CN101672978A - Catadioptric type off-axis three-reflector long-wave infrared optical system - Google Patents
Catadioptric type off-axis three-reflector long-wave infrared optical system Download PDFInfo
- Publication number
- CN101672978A CN101672978A CN200910197305A CN200910197305A CN101672978A CN 101672978 A CN101672978 A CN 101672978A CN 200910197305 A CN200910197305 A CN 200910197305A CN 200910197305 A CN200910197305 A CN 200910197305A CN 101672978 A CN101672978 A CN 101672978A
- Authority
- CN
- China
- Prior art keywords
- axis
- optical system
- wave infrared
- lens group
- long
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 28
- 238000003384 imaging method Methods 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims description 3
- 241000406668 Loxodonta cyclotis Species 0.000 claims 1
- 230000004075 alteration Effects 0.000 claims 1
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 238000012546 transfer Methods 0.000 description 4
- 238000013461 design Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003331 infrared imaging Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Landscapes
- Lenses (AREA)
Abstract
本发明公开了一种用于星载或者机载对地观察折反射式离轴三反长波红外光学系统,该系统为凹反射镜1、凸反射镜2和凹反射镜3构成的离轴三反系统与变倍率透镜组4组成的光学系统。其中离轴三反能够完善成像,其焦距较系统焦距长。变倍率透镜组自身是消色差的,其放大倍率0.35≤β≤1,对离轴三反镜焦距进行缩短,增大系统的相对孔径。该结构简单,主要应用于机载或者星载对地成像仪器中的长波红外相机中。
The invention discloses a catadioptric off-axis three-reflection long-wave infrared optical system for space-borne or airborne observation of the ground. An optical system composed of a reverse system and a zoom lens group 4. Among them, the off-axis three-mirror can improve the imaging, and its focal length is longer than that of the system. The variable magnification lens group itself is achromatic, and its magnification is 0.35≤β≤1, which shortens the focal length of the off-axis three mirrors and increases the relative aperture of the system. The structure is simple, and is mainly used in long-wave infrared cameras in airborne or spaceborne ground imaging instruments.
Description
技术领域 technical field
本发明涉及光学元件、系统,具体是指一种用于机载或星载对地观察成像仪中的折反射式离轴三反射大视场大相对孔径长波红外光学系统。The present invention relates to optical elements and systems, in particular to a catadioptric off-axis three-reflection, large field of view, and large relative aperture long-wave infrared optical system used in an airborne or spaceborne ground observation imager.
背景技术 Background technique
长波红外成像光学系统中,全透射式系统受光学材料的制约,一般口径在Φ200mm以下。折反射系统一般采用同轴两反射镜加校正透镜组的结构,该结构存在中心遮拦,降低了系统MTF,且不适合大视场的场合的应用。离轴三反系统随着相对孔径的增大,其加工与装调难度亦增大。In the long-wave infrared imaging optical system, the full transmission system is restricted by the optical material, and the general aperture is below Φ200mm. The catadioptric system generally adopts the structure of two coaxial mirrors plus a correction lens group. This structure has a central occlusion, which reduces the MTF of the system, and is not suitable for applications with a large field of view. With the increase of the relative aperture of the off-axis three-mirror system, its processing and assembly difficulty also increases.
在航空航天遥感应用中,多通道相机中一般共用反射望远镜系统,在望远镜焦面之前放置视场分离器或者分色装置,分为可见光(VIS),近红外(NIR),短波红外(SWIR)、长波红外(LWIR)通道。长波红外通道的分辨率一般低于可见近红外,短波通道分辨率。因此要求该通道具有小焦距,大相对孔径。当可见近红外直接使用离轴三反成像时,长波红外通道则需要对完善成像的离轴三反系统焦距进行缩小。In aerospace remote sensing applications, the reflective telescope system is generally shared in multi-channel cameras, and a field of view separator or color separation device is placed in front of the focal plane of the telescope, which is divided into visible light (VIS), near infrared (NIR), short-wave infrared (SWIR) , Long wave infrared (LWIR) channel. The resolution of the long-wave infrared channel is generally lower than that of the visible near-infrared and short-wave channel. Therefore, the channel is required to have a small focal length and a large relative aperture. When the visible near-infrared is directly used for off-axis three-mirror imaging, the long-wave infrared channel needs to reduce the focal length of the off-axis three-mirror system for perfect imaging.
发明内容 Contents of the invention
基于上述问题的存在,本发明提出一种折反射式离轴三反长波红外光学系统。本发明的目的是:通过在离轴三反镜系统后加入变倍率透镜组,实现大视场大相对孔径的光学系统。变倍率透镜组的放大倍率的范围为0.35≤β≤1,从而由小相对孔径的离轴三反镜系统获得大相对孔径的长波红外光学系统,亦可用于两档变焦长波红外系统中。Based on the above problems, the present invention proposes a catadioptric off-axis three reflection long-wave infrared optical system. The purpose of the present invention is to realize an optical system with a large field of view and a large relative aperture by adding a variable magnification lens group behind the off-axis three-mirror system. The range of the magnification of the variable magnification lens group is 0.35≤β≤1, so that a long-wave infrared optical system with a large relative aperture can be obtained from an off-axis three-mirror system with a small relative aperture, and can also be used in a two-speed zoom long-wave infrared system.
本发明的折反射式离轴三反长波红外光学系统的结构如图1所示,按顺序由反射镜1、反射镜2、反射镜3,变倍透镜组4构成的成像光学系统,其特征在于:将传统的离轴三反镜系统后加入变倍透镜组,缩小其焦距,增大相对孔径,同时保留其大视场的优点。The structure of the catadioptric off-axis three-reflection long-wave infrared optical system of the present invention is as shown in Figure 1, and the imaging optical system composed of
来自物方的光束经过反射镜1,射向凸面反射镜2,再由二次非球面反射镜3反射,与变倍率透镜4进一步会聚于像平面5。The light beam from the object side passes through the
所说的折反射式离轴三反长波红外光学系统必须满足以下要求:The catadioptric off-axis three-reflection long-wave infrared optical system must meet the following requirements:
1.反射镜1、反射镜2、反射镜3组成的离轴三反镜系统能够完善成像。1. The off-axis three-mirror system composed of
2.变倍率透镜组的放大倍率的范围为0.35≤β≤1。2. The magnification range of the variable magnification lens group is 0.35≤β≤1.
本发明的光学系统最大的特点就是在完善成像的离轴三反后加入变倍透镜组,增大相对孔径。保证离轴三反可以用可见光单独装调完成之后,加入变倍率透镜组,从而保证系统的装调的难度没有提高。The biggest feature of the optical system of the present invention is to add a variable power lens group after perfecting the imaging off-axis three-mirror to increase the relative aperture. After ensuring that the off-axis three-mirror can be adjusted independently with visible light, a variable magnification lens group is added to ensure that the difficulty of system installation and adjustment does not increase.
附图说明 Description of drawings
图1为折反射式离轴三反长波红外光学系统结构图,其中:L1为凹面反射镜1与凸面反射镜2之间距离;L2为凸面反射镜2与凹面反射镜3之间距离;L3为凹面反射镜3与变倍率透镜组4之间距离;L4为折射透镜4-1与折射透镜4-2之间距离;L5为折射透镜4-2与折射透镜4-3之间距离;L6为折射透镜4-3与像面5之间距离;D1为反射镜1偏离系统光轴距离;D2为反射镜3偏离系统光轴距离;D3为变倍率透镜组4与物面5偏离系统光轴的距离;α为来自物方光线与系统光轴的角度;R411为折射透镜4-1前表面曲率半径;R412为折射透镜4-1后表面曲率半径;R421为折射透镜4-2前表面曲率半径;R422为折射透镜4-2后表面曲率半径;R431为折射透镜4-3前表面曲率半径;R432为折射透镜4-3后表面曲率半径。Figure 1 is a structural diagram of a catadioptric off-axis three-mirror long-wave infrared optical system, wherein: L1 is the distance between the
图2为实例中离轴三反系统在可见光波段(0.48μm~0.66μm)的光学传递函数曲线图。Fig. 2 is a graph of the optical transfer function of the off-axis three-mirror system in the visible light band (0.48 μm-0.66 μm) in the example.
图3为实例中离轴三反加变倍透镜组后系统在8.0μm~12.0μm的光学传递函数曲线图。Fig. 3 is a graph of the optical transfer function of the system at 8.0 μm to 12.0 μm after the off-axis triple mirror plus zoom lens group in the example.
具体实施方法Specific implementation method
按本发明中附图1所示的光学系统结构,我们设计了一长波红外光学系统,技术指标如下:According to the optical system structure shown in accompanying
工作波段:8.0μm~12.0μmWorking band: 8.0μm~12.0μm
口径:Φ300mmDiameter: Φ300mm
视场:±2.0°(线视场)Field of view: ±2.0° (line field of view)
离轴三反F数:F/3.5Off-axis three-mirror F number: F/3.5
系统F数:F/1.2System F number: F/1.2
系统具体结构参数设计结果附后,其中离轴三反系统的光学传递函数曲线见图2,加入变倍率透镜组后系统的光学传递函数曲线见图3。The design results of the specific structural parameters of the system are attached. The optical transfer function curve of the off-axis three-mirror system is shown in Figure 2, and the optical transfer function curve of the system after adding the variable magnification lens group is shown in Figure 3.
光学结构参数设计结果:Design results of optical structure parameters:
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910197305A CN101672978A (en) | 2009-10-16 | 2009-10-16 | Catadioptric type off-axis three-reflector long-wave infrared optical system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910197305A CN101672978A (en) | 2009-10-16 | 2009-10-16 | Catadioptric type off-axis three-reflector long-wave infrared optical system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101672978A true CN101672978A (en) | 2010-03-17 |
Family
ID=42020274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910197305A Pending CN101672978A (en) | 2009-10-16 | 2009-10-16 | Catadioptric type off-axis three-reflector long-wave infrared optical system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101672978A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102087408A (en) * | 2010-12-30 | 2011-06-08 | 中国科学院长春光学精密机械与物理研究所 | Triple reflection type optical system with large view field, ultra low distortion and multiple spectrums |
CN102393559A (en) * | 2011-12-07 | 2012-03-28 | 四川九洲电器集团有限责任公司 | Athermal catadioptric homocentric optical system |
RU2461030C1 (en) * | 2011-05-18 | 2012-09-10 | Открытое акционерное общество "Красногорский завод им. С.А. Зверева" | Catadioptric lens (versions) |
CN103293697A (en) * | 2013-06-21 | 2013-09-11 | 中科院南京天文仪器有限公司 | Large-visual-field off-axis prime focus type collimator optical system |
CN106772936A (en) * | 2016-12-08 | 2017-05-31 | 北京控制工程研究所 | One kind miniaturization Rotating Platform for High Precision Star Sensor optical system |
RU2631531C1 (en) * | 2016-05-10 | 2017-09-25 | Публичное акционерное общество "Красногорский завод им. С.А. Зверева" | Mirror-lensed objective for work in near ir-spectral range |
CN107728316A (en) * | 2017-09-18 | 2018-02-23 | 天津大学 | With the Equivalent analysis method of off-axis three reflecting optical systems imaging law |
CN108226901A (en) * | 2018-02-06 | 2018-06-29 | 北京万集科技股份有限公司 | Laser radar optical system |
CN108237436A (en) * | 2017-12-19 | 2018-07-03 | 中国科学院西安光学精密机械研究所 | Manufacturing method of full-free-form surface off-axis three-mirror system |
CN108345090A (en) * | 2018-03-23 | 2018-07-31 | 杭州有人光电技术有限公司 | A kind of full HD projection lens of L-type short focus of F numbers |
CN110764241A (en) * | 2019-11-29 | 2020-02-07 | 中国科学院长春光学精密机械与物理研究所 | A multi-focal distance axis three-mirror imaging optical system |
CN113484845A (en) * | 2021-05-22 | 2021-10-08 | 桂林理工大学 | Unmanned aerial vehicle-oriented light and small off-axis four-reflection type laser radar optical receiving device |
CN113687500A (en) * | 2021-08-03 | 2021-11-23 | 润坤(上海)光学科技有限公司 | Refractive detector optical system |
-
2009
- 2009-10-16 CN CN200910197305A patent/CN101672978A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102087408A (en) * | 2010-12-30 | 2011-06-08 | 中国科学院长春光学精密机械与物理研究所 | Triple reflection type optical system with large view field, ultra low distortion and multiple spectrums |
RU2461030C1 (en) * | 2011-05-18 | 2012-09-10 | Открытое акционерное общество "Красногорский завод им. С.А. Зверева" | Catadioptric lens (versions) |
CN102393559A (en) * | 2011-12-07 | 2012-03-28 | 四川九洲电器集团有限责任公司 | Athermal catadioptric homocentric optical system |
CN102393559B (en) * | 2011-12-07 | 2013-12-04 | 四川九洲电器集团有限责任公司 | Athermal catadioptric homocentric optical system |
CN103293697A (en) * | 2013-06-21 | 2013-09-11 | 中科院南京天文仪器有限公司 | Large-visual-field off-axis prime focus type collimator optical system |
RU2631531C1 (en) * | 2016-05-10 | 2017-09-25 | Публичное акционерное общество "Красногорский завод им. С.А. Зверева" | Mirror-lensed objective for work in near ir-spectral range |
CN106772936B (en) * | 2016-12-08 | 2019-06-18 | 北京控制工程研究所 | Optical system for miniaturized high-precision star sensor |
CN106772936A (en) * | 2016-12-08 | 2017-05-31 | 北京控制工程研究所 | One kind miniaturization Rotating Platform for High Precision Star Sensor optical system |
CN107728316B (en) * | 2017-09-18 | 2019-11-29 | 天津大学 | With the Equivalent analysis method of off-axis three reflecting optical systems imaging law |
CN107728316A (en) * | 2017-09-18 | 2018-02-23 | 天津大学 | With the Equivalent analysis method of off-axis three reflecting optical systems imaging law |
CN108237436A (en) * | 2017-12-19 | 2018-07-03 | 中国科学院西安光学精密机械研究所 | Manufacturing method of full-free-form surface off-axis three-mirror system |
CN108226901A (en) * | 2018-02-06 | 2018-06-29 | 北京万集科技股份有限公司 | Laser radar optical system |
CN108226901B (en) * | 2018-02-06 | 2024-03-01 | 武汉万集光电技术有限公司 | Laser radar optical system |
CN108345090A (en) * | 2018-03-23 | 2018-07-31 | 杭州有人光电技术有限公司 | A kind of full HD projection lens of L-type short focus of F numbers |
CN110764241A (en) * | 2019-11-29 | 2020-02-07 | 中国科学院长春光学精密机械与物理研究所 | A multi-focal distance axis three-mirror imaging optical system |
CN113484845A (en) * | 2021-05-22 | 2021-10-08 | 桂林理工大学 | Unmanned aerial vehicle-oriented light and small off-axis four-reflection type laser radar optical receiving device |
CN113687500A (en) * | 2021-08-03 | 2021-11-23 | 润坤(上海)光学科技有限公司 | Refractive detector optical system |
CN113687500B (en) * | 2021-08-03 | 2024-03-26 | 润坤(上海)光学科技有限公司 | Optical system of deflection type detector |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101672978A (en) | Catadioptric type off-axis three-reflector long-wave infrared optical system | |
TWI485427B (en) | Off-axial three-mirror system | |
TWI485443B (en) | Off-axis three-mirror | |
WO2020107759A1 (en) | Optical lens and imaging device | |
EP3940442B1 (en) | Optical imaging lens and imaging device | |
CN109459844B (en) | Compact large-view-field mutual-embedded total-reflection optical system | |
CN106990509B (en) | Panoramic fish-eye lens | |
WO2018177416A1 (en) | Optical lens combination and imaging device | |
CN108732734B (en) | Free-form surface-based fast-focus ratio reflection type long-wave infrared viewfinder optical system | |
CN109283671B (en) | A light, small, large field of view and low distortion quasi-coaxial five-mirror optical system | |
CN103226236A (en) | Large-viewing-field spherical three-mirror optical system | |
CN114509865B (en) | Coaxial four-reflection optical system for visible light-long wave infrared common-caliber imaging | |
CN109239898B (en) | Compact coaxial refraction and reflection type telescope objective lens | |
CN113075788A (en) | Multispectral multichannel common-caliber zooming imaging optical system | |
CN101697031A (en) | Wideband, high-resolution and varifocal three-mirror reflective optical system | |
CN113960750A (en) | Large-aperture infrared wide-angle ToF lens | |
CN104330871B (en) | A Shortwave Infrared Telescope Lens | |
CN111077664B (en) | Visible light-medium wave infrared integrated optical lens | |
CN203217172U (en) | Catadioptric ultra-wide wave band small obscuration ratio telescope optical system | |
CN111896480A (en) | An Off-axis Broadband Reflective Simultaneous Polarization Imaging System | |
CN108594409B (en) | High resolution, large image plane, low cost, no stray light zoom optical system | |
CN109669260A (en) | Fast coke ratio based on secondary imaging minimizes off-axis three anti-freeform optics system | |
CN111323888B (en) | Optical lens and imaging apparatus | |
CN110471173A (en) | A kind of four anti-medium-wave infrared finder optical systems with diffraction surfaces | |
CN117631074A (en) | Mid-wave infrared and long-wave infrared multispectral imaging system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Open date: 20100317 |