CN101676615A - 凸面菲涅尔发光二极管光学镜片及其构成发光二极管组件 - Google Patents

凸面菲涅尔发光二极管光学镜片及其构成发光二极管组件 Download PDF

Info

Publication number
CN101676615A
CN101676615A CN200810161308A CN200810161308A CN101676615A CN 101676615 A CN101676615 A CN 101676615A CN 200810161308 A CN200810161308 A CN 200810161308A CN 200810161308 A CN200810161308 A CN 200810161308A CN 101676615 A CN101676615 A CN 101676615A
Authority
CN
China
Prior art keywords
mrow
msub
optical lens
fresnel
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200810161308A
Other languages
English (en)
Other versions
CN101676615B (zh
Inventor
徐三伟
陈翊民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
E Pin Optical Industry Co Ltd
Original Assignee
E Pin Optical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Pin Optical Industry Co Ltd filed Critical E Pin Optical Industry Co Ltd
Priority to CN2008101613089A priority Critical patent/CN101676615B/zh
Publication of CN101676615A publication Critical patent/CN101676615A/zh
Application granted granted Critical
Publication of CN101676615B publication Critical patent/CN101676615B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Led Device Packages (AREA)

Abstract

本发明是一种凸面菲涅尔发光二极管光学镜片及其所构成发光二极管组件(Convex-Fresnel LED Lens for Angular Distribution Patterns and LEDAssembly Thereof),所述光学镜片为一像侧光学面(optical surface onforward side)为凸面且具有垂直环齿(draft with vertical shape)的菲涅尔光学面的菲涅尔光学镜片,使所述光学镜片在所构成的发光二极管组件(LEDAssembly)中,可对LED晶片发出的光线聚集并产生光强度(peak intensity)为椭圆照角光型(Elliptic angular distribution pattern),又所述光学镜片及发光二极管组件满足特定条件;由此,本发明仅使用一单独的光学镜片即可将LED晶片发出的光线聚集成预定的特殊光型,且符合光通量比值大于85%的要求,可供照明、手机闪光灯或相机闪光灯使用。

Description

凸面菲涅尔发光二极管光学镜片及其构成发光二极管组件
技术领域
本发明涉及一种发光二极管光学镜片及其所构成的发光二极管组件,尤其涉及一种可产生光强度(peak intensity)为椭圆照角光型(Elliptic angulardistribution pattern)的菲涅尔光学镜片,供应用于由LED发光源以产生光型的发光二极管组件,而可应用于LED照明、手机或相机的闪光灯。
背景技术
发光二极管(light emitting diode,简称LED)具有低电压、低耗电、寿命长的优点,已大量应用于显示装置(indicator)、照明装置(illuminator)等领域。由于LED更具有光颜色单纯、小型化、可平面封装的特点,已使用在手机相机的闪光灯上。然而由于LED晶片发出的光线具有点光源、亮度不均匀的特性,对于光线的聚集已有研究学者进行多项研究,如缩小晶片、提高发光效率外,使用光学镜片也是重要的技术开发方向。
在LED光学镜片的设计上,可分为一次光学镜片(primary optical lens)及二次光学镜片(secondary optical lens);一次光学镜片为在LED晶片上直接封装的透镜,一般以聚集(concentrate)光线为主;二次光学镜片为使用在单颗或数颗LED阵列(Array),以分散光束为主。在现有的一次光学镜片设计上,如ES2157829是使用对称的非球面透镜;日本专利JP 3032069、JP2002-111068、JP2005-203499,美国专利US2006/187653、中国专利CN101013193等是使用球面透镜;JP2002-221658是对Bulk型LED使用球面透镜等。对于高阶的运用上,一次光学镜片除要能聚集光线外,更能在均匀的光强度(peak intensity)产生特定的光型(distribution pattern),例如大角度、小角度、圆形、椭圆形等特殊光型,以搭配LED阵列使用,以产生最佳的光学效果。一次光学镜片的运用如图1A、1B所示,在LED晶片21上覆有一透镜23,当LED晶片21发出光线,经由透镜23聚集后发出预定的光型光线,或在一次光学镜片上,再加上一层二次光学镜片,以求均匀化的效果。所述一次光学镜片有各种不同的设计,其中一次光学镜片采用菲涅尔(Fresnel)式的光学面,在现有技术上,如德国专利WO/2003/083943;日本专利JP2005-049367等;美国专利US6,726,859、公开号US2007/0275344、US2008/0158854;欧洲专利EP1091167;及中国台湾省专利TW200711186等;然而,上述的现有技术主要是以菲涅尔式镜片覆盖于数个LED上或供为投射装置(projector)用的二次光学镜片(secondary lens)。但随LED发光效能快速发展,单颗LED的运用日渐重要。LED阵列或多颗LED组成的光源,可透由彼此间交叉光线通过透镜予以补偿而成为均匀的光线;但单颗LED在一次镜片设计上,远较LED阵列或多颗LED组成的光源为复杂,必须考虑一次光学镜片(primary lens)的聚光效率与光强度的均匀化;如日本专利JP2005-257953、美国专利US 2006/0027828是使用单面或两面的菲涅尔镜片放置于LED发光体上方,以产生均匀的光线,如图1A、1B;再如台湾专利TW560085利用抛物碗形侧面与菲涅尔透镜以减少光束发散并构成光束均匀的光型;又如韩国专利1020070096368与中国台湾省专利I261654将菲涅尔式镜片制成LED一次光学镜片,但其光型以圆形照角为主,对于具有实际应用的椭圆形照角光型的单颗LED组件,尚难以扩展运用。
随着科技的进步,电子产品不断地朝向轻薄短小以及多功能的方向发展,而电子产品中如:数字相机(Digital Still Camera)、电脑相机(PC camera)、网路相机(Network camera)、行动电话(手机)等已具备镜头之外,甚至个人数字辅助器(PDA)等装置也有加上镜头的需求;因此用于这类产品的LED闪光灯或照明用的LED灯具,常以单颗或多颗LED组件组成阵列;而为了携带方便及符合人性化的需求,LED闪光灯或照明用的LED灯具不仅需要符合的光通量,以不同光型LED组件互相搭配,同时也需要有较小的体积与较低的成本。菲涅尔透镜在透镜表面设有一组不规则的菲涅尔环(Fresnel zone plate),其环间距(zone pitch)由内而外或由外而内逐渐变大(环间距(pitch)改变),由于菲涅尔透镜除了具有导光与收集光线的能力,还兼具轻、薄、可塑化及低成本的特性,很适合用于照明的系统中;但对于多点发光的LED照明使用,则要考虑照度与光强度的均匀度。在现有技术上,常采用一定比例的环间距(zone pitch)与环深度(zone height)或渐变的环间距与环深度,尤其以多颗LED构成的照明系统则以渐变的环间距方法,较可符合照度与光强度均匀的实用要求;但对于单颗的LED一次光学镜片,则要与光学镜片的光学特性相互搭配。菲涅尔透镜虽具有复杂的外型表面,且制造成本较高,但却有良好的光线效率及均匀化的效果,尤以单颗LED组件的照明使用更受注意。为使单颗LED发出的光线达最高效率,本发明即在此迫切需求下,利用菲涅尔透镜制成一次光学镜片以产生特定的椭圆光型并以形成的LED组件,在本发明的适当构成下,对表面发光的LED晶片所发出的光线可加以聚集并产生均匀光强度(peak intensity)且椭圆形的光型。
发明内容
本发明主要目的乃在于提供一种凸面菲涅尔发光二极管光学镜片及其所构成的发光二极管组件,所述LED组件是由一LED晶片(LED die)以发出光线、一菲涅尔光学镜片以聚集光线并以均匀光强度形成椭圆形光型、及一封胶层(sealgel layer)以填塞于菲涅尔光学镜片与LED晶片之间所构成,其中,菲涅尔光学镜片可为一新月型(meniscus)镜片,其外缘面可具有锥度或无锥度,其凹面为向光源的光源侧光学面且可为球面或非球面,其凸面为向像侧的像侧光学面(optical surface on forward side)且具有菲涅尔式光学面,又所述菲涅尔光学面的聚光曲面可为非球面或球面,其环面为垂直环齿(draft with verticalshape)且可为等环深度(equal zone height)或等环间距(equal zone pitch),并可满足以下条件:
0.7 ≤ f s r n ≤ 2.2 - - - ( 1 )
0 . 1 ≤ ( N d 2 - 1 ) d 2 f s ≤ 0.625 - - - ( 2 )
( φ x - ω x π ) 2 + ( φ y - ω y π ) 2 · f g ≤ 0.6 - - - ( 3 )
其中:
f g = | ( 1 R 1 - 1 R F ) · f s | - - - ( 4 )
ω x = tan - 1 ( D d 0 + d 1 + d 2 + Lx ) - - - ( 5 )
ω y = tan - 1 ( D d 0 + d 1 + d 2 + Ly ) - - - ( 6 )
其中,fS为本光学镜片的有效焦距(effective focal length)的长度,rn为菲涅尔光学面R2的最末环(Last Zone)半径,d2为中心轴Z光学镜片厚度,Nd2为光学镜片的折射率,2φx为经由光学镜片射出光线在X方向最高光强度(intensity)一半(I1/2)处的角度(度,deg.),2φy为经由光学镜片射出光线在Y方向最高光强度一半(I1/2)处的角度(度,deg.),2Lx为LED晶片在X方向的长度,2Ly为LED晶片在Y方向的长度,fg为本光学镜片的相当焦距(relativefocal length)的长度,R1为光源侧光学面的曲率半径,RF为像侧菲涅尔光学面的聚光曲面的曲率半径(radius of fresnel convex surface),d0为LED晶片厚度,d1为中心轴的封胶层厚度,D为光学镜片在像侧光学面的半径。
更进一步,为因应不同光型角度与聚光特性,所述菲涅尔光学面的聚光曲面的曲率半径RF可设为球面或非球面。
为简化制造,菲涅尔光学镜片可更换为一平凸(plano-convex)的光学材料所制成的镜片,其向像侧侧光学面为菲涅尔式光学面,并可满足式(1)~式(3)条件。
为增加LED组件的效率,菲涅尔光学镜片的外缘面可具有锥度υ,其向像侧光学面为菲涅尔式光学面,并可满足式(1)~式(3)条件。
本发明另一目的,为使用选择方便,光学镜片可为光学玻璃或光学塑胶所制成。
本发明的又一目的在于提供一种发光二极管组件,其是包含如本发明所述的平凸或新月型菲涅尔发光二极管光学镜片及一发光二极管晶片,其特征在于此发光二极管组件具有椭圆光型、其光通量比值η大于85%(η=β/α≥85%)的要求,并满足以下条件:
E1/2≤0.7Ed                                (7)
其中,
E 1 / 2 = I 1 / 2 ( π r n * sin φ x ) * ( r n * sin φ y ) * η - - - ( 8 )
其中,rn为菲涅尔光学面R2的最末环(Last Zone)半径,2φx为经由光学镜片射出光线在X方向最高光强度(intensity)一半(I1/2)处的角度(度deg.),2φy为经由光学镜片射出光线在Y方向最高光强度一半(I1/2)处的角度(度deg.),rn为菲涅尔光学面R2的最末环(Last Zone)半径,α为LED晶片发出光线的光通量,β为像侧相对无限远处(100倍fS)不考虑衰减因素的光线的光通量,η为光通量比值η=β/α,Ed为LED晶片发出的照度(Incidance),E1/2为菲涅尔光学镜片发出的最高光强度一半处的照度。
与现有技术相比,本发明的凸面菲涅尔发光二极管光学镜片及其所构成的发光二极管组件可具有椭圆形光型,且符合光通量比值大于85%的要求,并且所述光学镜片具有厚度薄的特性,可用于单颗LED或阵列LED,提供予照明或手机、相机的闪光灯使用。
附图说明
图1A、1B是现有技术的使用LED光学镜片于LED组件的示意图;
图2是本发明的使用无锥度菲涅尔LED光学镜片于LED组件的立体示意图;
图3是本发明的使用有锥度菲涅尔LED光学镜片于LED组件的立体示意图;
图4是本发明的使用的垂直环齿等环间距的菲涅尔LED光学镜片与聚光曲面曲率半径关系图;
图5是本发明的使用的垂直环齿等环深度的菲涅尔LED光学镜片与聚光曲面曲率半径关系图;
图6是本发明的LED光学镜片于LED组件的构成示意图;
图7是有锥度菲涅尔LED光学镜片的锥度表示图;
图8是本发明的菲涅尔LED光学镜片于LED组件光路示意图;
图9是本发明的菲涅尔LED光学镜片A群光线与B群线折射示意图;
图10是本发明的菲涅尔LED光学镜片A群光线与B群线光路示意图;
图11是图9与图10的A群光线与B群线组合成均匀光强度的示意图;
图12是本发明的第一实施例的LED组件光强度分布与照角的极坐标关系图(其中“C”代表X方向,“D”代表Y方向);
图13是本发明的第二实施例的LED组件光强度分布与照角的极坐标关系图(其中“C”代表X方向,“D”代表Y方向);
图14是本发明的第三实施例的LED组件光强度分布与照角的极坐标关系图(其中“C”代表X方向,“D”代表Y方向);
图15是本发明的第四实施例的LED组件光强度分布与照角的极坐标关系图(其中“C”代表X方向,“D”代表Y方向);
图16是本发明的第五实施例的LED组件光强度分布与照角的极坐标关系图(其中“C”代表X方向,“D”代表Y方向);
图17是本发明的第六实施例的LED组件光强度分布与照角的极坐标关系图(其中“C”代表X方向,“D”代表Y方向);
图18是本发明的第七实施例的LED组件光强度分布与照角的极坐标关系图(其中“C”代表X方向,“D”代表Y方向);以及
图19是本发明的第八实施例的LED组件光强度分布与照角的极坐标关系图(其中“C”代表X方向,“D”代表Y方向)。
附图标记说明:10-LED组件;11、21-LED晶片;12、22-封胶层;13、23-光学镜片;R1-光源侧光学面(optical surface on source side)或其曲率半径(radius on optical axis);R2-像侧光学面(optical surface on forwardside)或其曲率半径(radius on optical axis);RF-像侧菲涅尔光学面的聚光曲面曲率半径(radius of fresnel convex surface);d0-中心轴上LED晶片厚度(LED die thickness on optical axis);d1-中心轴上LED晶片表面至光学镜片光源侧的光学面距离;(thickness from die surface to R1 on opticalaxis);d2-中心轴光学镜片厚度(lens thickness on optical axis);r1-第一环半径(first zone radius);rn-最末环半径(last zone radius);rt-环间距(zone pitch);hd-环深度(zone height);Nd-折射率(Refractive index);vd-阿贝数(Abbe number);Ed-LED晶片发出的照度(Incidance);E1/2-菲涅尔光学镜片发出的最高光强度一半处的照度(Incidance);α-LED晶片发出光线的光通量(Flux);β-像侧相对无限远处光线的光通量(Flux)。
具体实施方式
为使本发明更加明确详实,现举较佳实施例并配合下列图式,将本发明的结构及技术特征详述如后:
参照图6所示,其是本发明的凸面菲涅尔发光二极管光学镜片及其所构成的发光二极管组件10的结构示意图,其沿着中心轴Z排列由光源侧(source side)至像侧(forward side)依序为:一LED晶片11、一封胶层12及一光学镜片13,当光线由LED晶片11发出后,经由封胶层12后,由光学镜片13将光线聚集并形成以对称于中心轴Z的椭圆形光型的光束对像侧照射;光学镜片13为一光学材料所制成的透镜,其凹面为向光源的光源侧光学面R1,且光学面R1可为非球面或球面,其相对面为向像侧的菲涅尔光学面R2为具有垂直环齿(draft withvertical shape)的菲涅尔光学面;光学镜片13的光学面R2、光学镜片厚度d2及有效焦距长度间满足式(1)及式(2)的条件,光学镜片13所形成的光强度形成的光型的角度2ψ(X方向2φx与Y方向2φy)满足式(3)的条件。
其中,封胶层12并不限制使用的材料,在LED组件上常用光学树脂(resin)或硅胶(silicon gel)等不同材料;而光学镜片13可由光学玻璃或光学塑胶材料制成。
如图2所示,是使用一平凸(plano-convex)菲涅尔LED光学镜片于一LED组件的示意图,其沿着中心轴Z排列由光源至像侧依序为:一LED晶片11、一封胶层12及一双平菲涅尔光学镜片13,其中光学镜片13在光源侧的光学面R1,其为平面(R1=∞),其另一光学面(相对面)为向像侧的凸面的菲涅尔光学面R2且具有垂直环齿的菲涅尔光学面。所述光学镜片13的光学面R2、光学镜片厚度d2及有效焦距长度间满足式(1)及式(2)的条件,光学镜片13所形成的光强度形成的光型的角度2ψ(X方向2φx与Y方向2φy)满足式(3)的条件。
再如图3所示,其是本发明的另一型式,是使用一菲涅尔光学镜片于一LED组件20的示意图,其沿着中心轴Z排列由光源至像侧依序为:一LED晶片21、一封胶层22及一平凸型菲涅尔光学镜片23,其中菲涅尔光学镜片23是具有锥度v的光学镜片如图7所示,即菲涅尔光学镜片23的外缘面具有锥度v。光线由LED晶片21发出后,经由封胶层22后,由光学镜片23将光线聚集并形成以对称于中心轴Z且照角为椭圆形光型的光束对像侧照射;通过具有锥度v的菲涅尔光学镜片23,可减少由光学镜片23的侧面散逸的光线,提高效率。所述光学镜片23的光学面R2、光学镜片厚度d2及有效焦距长度间满足式(1)及式(2)的条件,光学镜片23所形成的光强度形成的光型的角度2ψ(X方向2φx与Y方向2φy)满足式(3)的条件。
对于光学镜片13或光学镜片23,其像侧光学面R2为菲涅尔光学面。本发明使用的像侧光学面R2为具有垂直环齿(draft with vertical shape)的菲涅尔光学面如图4、5所示,其中,所述像侧的菲涅尔光学面(R2)是由一聚光曲面(RF)转移形成,且依不同的转移方式而可分别形成一等环间距(equal zonepitch)的菲涅尔光学面如图4所示或一等环深度(equal zone height)的菲涅尔光学面如图4所示;参考图4,像侧光学面R2为等环间距(equal zone pitch)的菲涅尔光学面,也就是环间距(zone pitch)rt为固定值,其是在聚光曲面曲率半径RF的聚光曲面(RF)上以相等的环间距(zone pitch)rt但不等的落差(中心轴Z点为最高点),也就是不等的环深度(zone height)hd,将聚光曲面(RF)转移成等间距环的环状菲涅尔光学面(像侧光学面R2),也就是每一环(zone)是由一斜面(slope)及一垂直环面(vertical draft)构成,其第一环半径为r1、最末环为半径为rn。当光线入射于菲涅尔光学面(R2),通过各环的斜面,对入射光线产生折射,而达成类似抛物面曲面(或聚光曲面)的光效果如图9所示。再参考图5,像侧光学面R2为等环深度(equal zone height)的菲涅尔光学面,也就是环深度hd为固定值,其是在聚光曲面曲率半径RF的聚光曲面(RF)上以相等的落差(中心轴Z点为最高点),也就是相等的环深度(zone height)hd,但不等的环间距(zone pitch)rt,将聚光曲面RF转移成等环深度(equal zoneheight)的环状菲涅尔光学面(像侧光学面R2)环状菲涅尔光学面,其第一环(半径为r1。同理,当光线入射于菲涅尔光学面,通过各环间斜面,对入射光线产生折射,而达成类似抛物面曲面(或聚光曲面)的光效果如图9所示。
再如图9、图10及图11,A群的光线(A1,A2及A3)经由菲涅尔光学面折射后,由于A1,A2或A3其入射角度不同,其出射角度ψ角度在目标物上的位置不同如图10;对于出射后以中心轴的径向位置,A群光线将呈现中心的光强度较强的光群;同理,B群的光线(B1,B2及B3)经由菲涅尔光学面折射后,也将呈现中心的光强度较强的光群;经由A群与B群光线组合后如图11所示,产生光强度均一的光型,以避免或减少中心区强度过强、边缘区光线较弱,甚至产生暗亮相间的一圈圈现象。
光学镜片13的光学面R1或光学镜片23的光学面R1,若以非球面光学面所构成,其非球面的方程式(Aspherical Surface Formula)为式(9)
Z = ch 2 1 + ( 1 - ( 1 + K ) c 2 h 2 ) + A 4 h 4 + A 6 h 6 + A 8 h 8 + A 10 h 10 - - - ( 9 )
其中,c是曲率,h为镜片高度,K为圆锥系数(Conic Constant)、A4、A6、A8、A10分别四、六、八、十阶的非球面系数(Nth Order AsphericalCoefficient)。
菲涅尔光学面的聚光曲面曲率半径RF也以式(9)定义,对于抛物面的聚光曲面曲率半径RF的圆锥系数K=-1,对于球面的聚光曲面曲率半径RF的圆锥系数K=0。
请参阅图8,为本发明LED光学镜片于LED组件的光路示意图,图中,LED晶片11(21)发出光线,经由光学镜片13(23)聚集并折射后以2ψ角度(X方向2φx与Y方向2φy)形成所需要的椭圆光型及β/α≥85%的要求,其中,α为LED晶片发出光线的光通量,β为像侧相对无限远处(100倍fs)光线的光通量,且忽略空气的折射(refraction)与散射(scattering)等效应,并符合式(7)的条件。由上述结构,本发明利用一平凸或新月型菲涅尔发光二极管光学镜片及一LED晶片,可使LED组件10可发出预定的均匀光强度的椭圆形光型,可为单颗使用或以不同光型组成阵列使用。
本发明以下所揭示的最佳实施例,乃是针对本发明实际的主要构成元件而作说明,为说明与比较各实施例的应用情形,采用以LED晶片11使用1.85×0.77mm尺寸的晶片,其波长为最高强度(1st peak wave-length)波长为450nm及次高强度(2nd peak wave-length)波长为550nm的蓝光的晶片,在X方向发射角ωx=39.8°、Y方向发射角ωy=35.2°、α=78.5流明(1m)、照度Ed=23.97勒克司(Lux)的蓝光;光学镜片13(或光学镜片24)使用直径5mm(D=2.5mm)为说明;菲涅尔光学面选择具有垂直环齿的等环间距或等环深度的菲涅尔光学面;封胶层12是利用折射率Nd1为1.491的透明光学硅胶所填塞。但就一般具有光学镜片及其所构成的LED组件而言,除了本发明所揭示的光学镜片及其LED组件外,其他结构乃属一般通知的技术,也就是所述光学镜片及其LED组件的各构成元件的尺寸大小、使用材料、LED波长与发射角度、菲涅尔光学面的型式、环间距与环深度等,是可以进行许多改变、修改、甚至等效变更。
以下于第一实施例至第四实施例是使用具有无锥度且等环深度的平凸型菲涅尔光学镜片所构成的发光二极管组件、第五实施例是使用有锥度且等环深度的平凸型菲涅尔光学镜片所构成的发光二极管组件、第六实施例是使用无锥度且等环间距的平凸型菲涅尔光学镜片所构成的发光二极管组件、第七实施例至第八实施例是使用无锥度且等环深度的新月型菲涅尔光学镜片所构成的发光二极管组件。
<第一实施例>
请参考图6及图12所示,其分别是本发明的使用凸面菲涅尔光学镜片所构成的发光二极管组件示意图及第一实施例的光强度分布与照角的极坐标关系图。
下列表(一)中分别列有由光源侧至像侧沿中心轴Z的LED晶片11、封胶层12、光学镜片13的光源侧光学面R1与像侧光学面R2的曲率半径R(单位:mm)或菲涅尔中心轴聚光曲面曲率半径RF(单位:mm)、间距di(单位:mm)(the on-axis surface spacing)、光学镜片13的锥度υ、各折射率(Nd)等。本实施例是使用具有无锥度且等环深度的凸面菲涅尔光学镜片,于图6的R1光学面为平面。
表(一)
Figure A20081016130800141
*Aspherical Zone Fesnel
在表(一)中,光学面(Surf.No.)有标注*者为非球面的菲涅尔光学面。下列表(二)为菲涅尔光学面半径RP的非球面于式(9)的各项系数、沿中心起算的第一菲涅尔环半径r1、最末菲涅尔环半径rn、菲涅尔环深度(zone height)hd及菲涅尔环数量(No.of zone):
表(二)
Figure A20081016130800142
本实施例中,光学镜片13是利用折射率Nd2为1.582、阿贝数vd2为61.7的玻璃材质制成。通过搭配封胶层12及光学镜片13的折射系数与阿贝数,形成光线折射角度。经由此光学镜片13聚集后,以X方向82°、Y方向65°的椭圆形照角,于无限远处(以100倍fs为计)的β=67.424流明(忽略空气的折射与散射等效应);式(1)、(2)、(3)、(7)及式(8)分别为:
η=0.8589
I1/2=20.5
φx=41.0
φy=32.5
f s r n = 2.1640
( N d 2 - 1 ) d 2 f s = 0.2130
( &phi; x - &omega; x &pi; ) 2 + ( &phi; y - &omega; y &pi; ) 2 &CenterDot; f g = 0.0331
E 1 / 2 E d = 0.1039
可以满足条件式(1)、(2)、(3)及式(7)。图12为本实施例的LED组件光强度分布与照角的极坐标关系图。由上述表(一)、表(二)及图12所示,由此可证明本发明的凸面菲涅尔光学镜片所构成的发光二极管组件示意图具有高效率且有预定的椭圆光型,其各角度的光强度均一,可提升本发明的应用性。
<第二实施例>
请参考图6及图13所示,其分别是本发明的使用凸面菲涅尔光学镜片所构成的发光二极管组件示意图及本实施例的光强度分布与照角的极坐标关系图。
下列表(三)中分别列有由光源侧至像侧沿中心轴Z的LED晶片11、封胶层12、光学镜片13的光源侧光学面R1与像侧光学面R2的曲率半径R或菲涅尔中心轴聚光曲面曲率半径RF、间距di、光学镜片13的锥度υ、各折射率(Nd)等。本实施例是使用具有无锥度且等环深度的凸面菲涅尔光学镜片,于图6的R1光学面为平面。
表(三)
Figure A20081016130800155
*Aspherical Zone Fesnel
在表(三)中,光学面(Surf.No.)有标注*者为非球面的菲涅尔光学面。下列表(四)为菲涅尔光学面半径RP的非球面于式(9)的各项系数、沿中心起算的第一菲涅尔环半径r1、最末菲涅尔环半径rn、菲涅尔环深度hd及菲涅尔环数量:
表(四)
Figure A20081016130800161
本实施例中,光学镜片13是利用折射率Nd2为1.582、阿贝数vd2为61.7的玻璃材质制成。通过搭配封胶层12及光学镜片13的折射系数与阿贝数,形成光线折射角度。经由此光学镜片13聚集后,以X方向67°、Y方向40°的椭圆形照角,于无限远处(以100倍fs为计)的β=70.245流明(忽略空气的折射与散射等效应);式(1)、(2)、(3)、(7)及式(8)分别为:
η=0.9219
I1/2=29.5
φx=33.0
φy=19.1
f s r n = 1.0081
( N d 2 - 1 ) d 2 f s = 0.4601
( &phi; x - &omega; x &pi; ) 2 + ( &phi; y - &omega; y &pi; ) 2 &CenterDot; f g = 0 . 1965
E 1 / 2 E d = 0.3216
可以满足条件式(1)、(2)、(3)及式(7)。图13为本实施例的LED组件光强度分布与照角的极坐标关系图。由上述表(三)、表(四)及图13所示,由此可证明本发明的凸面菲涅尔光学镜片所构成的发光二极管组件示意图具有高效率且有预定的椭圆光型,其各角度的光强度均一,可提升本发明的应用性。
<第三实施例>
请参考图6及图14所示,其分别是本发明的使用凸面菲涅尔光学镜片所构成的发光二极管组件示意图及本实施例的光强度分布与照角的极坐标关系图。
下列表(五)中分别列有由光源侧至像侧沿中心轴Z的LED晶片11、封胶层12、光学镜片13的光源侧光学面R1与像侧光学面R2的曲率半径R或菲涅尔中心轴聚光曲面曲率半径RF、间距di、光学镜片13的锥度υ、各折射率(Nd)等。本实施例是使用具有无锥度且等环深度的凸面菲涅尔光学镜片,于图6的R1光学面为平面。
表(五)
Figure A20081016130800171
*Aspherical Zone Fesnel
在表(五)中,光学面(Surf.No.)有标注*者为非球面的菲涅尔光学面。下列表(六)为菲涅尔光学面半径RP的非球面于式(9)的各项系数、沿中心起算的第一菲涅尔环半径r1、最末菲涅尔环半径rn、菲涅尔环深度hd及菲涅尔环数量:
表(六)
Figure A20081016130800172
本实施例中,光学镜片13是利用折射率Nd2为1.582、阿贝数vd2为61.7的玻璃材质制成。通过搭配封胶层12及光学镜片13的折射系数与阿贝数,形成光线折射角度。经由此光学镜片13聚集后,以X方向70°、Y方向42°的椭圆形照角,于无限远处(以100倍fs为计)的β=73.798流明(忽略空气的折射与散射等效应);式(1)、(2)、(3)、(7)及式(8)分别为:
η=0.9401
I1/2=30.5
φx=35.2
φy=19.5
f s r n = 1.0081
( N d 2 - 1 ) d 2 f s = 0.4601
( &phi; x - &omega; x &pi; ) 2 + ( &phi; y - &omega; y &pi; ) 2 &CenterDot; f g = 0 . 1839
E 1 / 2 E d = 0.3140
可以满足条件式(1)、(2)、(3)及式(7)。图14为本实施例的LED组件光强度分布与照角的极坐标关系图。由上述表(五)、表(六)及图14所示,由此可证明本发明的凸面菲涅尔光学镜片所构成的发光二极管组件示意图具有高效率且有预定的椭圆光型,其各角度的光强度均一,可提升本发明的应用性。
<第四实施例>
请参考图6及图15所示,其分别是本发明的使用凸面菲涅尔光学镜片所构成的发光二极管组件示意图及本实施例的光强度分布与照角的极坐标关系图。
下列表(七)中分别列有由光源侧至像侧沿中心轴Z的LED晶片11、封胶层12、光学镜片13的光源侧光学面R1与像侧光学面R2的曲率半径R或菲涅尔中心轴聚光曲面曲率半径RF、间距di、光学镜片13的锥度υ、各折射率(Nd)等。本实施例是使用具有无锥度且等环深度的凸面菲涅尔塑胶PMMA制成的光学镜片,于图6的R1光学面为平面。
表(七)
Figure A20081016130800185
*Aspherical Zone Fesnel
在表(七)中,光学面(Surf.No.)有标注*者为非球面的菲涅尔光学面。下列表(八)为菲涅尔光学面半径RP的非球面于式(9)的各项系数、沿中心起算的第一菲涅尔环半径r1、最末菲涅尔环半径rn、菲涅尔环深度hd及菲涅尔环数量:
表(八)
Figure A20081016130800191
本实施例中,光学镜片13是利用折射率Nd2为1.491、阿贝数vd2为32的PMMA塑胶材质制成。通过搭配封胶层12及光学镜片13的折射系数与阿贝数,形成光线折射角度。经由此光学镜片13聚集后,以X方向62°、Y方向40°的椭圆形照角,于无限远处(以100倍fs为计)的β=74.069流明(忽略空气的折射与散射等效应);式(1)、(2)、(3)、(7)及式(8)分别为:
η=0.9435
I1/2=24.5
φx=31.0
φy=20.0
f s r n = 1.0081
( N d 2 - 1 ) d 2 f s = 0 . 3881
( &phi; x - &omega; x &pi; ) 2 + ( &phi; y - &omega; y &pi; ) 2 &CenterDot; f g = 0 . 1975
E 1 / 2 E d = 0.2766
可以满足条件式(1)、(2)、(3)及式(7)。图15为本实施例的LED组件光强度分布与照角的极坐标关系图。由上述表(七)、表(八)及图15所示,由此可证明本发明的凸面菲涅尔光学镜片所构成的发光二极管组件示意图具有高效率且有预定的椭圆光型,其各角度的光强度均一,可提升本发明的应用性。
<第五实施例>
请参考图6及图16所示,其分别是本发明的使用凸面菲涅尔光学镜片所构成的发光二极管组件示意图及本实施例的光强度分布与照角的极坐标关系图。
下列表(九)中分别列有由光源侧至像侧沿中心轴Z的LED晶片11、封胶层12、光学镜片13的光源侧光学面R1与像侧光学面R2的曲率半径R或菲涅尔中心轴聚光曲面曲率半径RF、间距di、光学镜片13的锥度υ、各折射率(Nd)等。本实施例是使用具有无锥度且等环深度的凸面菲涅尔光学镜片,其菲涅尔光学镜片的曲率半径RF为球面,于图6的R1光学面为平面。
表(九)
Figure A20081016130800201
*Aspherical Zone Fesnel
在表(九)中,光学面(Surf.No.)有标注*者为非球面的菲涅尔光学面。下列表(十)为菲涅尔光学面半径RP的非球面于式(9)的各项系数、沿中心起算的第一菲涅尔环半径r1、最末菲涅尔环半径rn、菲涅尔环深度hd及菲涅尔环数量:
表(十)
Figure A20081016130800202
本实施例中,光学镜片13是利用折射率Nd2为1.582、阿贝数vd2为61.7的玻璃材质制成。通过搭配封胶层12及光学镜片13的折射系数与阿贝数,形成光线折射角度。经由此光学镜片13聚集后,以X方向68°、Y方向43°的椭圆形照角,于无限远处(以100倍fs为计)的β=72.48流明(忽略空气的折射与散射等效应);式(1)、(2)、(3)、(7)及式(8)分别为:
η=0.9219
I1/2=32.5
φx=33.0
φy=19.0
f s r n = 1 . 0742
( N d 2 - 1 ) d 2 f s = 0.4601
( &phi; x - &omega; x &pi; ) 2 + ( &phi; y - &omega; y &pi; ) 2 &CenterDot; f g = 0 . 0082
E 1 / 2 E d = 0.4043
可以满足条件式(1)、(2)、(3)及式(7)。图16为本实施例的LED组件光强度分布与照角的极坐标关系图。由上述表(九)、表(十)及图16所示,由此可证明本发明的凸面菲涅尔光学镜片所构成的发光二极管组件示意图具有高效率且有预定的椭圆光型,其各角度的光强度均一,可提升本发明的应用性。
<第六实施例>
请参考图6及图17所示,其分别是本发明的使用凸面菲涅尔光学镜片所构成的发光二极管组件示意图及本实施例的光强度分布与照角的极坐标关系图。
下列表(十一)中分别列有由光源侧至像侧沿中心轴Z的LED晶片11、封胶层12、光学镜片13的光源侧光学面R1与像侧光学面R2的曲率半径R或菲涅尔中心轴聚光曲面曲率半径RF、间距di、光学镜片13的锥度υ、各折射率(Nd)等。本实施例是使用具有无锥度且等环间距的凸面玻璃材质的菲涅尔光学镜片,其菲涅尔光学镜片的曲率半径RF为球面,于图6的R1光学面为平面。
表(十一)
Figure A20081016130800215
*Spherical Zone Fesnel
在表(十一)中,光学面(Surf.No.)有标注*者为球面的菲涅尔光学面。下列表(十二)为菲涅尔光学面半径RP的非球面于式(9)的各项系数、沿中心起算的第一菲涅尔环半径r1、最末菲涅尔环半径rn、菲涅尔环间距rt及菲涅尔环数量:
表(十二)
Figure A20081016130800221
本实施例中,光学镜片13是利用折射率Nd2为1.582、阿贝数vd2为61.7的玻璃材质制成。通过搭配封胶层12及光学镜片13的折射系数与阿贝数,形成光线折射角度。经由此光学镜片13聚集后,以X方向85°、Y方向70°的椭圆形照角,于无限远处(以100倍fs为计)的β=72.72流明(忽略空气的折射与散射等效应);式(1)、(2)、(3)、(7)及式(8)分别为:
η=0.8913
I1/2=22.5
φx=42.0
φy=35.0
f s r n = 2.0243
( N d 2 - 1 ) d 2 f s = 0 . 2300
( &phi; x - &omega; x &pi; ) 2 + ( &phi; y - &omega; y &pi; ) 2 &CenterDot; f g = 0 . 0248
E 1 / 2 E d = 0.002
可以满足条件式(1)、(2)、(3)及式(7)。图17为本实施例的LED组件光强度分布与照角的极坐标关系图。由上述表(十一)、表(十二)及图17所示,由此可证明本发明的凸面菲涅尔光学镜片所构成的发光二极管组件示意图具有高效率且有预定的椭圆光型,其各角度的光强度均一,可提升本发明的应用性。
<第七实施例>
请参考图6及图18所示,其分别是本发明的使用凸面菲涅尔光学镜片所构成的发光二极管组件示意图及本实施例的光强度分布与照角的极坐标关系图。
下列表(十三)中分别列有由光源侧至像侧沿中心轴Z的LED晶片11、封胶层12、光学镜片13的光源侧光学面R1与像侧光学面R2的曲率半径R或菲涅尔中心轴聚光曲面曲率半径RF、间距di、光学镜片13的锥度υ、各折射率(Nd)等。本实施例是使用具有无锥度且等环深度的凸面菲涅尔光学镜片,其菲涅尔光学镜片的曲率半径RF为球面,于图6的R1光学面为平面。
表(十三)
Figure A20081016130800231
*Aspherical Zone Fesnel
在表(十三)中,光学面(Surf.No.)有标注*者为非球面的菲涅尔光学面。下列表(十四)为菲涅尔光学面半径RP的非球面于式(9)的各项系数、沿中心起算的第一菲涅尔环半径r1、最末菲涅尔环半径rn、菲涅尔环深度hd及菲涅尔环数量:
表(十四)
Figure A20081016130800232
本实施例中,光学镜片13是利用折射率Nd2为1.582、阿贝数vd2为61.7的玻璃材质制成。通过搭配封胶层12及光学镜片13的折射系数与阿贝数,形成光线折射角度。经由此光学镜片13聚集后,以X方向68°、Y方向36°的椭圆形照角,于无限远处(以100倍fs为计)的β=72.929流明(忽略空气的折射与散射等效应);式(1)、(2)、(3)、(7)及式(8)分别为:
η=0.9163
I1/2=29.0
φx=33.9
φy=18.1
f s r n = 1.0081
( N d 2 - 1 ) d 2 f s = 0.4361
( &phi; x - &omega; x &pi; ) 2 + ( &phi; y - &omega; y &pi; ) 2 &CenterDot; f g = 0 . 2193
E 1 / 2 E d = 0.3232
可以满足条件式(1)、(2)、(3)及式(7)。图18为本实施例的LED组件光强度分布与照角的极坐标关系图。由上述表(十三)、表(十四)及图18所示,由此可证明本发明的凸面菲涅尔光学镜片所构成的发光二极管组件示意图具有高效率且有预定的椭圆光型,其各角度的光强度均一样,可提升本发明的应用性。
<第八实施例>
请参考图6及图19所示,其分别是本发明的使用凸面菲涅尔光学镜片所构成的发光二极管组件示意图及本实施例的光强度分布与照角的极坐标关系图。
下列表(十五)中分别列有由光源侧至像侧沿中心轴Z的LED晶片11、封胶层12、光学镜片13的光源侧光学面R1与像侧光学面R2的曲率半径R或菲涅尔中心轴聚光曲面曲率半径RF、间距di、光学镜片13的锥度υ、各折射率(Nd)等。本实施例是使用具有锥度且等环深度的凸面菲涅尔光学镜片,于图6的R1光学面为平面。
表(十五)
Figure A20081016130800244
*Aspherical Zone Fesnel
在表(十五)中,光学面(Surf.No.)有标注*者为非球面的菲涅尔光学面。下列表(十六)为菲涅尔光学面半径RP的非球面于式(9)的各项系数、沿中心起算的第一菲涅尔环半径r1、最末菲涅尔环半径rn、菲涅尔环深度hd及菲涅尔环数量:
表(十六)
Figure A20081016130800251
本实施例中,光学镜片13是利用折射率Nd2为1.582、阿贝数vd2为61.7的玻璃材质制成。通过搭配封胶层12及光学镜片13的折射系数与阿贝数,形成光线折射角度。经由此光学镜片13聚集后,以X方向65°、Y方向60°的椭圆形照角,于无限远处(以100倍fs为计)的β=71.41流明(忽略空气的折射与散射等效应);式(1)、(2)、(3)、(7)及式(8)分别为:
η=0.9096
I1/2=30.1
φx=32.1
φy=18.1
f s r n = 1.0081
( N d 2 - 1 ) d 2 f s = 0 . 3786
( &phi; x - &omega; x &pi; ) 2 + ( &phi; y - &omega; y &pi; ) 2 &CenterDot; f g = 0 . 2721
E 1 / 2 E d = 0.3484
可以满足条件式(1)、(2)、(3)及式(7)。图19为本实施例的LED组件光强度分布与照角的极坐标关系图。由上述表(十五)、表(十六)及图19所示,由此可证明本发明的凸面菲涅尔光学镜片所构成的发光二极管组件示意图具有高效率且有预定的椭圆光型,其各角度的光强度均一,可提升本发明的应用性。
以上所示仅为本发明的优选实施例,对本发明而言仅是说明性的,而非限制性的。本专业技术领域具通常知识人员理解,在本发明权利要求所限定的精神和范围内可对其进行许多改变、修改、甚至等效变更,但都将落入本发明的权利范围内。

Claims (12)

1、一种凸面菲涅尔发光二极管光学镜片,供使用于发光二极管组件中,所述发光二极管组件沿着中心轴由光源侧至像侧排列依序包含一发光二极管晶片、一封胶层及一光学镜片;其特征在于:
所述光学镜片具有一像侧光学面及一光源侧光学面,其中所述像侧光学面为一凸面的菲涅尔光学面,而所述菲涅尔光学面的环面是由一聚光曲面转移形成,且所述环面具有垂直环齿,以使所述发光二极管晶片所发出的光线经由所述封胶层与所述光学镜片后形成椭圆形照角的光型,且所述光学镜片满足以下条件:
0.7 &le; f s r n &le; 2.2
0.1 &le; ( N d 2 - 1 ) d 2 f s &le; 0.625
其中,fs为本光学镜片的有效焦距、rn为菲涅尔光学面的最末环半径、d2为中心轴光学镜片厚度、Nd2为光学镜片的折射率。
2、根据权利要求1所述的凸面菲涅尔发光二极管光学镜片,其特征在于,所述光学镜片进一步满足以下条件:
( &phi; x - &omega; x &pi; ) 2 + ( &phi; y - &omega; y &pi; ) 2 &CenterDot; f g &le; 0.6
其中:
f g = | ( - 1 R F ) &CenterDot; f s |
&omega; x = tan - 1 ( D d 0 + d 1 + d 2 + Lx )
&omega; y = tan - 1 ( D d 0 + d 1 + d 2 + Ly )
其中,fs为本光学镜片的有效焦距,rn为菲涅尔光学面的最末环半径,d2为中心轴光学镜片厚度,Nd2为光学镜片的折射率,2φx为经由光学镜片射出光线在X方向最高光强度一半处的角度,2φy为经由光学镜片射出光线在Y方向最高光强度一半处的角度,2Lx为LED晶片在X方向的长度,2Ly为LED晶片在Y方向的长度,fg为本光学镜片的相当焦距,R1为光源侧光学面的曲率半径,RF为像侧菲涅尔光学面的聚光曲面曲率半径,d0为LED晶片厚度,d1为中心轴的封胶层厚度,D为光学镜片在像侧光学面的半径。
3、根据权利要求1所述的凸面菲涅尔发光二极管光学镜片,其特征在于,所述光学镜片的光源侧光学面为一平面。
4、根据权利要求1所述的凸面菲涅尔发光二极管光学镜片,其特征在于,所述光学镜片的光源侧光学面为一凹面。
5、根据权利要求1所述的凸面菲涅尔发光二极管光学镜片,其特征在于,所述用以转移形成菲涅尔光学面的聚光曲面为球面。
6、根据权利要求1所述的凸面菲涅尔发光二极管光学镜片,其特征在于,所述用以转移形成菲涅尔光学面的聚光曲面为非球面。
7、根据权利要求1所述的凸面菲涅尔发光二极管光学镜片,其特征在于,所述菲涅尔光学面的环面为等环深度。
8、根据权利要求1所述的凸面菲涅尔发光二极管光学镜片,其特征在于,所述菲涅尔光学面的环面为等环间距。
9、根据权利要求1所述的凸面菲涅尔发光二极管光学镜片,其特征在于,所述光学镜片的外缘面具有锥度。
10、根据权利要求1所述的凸面菲涅尔发光二极管光学镜片,其特征在于,所述光学镜片是由选自塑胶光学材料及玻璃光学材料中一种所制成。
11、一种发光二极管组件,其特征在于:其沿着中心轴由光源侧至像侧排列依序包含一根据权利要求1至10的任一项权利要求所述的凸面菲涅尔发光二极管光学镜片、一封胶层及一发光二极管晶片;
所述发光二极管组件具有椭圆照角光型,并满足以下条件:
E1/2≤0.7Ed
其中, E 1 / 2 = I 1 / 2 ( &pi; r n * sin &phi; x ) * ( r n * sin &phi; y ) * &eta; ;
其中,rn为菲涅尔光学面的最末环半径、2φx为经由光学镜片射出光线在X方向最高光强度一半I1/2处的角度、2φy为经由光学镜片射出光线在Y方向最高光强度一半I1/2处的角度、α为LED晶片发出光线的光通量、β为像侧相对无限远处不考虑衰减因素的光线的光通量、η为光通量比值η=β/α、Ed为LED晶片发出的照度。
12、根据权利要求11所述的发光二极管组件,其特征在于,所述发光二极管组件发出光线的光通量与像侧相对无限远处的光通量比值,是满足以下条件:
β/α≥85%
其中,α为所述发光二极管晶片发出光线的光通量、β为所述发光二极管组件像侧相对无限远处忽略空气的折射与散射等效应的光通量。
CN2008101613089A 2008-09-19 2008-09-19 凸面菲涅尔发光二极管光学镜片及其构成发光二极管组件 Expired - Fee Related CN101676615B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101613089A CN101676615B (zh) 2008-09-19 2008-09-19 凸面菲涅尔发光二极管光学镜片及其构成发光二极管组件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101613089A CN101676615B (zh) 2008-09-19 2008-09-19 凸面菲涅尔发光二极管光学镜片及其构成发光二极管组件

Publications (2)

Publication Number Publication Date
CN101676615A true CN101676615A (zh) 2010-03-24
CN101676615B CN101676615B (zh) 2012-05-23

Family

ID=42029273

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101613089A Expired - Fee Related CN101676615B (zh) 2008-09-19 2008-09-19 凸面菲涅尔发光二极管光学镜片及其构成发光二极管组件

Country Status (1)

Country Link
CN (1) CN101676615B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102287755A (zh) * 2010-06-16 2011-12-21 恩普乐股份有限公司 光束控制部件以及具备此光束控制部件的光学装置
CN102590902A (zh) * 2012-02-28 2012-07-18 四川钟顺太阳能开发有限公司 一种菲涅尔聚光透镜及菲涅尔聚光透镜的设计方法
CN102998875A (zh) * 2012-12-28 2013-03-27 广东欧珀移动通信有限公司 一种闪光灯镜片结构和具有该结构的拍摄装置
CN105402689A (zh) * 2015-12-11 2016-03-16 广东洲明节能科技有限公司 基于双菲涅耳环的路灯透镜的设计方法、路灯透镜及led路灯
TWI561771B (en) * 2010-11-19 2016-12-11 Semiconductor Energy Lab Co Ltd Lighting device
CN107726235A (zh) * 2017-09-25 2018-02-23 焦荣 一种led白光光源装置
US10659668B2 (en) 2017-10-10 2020-05-19 Lumileds Holding B.V. Flash device comprising a plurality of LEDs, a Fresnel lens, and a lens array
US11588137B2 (en) 2019-06-05 2023-02-21 Semiconductor Energy Laboratory Co., Ltd. Functional panel, display device, input/output device, and data processing device
US11659758B2 (en) 2019-07-05 2023-05-23 Semiconductor Energy Laboratory Co., Ltd. Display unit, display module, and electronic device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5742438A (en) * 1994-09-16 1998-04-21 In Focus Systems, Inc. Projection illumination system
CN100507633C (zh) * 2007-01-31 2009-07-01 浙江名创光电科技有限公司 大功率led灯用聚光透镜
CN201273524Y (zh) * 2008-09-19 2009-07-15 一品光学工业股份有限公司 凸面菲涅尔发光二极管光学镜片及其构成发光二极管组件

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102287755A (zh) * 2010-06-16 2011-12-21 恩普乐股份有限公司 光束控制部件以及具备此光束控制部件的光学装置
US9553281B2 (en) 2010-11-19 2017-01-24 Semiconductor Energy Laboratory Co., Ltd. Lighting device
TWI561771B (en) * 2010-11-19 2016-12-11 Semiconductor Energy Lab Co Ltd Lighting device
CN102590902B (zh) * 2012-02-28 2015-06-17 四川钟顺太阳能开发有限公司 一种菲涅尔聚光透镜及菲涅尔聚光透镜的设计方法
CN102590902A (zh) * 2012-02-28 2012-07-18 四川钟顺太阳能开发有限公司 一种菲涅尔聚光透镜及菲涅尔聚光透镜的设计方法
CN102998875A (zh) * 2012-12-28 2013-03-27 广东欧珀移动通信有限公司 一种闪光灯镜片结构和具有该结构的拍摄装置
CN105402689A (zh) * 2015-12-11 2016-03-16 广东洲明节能科技有限公司 基于双菲涅耳环的路灯透镜的设计方法、路灯透镜及led路灯
CN105402689B (zh) * 2015-12-11 2018-05-25 广东洲明节能科技有限公司 基于双菲涅耳环的路灯透镜的设计方法、路灯透镜及led路灯
CN107726235A (zh) * 2017-09-25 2018-02-23 焦荣 一种led白光光源装置
CN107726235B (zh) * 2017-09-25 2020-11-10 新沂市中振电器科技有限公司 一种led白光光源装置
US10659668B2 (en) 2017-10-10 2020-05-19 Lumileds Holding B.V. Flash device comprising a plurality of LEDs, a Fresnel lens, and a lens array
US11553124B2 (en) 2017-10-10 2023-01-10 Lumileds Llc Illumination system having a Fresnel lens and an array of lenses
US11588137B2 (en) 2019-06-05 2023-02-21 Semiconductor Energy Laboratory Co., Ltd. Functional panel, display device, input/output device, and data processing device
US11659758B2 (en) 2019-07-05 2023-05-23 Semiconductor Energy Laboratory Co., Ltd. Display unit, display module, and electronic device
US11963430B2 (en) 2019-07-05 2024-04-16 Semiconductor Energy Laboratory Co., Ltd. Display unit, display module, and electronic device

Also Published As

Publication number Publication date
CN101676615B (zh) 2012-05-23

Similar Documents

Publication Publication Date Title
CN101676615B (zh) 凸面菲涅尔发光二极管光学镜片及其构成发光二极管组件
US8042975B2 (en) Plano-fresnel LED lens and LED assembly thereof
TWI364120B (en) Convex-fresnel led lens for angular distribution patterns and led assembly thereof
US8408772B2 (en) LED illumination device
CN201273524Y (zh) 凸面菲涅尔发光二极管光学镜片及其构成发光二极管组件
US8371714B2 (en) Fresnel LED lens and LED assembly thereof
US7980733B2 (en) Aspherical LED angular lens for wide distribution patterns and LED assembly using the same
CN201310816Y (zh) 平面菲涅尔led光学镜片及其所构成的led组件
JP2005257953A (ja) フレネルレンズおよび照明装置
US7993035B2 (en) Aspherical LED angular lens for narrow distribution patterns and LED assembly using the same
TWI479107B (zh) 發光二極體光分配透鏡及其光源裝置
CN109827149B (zh) 一种矩形光斑的闪光灯透镜系统及其设计方法
KR101189652B1 (ko) Led용 조명렌즈 및 이를 이용한 어레이 타입 조명렌즈
CN101676616B (zh) 平面菲涅尔led光学镜片及其所构成的led组件
US8011811B2 (en) Aspherical LED angular lens for central distribution patterns and LED assembly using the same
JP3148493U (ja) 凸面フレネルledレンズ及びそのledアセンブリ
JP3147939U (ja) 平面フレネルledレンズ及びそのledアセンブリ
CN107763450B (zh) 一种用于led舞台灯具的光学系统
CN201233905Y (zh) 非球面窄照角光学镜片及其所构成的发光二极管组件
JP3148803U (ja) 非球面正照射角度発光ダイオードの光学レンズ及びそれを構成する発光ダイオード構成部材
CN101626052B (zh) 非球面窄照角光学镜片及其所构成的发光二极管组件
JP3146186U (ja) 非球面広照射角度発光ダイオードの光学レンズ及びそれを構成する発光ダイオード構成材
JP3164215U (ja) フレネルLEDレンズ及びそのLEDアセンブリ(FresnelLEDLensandLEDAssemblyThereof)
CN101626053B (zh) 非球面正照角光学镜片及其所构成的发光二极管组件
CN201233904Y (zh) 非球面宽照角光学镜片及其所构成的发光二极管组件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120523

Termination date: 20140919

EXPY Termination of patent right or utility model