要求4所述的方法,其特征在于,所述链路中设定使用2K2进制的数字调制;所述数字信号在被分割/合并为2K2进制的调制信号后才在所述链路中传送。
6.根据上述任一权利要求所述的方法,其特征在于,所述SCM源端信号为x(n),所述数字信号为γqi(n),所述模拟信号为xa(n),x(n)=xa(n)+γqi(n);其中,γ是标量,γ的取值使得在所述SCM源端信号x(n)所在的映射区域中所述数字信号γqi(n)使用的调制星座图中的星座点位于所述映射区域的中心。
7.根据权利要求2至5任一所述的方法,其特征在于,所述数字信号和所述模拟信号在所述链路上的两个信道中传送时的功率相等。
8.根据权利要求2至5任一所述的方法,其特征在于,所述两个信道为两个相邻的时隙、两个相邻的频率和两个相邻的空间中的任一种。
9.根据权利要求2至5任一所述的方法,其特征在于,所述数字信号在所述链路上传送时存在纠错码保护。
10.一种信号编码调制SCM装置,该装置包括:
一个输入单元,用于输入SCM源端信号;
一个信号变换单元,用于对所述SCM源端信号进行信号变换,得到数字信号和模拟信号;其中,所述输入单元输入的SCM源端信号为一个高阶数字调制信号的采样信号,所述高阶数字调制信号的调制阶数大于所述数字信号的调制阶数;所述数字信号携带的比特用于指示所述SCM源端信号所在的映射区域,所述模拟信号携带的比特用于指示所述SCM源端信号在所述映射区域内的位置;
一个输出单元,用于输出所述数字信号和所述模拟信号;
其特征在于:
在所述信号变换单元对所述SCM源端信号进行信号变换时,在所述数字信号携带的比特所指示的各个映射区域内,所述模拟信号携带的比特所采用的映射顺序一致。
11.根据权利要求10所述的装置,其特征在于,所述输出单元将所述数字信号和所述模拟信号分别输出到一个链路上的两个信道中以进行传送。
12.根据权利要求11所述的装置,其特征在于,所述数字信号携带的比特为所述高阶数字调制信号使用的调制星座图中的星座点在所述映射区域内所共有的比特。
13.根据权利要求11所述的装置,其特征在于,所述高阶数字调制信号为一个2K进制的调制信号,所述数字信号为一个2K1进制的调制信号;在所述数字信号携带的K1个比特所指示的各个映射区域内,所述模拟信号携带的K2个比特所采用的映射顺序一致,K2=K-K1。
14.根据权利要求13所述的装置,其特征在于,所述链路中设定使用2K2进制的数字调制;所述信号变换单元进一步用于将所述数字信号分割/合并为2K2进制的调制信号;所述输出单元用于在所述数字信号被分割/合并为2K2进制的调制信号后才将其输出。
15.根据权利要求10至14任一所述的装置,其特征在于,所述SCM源端信号为x(n),所述数字信号为γqi(n),所述模拟信号为xa(n),x(n)=xa(n)+γqi(n);其中,γ是标量,γ的取值使得在所述SCM源端信号x(n)所在的映射区域中所述数字信号γqi(n)使用的调制星座图中的星座点位于所述映射区域的中心。
CN200810166915A 2008-09-26 2008-09-26 一种信号编码调制方法及装置 Expired - Fee Related CN101686215B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200810166915A CN101686215B (zh) 2008-09-26 2008-09-26 一种信号编码调制方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200810166915A CN101686215B (zh) 2008-09-26 2008-09-26 一种信号编码调制方法及装置

Publications (2)

Publication Number Publication Date
CN101686215A CN101686215A (zh) 2010-03-31
CN101686215B true CN101686215B (zh) 2012-10-17

Family

ID=42049190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810166915A Expired - Fee Related CN101686215B (zh) 2008-09-26 2008-09-26 一种信号编码调制方法及装置

Country Status (1)

Country Link
CN (1) CN101686215B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104038959B (zh) * 2014-06-11 2017-12-01 重庆邮电大学 一种信道模拟器及其建模方法
CN110475354A (zh) 2018-05-11 2019-11-19 中兴通讯股份有限公司 控制信息的发送,接收方法及装置、通信系统
CN114567530B (zh) * 2022-04-27 2022-08-02 华中科技大学 一种信道信噪比自适应的油气井无线通信方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0630136A2 (en) * 1993-06-14 1994-12-21 AT&T Corp. Simultaneous analog and digital communication with improved phase immunity
CN1099209A (zh) * 1993-06-14 1995-02-22 美国电报电话公司 同时进行模拟和数字通信的应用
WO2001071965A1 (en) * 2000-03-17 2001-09-27 Bridgewave Communications, Inc. Signal communications system and method for noisy links

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0630136A2 (en) * 1993-06-14 1994-12-21 AT&T Corp. Simultaneous analog and digital communication with improved phase immunity
CN1099209A (zh) * 1993-06-14 1995-02-22 美国电报电话公司 同时进行模拟和数字通信的应用
WO2001071965A1 (en) * 2000-03-17 2001-09-27 Bridgewave Communications, Inc. Signal communications system and method for noisy links

Also Published As

Publication number Publication date
CN101686215A (zh) 2010-03-31

Similar Documents

Publication Publication Date Title
CN103503395B (zh) 用于次千兆赫频带中的无线通信的系统和方法
CN102714887B (zh) 主机单元、远程单元以及多频带传输系统
CN1833420B (zh) 选择传输参数的技术
CN105979588B (zh) 用于无线通信的高效前传通信的系统和方法
CN102098105A (zh) 一种自适应调制的光纤通信的方法及系统
US20210218492A1 (en) Modulation and coding for mutiple resource units in wireless network
US20150382237A1 (en) Network apparatus based on orthogonal frequency-division multiplexing (ofdm) and data compression and data recovery method thereof using compressed sensing
US8218679B2 (en) Method and system for creating quadrature modulation signal constellations with arbitrary spectral efficiency
CN101686215B (zh) 一种信号编码调制方法及装置
JP5697518B2 (ja) 局側終端装置、加入者側終端装置及び光伝送システム
WO2016097688A1 (en) Methods for wireless communications involving fine mcs signalling with the help of unused bits in the header of a wifi packet
US9088313B2 (en) Multiple-input multiple-output (MIMO) communication system
US7471903B1 (en) Optical communication system
US9231705B1 (en) Communication system with QAM modulation
CN102027701B (zh) 用于对控制信道的非排他复用进行信道差错控制的装置和方法
CN101340609B (zh) 广播多播业务发送方法、设备及系统
CN103580826A (zh) 一种混合自动重传的方法、装置及系统
US7532673B2 (en) Transport of modulation symbols in a communications system
KR101704025B1 (ko) 홈 게이트웨이를 이용한 홈 네트워크 시스템
US20150139658A1 (en) Adaptive multi-channel transmitter with constant data throughput
Zhou et al. A Novel Scheme of Polar-Coded SCMA OFDM Analogue Radio-over-Fiber for C-RAN Optical Fronthaul
CN215120813U (zh) Navdat广播授时定位发射机调制系统
KR101275135B1 (ko) 광대역 무선통신 시스템에서 추가 데이터를 송수신하기위한 장치 및 방법
KR101211115B1 (ko) 방송 신호의 전송 방법과 장치
NL1031482C2 (nl) Kabeltelevisiesysteem met uitgebreide kwadratuuramplitudemodulatiesignaaluitwisseling, zendmiddelen en een beheercentrum daarvoor.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121017

Termination date: 20130926