CN101666879B - Method for improving resolution of linear-array three-dimensional imaging synthetic aperture radars - Google Patents

Method for improving resolution of linear-array three-dimensional imaging synthetic aperture radars Download PDF

Info

Publication number
CN101666879B
CN101666879B CN2008100459746A CN200810045974A CN101666879B CN 101666879 B CN101666879 B CN 101666879B CN 2008100459746 A CN2008100459746 A CN 2008100459746A CN 200810045974 A CN200810045974 A CN 200810045974A CN 101666879 B CN101666879 B CN 101666879B
Authority
CN
China
Prior art keywords
resolution
synthetic aperture
low
coefficient matrix
aperture radar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2008100459746A
Other languages
Chinese (zh)
Other versions
CN101666879A (en
Inventor
张晓玲
齐文元
师君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electronic Science And Technology Of Sichuan Foundation For Education Development, University of
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN2008100459746A priority Critical patent/CN101666879B/en
Publication of CN101666879A publication Critical patent/CN101666879A/en
Application granted granted Critical
Publication of CN101666879B publication Critical patent/CN101666879B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Image Processing (AREA)

Abstract

本发明提供了一种线阵三维成像合成孔径雷达分辨率融合方法,它是通过采用两部运动轨迹正交的线阵三维成像合成孔径雷达对同一区域进行成像,然后采用离散小波变换技术,将得到的两幅图像进行融合,从而得到高分辨率的线阵三维成像合成孔径雷达图像。本发明的优点在于利用较短的阵列天线实现了线阵三维成像合成孔径雷达高分辨率成像,解决了线阵三维成像合成孔径雷达获得的图像的切航迹分辨率较低的问题。本发明可以广泛用于合成孔径雷达成像、地球遥感、地质测绘等领域。

Figure 200810045974

The invention provides a resolution fusion method of linear array three-dimensional imaging synthetic aperture radar, which uses two linear array three-dimensional imaging synthetic aperture radars with orthogonal motion trajectories to image the same area, and then adopts discrete wavelet transform technology to convert The obtained two images are fused to obtain a high-resolution linear array three-dimensional imaging synthetic aperture radar image. The invention has the advantage of realizing the high-resolution imaging of the linear array three-dimensional imaging synthetic aperture radar by using a shorter array antenna, and solving the problem of low resolution of the cut track of the image obtained by the linear array three-dimensional imaging synthetic aperture radar. The invention can be widely used in the fields of synthetic aperture radar imaging, earth remote sensing, geological surveying and mapping, and the like.

Figure 200810045974

Description

一种提高线阵三维成像合成孔径雷达分辨率的方法A Method of Improving the Resolution of Linear Array 3D Imaging Synthetic Aperture Radar

技术领域 technical field

本发明属于雷达技术领域,它特别涉及线阵三维成像合成孔径雷达(LASAR)成像技术领域。The invention belongs to the technical field of radar, in particular to the technical field of linear array three-dimensional imaging synthetic aperture radar (LASAR) imaging.

背景技术 Background technique

线阵三维成像合成孔径雷达(LASAR)是将线性阵列天线固定在运动的平台上,以合成二维平面阵列,并进行三维成像的一种新型合成孔径雷达系统。线阵三维成像合成孔径雷达能够实现目前单天线合成孔径雷达不能实现的对三维地面进行成像的能力,目前已成为合成孔径雷达领域的研究热点。根据本发明人了解以及已发表的文献,例如:J.Klare,A.Brenner,J.Ender,“A New Airborne Radarfor 3D Imaging-Image Formation using the ARTINO Principle-”,EUSAR,Dresden,Germany,2006.BASSEM  R.MAHAFZA,MITCH SAJJADI“Three-dimensional SAR imaging using linear array in transverse motion”IEEEtransaction on aerospace and electronic system VOL 32,NO.1JANUARY 1996,由于受到阵列天线长度的限制,线阵三维成像合成孔径雷达获得的图像的切航迹分辨率一般小于沿航迹方向分辨率,为了提高线阵三维成像合成孔径雷达的分辨率,必须研究其相应的分辨率融合技术。根据本发明人了解,关于线阵三维成像合成孔径雷达分辨率融合方法,目前尚没有公开发表的技术文献。Linear array three-dimensional imaging synthetic aperture radar (LASAR) is a new type of synthetic aperture radar system that fixes the linear array antenna on a moving platform to synthesize a two-dimensional planar array and perform three-dimensional imaging. Linear array three-dimensional imaging synthetic aperture radar can realize the ability of imaging three-dimensional ground which cannot be realized by single-antenna synthetic aperture radar at present, and has become a research hotspot in the field of synthetic aperture radar. According to the inventor's knowledge and published documents, for example: J.Klare, A.Brenner, J.Ender, "A New Airborne Radar for 3D Imaging-Image Formation using the ARTINO Principle-", EUSAR, Dresden, Germany, 2006. BASSEM R.MAHAFZA, MITCH SAJJADI "Three-dimensional SAR imaging using linear array in transverse motion" IEEEtransaction on aerospace and electronic system VOL 32, NO.1JANUARY 1996, due to the limitation of the length of the array antenna, the linear array three-dimensional imaging synthetic aperture radar obtained The tangent track resolution of the image is generally smaller than the along track direction resolution. In order to improve the resolution of linear array 3D imaging synthetic aperture radar, the corresponding resolution fusion technology must be studied. According to the knowledge of the present inventors, there is no published technical literature on the resolution fusion method of linear array three-dimensional imaging synthetic aperture radar.

发明内容 Contents of the invention

为了克服现有线阵三维成像合成孔径雷达获得的图像的切航迹分辨率一般小于沿航迹方向分辨率的问题,本发明提供了一种提高线阵三维成像合成孔径雷达分辨率的方法,采用本发明的方法能够得到正交轨迹三维成像合成孔径雷达融合后的高分辨率线阵三维成像合成孔径雷达图像。In order to overcome the problem that the tangent track resolution of images obtained by the existing linear array 3D imaging synthetic aperture radar is generally smaller than the resolution along the track direction, the present invention provides a method for improving the resolution of the linear array 3D imaging synthetic aperture radar. The method of the invention can obtain the high-resolution line array three-dimensional imaging synthetic aperture radar image after the fusion of the orthogonal track three-dimensional imaging synthetic aperture radar.

为了方便描述本发明的内容,首先作以下术语定义:In order to describe content of the present invention conveniently, at first do following term definition:

定义1、线阵三维成像合成孔径雷达(LASAR)Definition 1. Linear Array 3D Imaging Synthetic Aperture Radar (LASAR)

线阵三维成像合成孔径雷达(LASAR)是将线性阵列天线固定在运动的平台上,以合成二维平面阵列,并进行三维成像的一种新型合成孔径雷达系统。详见文献:R.Giret,H.Jeuland,P.Enert,“A Study of a 3D-SAR Concept for aMillimeter-Wave Imaging Radar onboard an UAV”,European Radar Conference,2004,pp 201-204.。由于受到阵列天线长度的限制,线阵三维成像合成孔径雷达获得的图像的切航迹分辨率一般小于沿航迹方向分辨率。Linear array three-dimensional imaging synthetic aperture radar (LASAR) is a new type of synthetic aperture radar system that fixes the linear array antenna on a moving platform to synthesize a two-dimensional planar array and perform three-dimensional imaging. See literature for details: R.Giret, H.Jeuland, P.Enert, "A Study of a 3D-SAR Concept for aMillimeter-Wave Imaging Radar onboard an UAV", European Radar Conference, 2004, pp 201-204.. Due to the limitation of the length of the array antenna, the tangent-track resolution of the images obtained by linear-array 3D imaging synthetic aperture radar is generally smaller than the along-track resolution.

定义2、线阵三维成像合成孔径雷达图像Definition 2. Linear array 3D imaging synthetic aperture radar image

线阵三维成像合成孔径雷达图像是指对线阵三维成像合成孔径雷达数据进行成像处理后的得到的数据,其中包含了空间中不同位置处散射系数的分布。详见文献:J.Klare,A.Brenner,J.Ender,“A New Airborne Radar for 3D Imaging-Image Formation using the ARTINO Principle-”,EUSAR,Dresden,Germany,2006。由线阵三维成像合成孔径雷达图像可以得到该图像的长度和宽度,分别记做P和Q。Linear array 3D imaging synthetic aperture radar image refers to the data obtained after imaging processing of linear array 3D imaging synthetic aperture radar data, which includes the distribution of scattering coefficients at different positions in space. See literature for details: J.Klare, A.Brenner, J.Ender, "A New Airborne Radar for 3D Imaging-Image Formation using the ARTINO Principle-", EUSAR, Dresden, Germany, 2006. The length and width of the image can be obtained from the linear array three-dimensional imaging synthetic aperture radar image, which are recorded as P and Q respectively.

定义3、正交轨迹三维成像合成孔径雷达Definition 3. Orthogonal track three-dimensional imaging synthetic aperture radar

正交轨迹三维成像合成孔径雷达是指两部线阵三维成像合成孔径雷达沿相互垂直的运动轨迹飞行,其轨迹方向分别记做x方向和y方向,合成孔径雷达SAR-A的合成孔径方向沿x方向,由合成孔径雷达SAR-A所成的图像在x方向有较高的分辨率,y方向为雷达SAR-A的真实孔径方向,y方向的分辨率较低。合成孔径雷达SAR-B与之正好相反。其工作原理图详见附图1,正交轨迹三维成像合成孔径雷达的工作过程详见文献:J.Klare,A.Brenner,J.Ender,“ANew Airborne Radar for 3D Imaging-Image Formation using the ARTINO Principle-”,EUSAR,Dresden,Germany,2006。Orthogonal track three-dimensional imaging synthetic aperture radar means that two linear array three-dimensional imaging synthetic aperture radars fly along mutually perpendicular motion tracks, and the track directions are respectively recorded as x direction and y direction, and the synthetic aperture direction of synthetic aperture radar SAR-A is along In the x direction, the image formed by the synthetic aperture radar SAR-A has a higher resolution in the x direction, and the y direction is the real aperture direction of the radar SAR-A, and the resolution in the y direction is lower. Synthetic Aperture Radar (SAR-B) is just the opposite. See attached drawing 1 for its working principle diagram, and refer to the literature for the working process of three-dimensional imaging synthetic aperture radar with orthogonal trajectory: J.Klare, A.Brenner, J.Ender, "A New Airborne Radar for 3D Imaging-Image Formation using the ARTINO Principle-", EUSAR, Dresden, Germany, 2006.

定义4、x(y)方向低分辨率线阵三维成像合成孔径雷达图像Definition 4. Low-resolution linear array 3D imaging synthetic aperture radar image in x(y) direction

利用正交轨迹三维成像合成孔径雷达可得到两幅线阵三维成像合成孔径雷达图像,其中一幅线阵三维成像合成孔径雷达图像具有高y方向分辨率和低x方向分辨率,称作x方向低分辨率线阵三维成像合成孔径雷达图像,记做Gx;另外一幅线阵三维成像合成孔径雷达图像具有高x方向分辨率和低y方向分辨率,称作y方向低分辨率线阵三维成像合成孔径雷达图像,记做GyTwo linear array 3D imaging synthetic aperture radar images can be obtained by using the orthogonal track 3D imaging synthetic aperture radar, one of which has a high resolution in the y direction and a low resolution in the x direction, called the x direction The low-resolution linear array 3D imaging SAR image is denoted as G x ; the other linear array 3D imaging SAR image has high x-direction resolution and low y-direction resolution, which is called y-direction low-resolution linear array Three-dimensional imaging synthetic aperture radar image, denoted as G y .

定义5、一维离散小波分解与重构Definition 5. One-dimensional discrete wavelet decomposition and reconstruction

对于一维信号fj+1(n),其快速正交小波变换关系如下:For one-dimensional signal f j+1 (n), its fast orthogonal wavelet transform relationship is as follows:

快速正交小波分解:Fast orthogonal wavelet decomposition:

ff ~~ jj (( nno )) == ff jj ++ 11 (( nno )) ** hh (( 22 nno ))

dd ~~ jj (( nno )) == ff jj ++ 11 (( nno )) ** hh (( 22 nno ))

其中,*表示卷积,n表示离散信号点。h(2n)和g(2n)表示对高分辨逼近信号进行低通h(n)(高通g(n))滤波后进行1/2采样。g(n)为h(n)对应的高通滤波器。Among them, * means convolution, and n means discrete signal points. h(2n) and g(2n) represent 1/2 sampling after low-pass h(n) (high-pass g(n)) filtering of the high-resolution approximation signal. g(n) is the high-pass filter corresponding to h(n).

快速正交小波重建:Fast Orthogonal Wavelet Reconstruction:

Figure GSB00000644490200034
Figure GSB00000644490200034

Figure GSB00000644490200035
Figure GSB00000644490200035

上述公式的证明详见文献Stephane Mallat,“A Wavelet Tour of Signalprocessing”,[c]2nd ed.Chap.VII,Academic press Elsevier Pte Ltd,2003。快速正交小波变换可以用系统框图的形式参见附图2。The proof of the above formula is detailed in the literature Stephane Mallat, "A Wavelet Tour of Signalprocessing", [c] 2nd ed.Chap.VII, Academic press Elsevier Pte Ltd, 2003. Fast Orthogonal Wavelet Transform can be seen in Figure 2 in the form of a system block diagram.

定义6、二维离散小波分解与重构Definition 6. Two-dimensional discrete wavelet decomposition and reconstruction

一幅图像fj+1(n1,n2)可以通过一下公式进行离散小波分解:An image f j+1 (n 1 , n 2 ) can be decomposed by discrete wavelet using the following formula:

ff ~~ jj (( nno 11 ,, nno 22 )) == ff jj ++ 11 (( nno 11 ,, nno 22 )) ** [[ hh (( 22 nno 11 )) hh (( 22 nno 22 )) ]]

dd ~~ jj 11 (( nno 11 ,, nno 22 )) == ff jj ++ 11 (( nno 11 ,, nno 22 )) ** [[ hh (( 22 nno 11 )) gg (( 22 nno 22 )) ]]

dd ~~ jj 22 (( nno 11 ,, nno 22 )) == ff jj ++ 11 (( nno 11 ,, nno 22 )) ** [[ gg (( 22 nno 11 )) hh (( 22 nno 22 )) ]]

dd ~~ jj 33 (( nno 11 ,, nno 22 )) == ff jj ++ 11 (( nno 11 ,, nno 22 )) ** [[ gg (( 22 nno 11 )) gg (( 22 nno 22 )) ]]

其中,*表示卷积。n1,n2分别表示二维图像的横维和纵维像素点。h(n)是低通滤波器,g(n)是对应的高通滤波器。h(2n1),h(2n2)分别表示对图像横维和纵维低通滤波后下采样,g(2n1),g(2n2)分别表示对图像横维和纵维高通滤波后下采样。分解后

Figure GSB00000644490200041
是原图的低频系数矩阵,
Figure GSB00000644490200042
Figure GSB00000644490200043
分别是水平,垂直和对角线方向的高频系数矩阵。Among them, * means convolution. n 1 and n 2 respectively denote pixels in the horizontal and vertical dimensions of the two-dimensional image. h(n) is a low-pass filter and g(n) is the corresponding high-pass filter. h(2n 1 ), h(2n 2 ) represent the downsampling of the horizontal and vertical dimensions of the image after low-pass filtering, respectively, g(2n 1 ), g(2n 2 ) represent the downsampling of the image after high-pass filtering of the horizontal and vertical dimensions, respectively . after decomposition
Figure GSB00000644490200041
is the low-frequency coefficient matrix of the original image,
Figure GSB00000644490200042
and
Figure GSB00000644490200043
are the high-frequency coefficient matrices for the horizontal, vertical and diagonal directions, respectively.

利用上述系数小波重构的方法为:The method of wavelet reconstruction using the above coefficients is:

Figure GSB00000644490200044
Figure GSB00000644490200044

其中:in:

Figure GSB00000644490200046
Figure GSB00000644490200046

离散小波分解与重构的流程见附图3。离散小波分解与重构的方法详见:StephaneMallat,“A Wavelet Tour of Signal processing”,[c]2nd ed.Chap.VII,Academic pressElsevier Pte Ltd,2003,pp.221-314The process of discrete wavelet decomposition and reconstruction is shown in Figure 3. For the method of discrete wavelet decomposition and reconstruction, see: StephaneMallat, "A Wavelet Tour of Signal processing", [c] 2nd ed.Chap.VII, Academic press Elsevier Pte Ltd, 2003, pp.221-314

定义7,Meyer小波:Definition 7, Meyer wavelet:

Meyer小波是由低通滤波器

Figure GSB00000644490200047
构建而成。具体构建方法详见:StephaneMallat,“A Wavelet Tour of Signal processing”,[c]2nd ed.Chap.VII,Academic pressElsevier Pte Ltd,2003,
Figure GSB00000644490200048
的表达式如下:The Meyer wavelet is composed of a low-pass filter
Figure GSB00000644490200047
built. The specific construction method is detailed in: StephaneMallat, "A Wavelet Tour of Signal processing", [c]2nd ed.Chap.VII, Academic pressElsevier Pte Ltd, 2003,
Figure GSB00000644490200048
The expression of is as follows:

hh ^^ (( ωω )) == 22 ωω ∈∈ [[ -- ππ // 33 ,, ππ // 33 ]] 00 ωω ∈∈ [[ -- ππ ,, -- 22 ππ // 33 ]] ∪∪ [[ -- 22 ππ // 33 ,, ππ ]]

本发明提供了一种提高线阵三维成像合成孔径雷达分辨率的方法,它包括以下几个步骤:The invention provides a method for improving the resolution of linear array three-dimensional imaging synthetic aperture radar, which comprises the following steps:

步骤1、获得低分辨率合成孔径雷达图像Step 1. Obtain a low-resolution SAR image

利用正交轨迹三维成像合成孔径雷达得到x方向低分辨率线阵三维成像合Using Orthogonal Trajectory 3D Imaging Synthetic Aperture Radar to Obtain Low Resolution Linear Array 3D Imaging Synthesis in X Direction

成孔径雷达图像Gx和y方向低分辨率线阵三维成像合成孔径雷达图像GyAperture radar image G x and y direction low-resolution linear array three-dimensional imaging synthetic aperture radar image G y ;

步骤2、对低分辨率图像的高分辨率维进行离散小波分解:Step 2. Perform discrete wavelet decomposition on the high-resolution dimension of the low-resolution image:

采用Meyer小波,利用一维小波分解公式

Figure GSB00000644490200051
Figure GSB00000644490200052
其中,h(2n)表示高分辨逼近信号通过低通滤波器h(n)滤波后对其进行1/2采样得到的信号,
Figure GSB00000644490200054
是对应的小波正交基下的分解系数,fj+1(n)是在分辨率j+1下的离散表示形式;首先对y方向低分辨率线阵三维成像合成孔径雷达图像Gy进行x方向一维离散小波分解,得到低频系数矩阵
Figure GSB00000644490200055
和水平方向高频系数矩阵
Figure GSB00000644490200056
然后对x方向低分辨率线阵三维成像合成孔径雷达图像Gx进行y方向一维离散小波分解,得到低频系数矩阵
Figure GSB00000644490200057
和垂直方向高频系数矩阵
Figure GSB00000644490200058
其中,y方向和x方向的低分辨率线阵三维成像合成孔径雷达图像通过一维离散小波分解得到低频系数矩阵
Figure GSB00000644490200059
是相同的,n1、n2分别表示二维图像的横维和纵维像素点;n1、n2的取值范围取决于二维图像的大小;Using Meyer wavelet, using one-dimensional wavelet decomposition formula
Figure GSB00000644490200051
Figure GSB00000644490200052
Among them, h(2n) represents the signal obtained by sampling the high-resolution approximation signal through the low-pass filter h(n) and then sampling it by 1/2, and
Figure GSB00000644490200054
is the decomposition coefficient under the corresponding wavelet orthogonal basis, f j+1 (n) is the discrete representation at the resolution j + 1; One-dimensional discrete wavelet decomposition in the x direction to obtain the low-frequency coefficient matrix
Figure GSB00000644490200055
and the matrix of high-frequency coefficients in the horizontal direction
Figure GSB00000644490200056
Then, the low-resolution line array 3D synthetic aperture radar image G x in the x direction is decomposed by one-dimensional discrete wavelet in the y direction to obtain the low-frequency coefficient matrix
Figure GSB00000644490200057
and the matrix of high-frequency coefficients in the vertical direction
Figure GSB00000644490200058
Among them, the low-resolution linear array three-dimensional imaging synthetic aperture radar image in the y direction and x direction is decomposed by one-dimensional discrete wavelet to obtain the low-frequency coefficient matrix
Figure GSB00000644490200059
are the same, n 1 and n 2 represent the horizontal and vertical pixels of the two-dimensional image respectively; the value range of n 1 and n 2 depends on the size of the two-dimensional image;

步骤3、利用步骤2中得到的小波系数进行离散小波差值补零:Step 3, using the wavelet coefficients obtained in step 2 to perform discrete wavelet difference zero padding:

利用低频系数矩阵

Figure GSB000006444902000510
水平方向高频系数矩阵
Figure GSB000006444902000511
和垂直方向高频系数矩阵
Figure GSB000006444902000512
按照公式:Using the low frequency coefficient matrix
Figure GSB000006444902000510
Horizontal High Frequency Coefficient Matrix
Figure GSB000006444902000511
and the matrix of high-frequency coefficients in the vertical direction
Figure GSB000006444902000512
According to the formula:

Figure GSB000006444902000513
Figure GSB000006444902000513

Figure GSB00000644490200061
Figure GSB00000644490200061

计算得到低频系数矩阵

Figure GSB00000644490200062
对应的系数矩阵
Figure GSB00000644490200063
水平方向高频系数矩阵
Figure GSB00000644490200064
对应的系数矩阵
Figure GSB00000644490200065
垂直方向高频系数矩阵
Figure GSB00000644490200066
对应的系数矩阵
Figure GSB00000644490200067
Calculate the low frequency coefficient matrix
Figure GSB00000644490200062
Corresponding coefficient matrix
Figure GSB00000644490200063
Horizontal High Frequency Coefficient Matrix
Figure GSB00000644490200064
Corresponding coefficient matrix
Figure GSB00000644490200065
Vertical high frequency coefficient matrix
Figure GSB00000644490200066
Corresponding coefficient matrix
Figure GSB00000644490200067

步骤4、小波重构得到融合图像:Step 4, wavelet reconstruction to obtain the fused image:

利用步骤3中得到低频系数矩阵

Figure GSB00000644490200068
对应的系数矩阵水平方向高频系数矩阵
Figure GSB000006444902000610
对应的系数矩阵
Figure GSB000006444902000611
垂直方向高频系数矩阵对应的系数矩阵
Figure GSB000006444902000613
通过二维小波重构公式:Use the low frequency coefficient matrix obtained in step 3
Figure GSB00000644490200068
Corresponding coefficient matrix Horizontal High Frequency Coefficient Matrix
Figure GSB000006444902000610
Corresponding coefficient matrix
Figure GSB000006444902000611
Vertical high frequency coefficient matrix Corresponding coefficient matrix
Figure GSB000006444902000613
Reconstruct the formula by two-dimensional wavelet:

Figure GSB000006444902000614
Figure GSB000006444902000614

计算得到分辨率融合后的高分辨率线阵三维成像合成孔径雷达图像其中*表示卷积,n1,n2分别表示横维和纵维方向的像素点,h(n1),g(n1)表示横维方向的低通和高通滤波,h(n2),g(n2)表示纵维方向的低通和高通滤波。Calculate the high-resolution linear array 3D imaging synthetic aperture radar image after resolution fusion Where * means convolution, n 1 and n 2 represent pixels in the horizontal and vertical directions respectively, h(n 1 ), g(n 1 ) represent low-pass and high-pass filtering in the horizontal direction, h(n 2 ), g(n 2 ) represents low-pass and high-pass filtering in the longitudinal direction.

经过上述操作,即可得到正交轨迹三维成像合成孔径雷达融合后的高分辨率线阵三维成像合成孔径雷达图像。After the above operations, the fused high-resolution linear array three-dimensional imaging synthetic aperture radar image of the orthogonal trajectory can be obtained.

本发明的创新点在于针对线阵三维成像合成孔径雷达获得的图像的切航迹分辨率较低的问题,采用两部运动轨迹正交的线阵三维成像合成孔径雷达对同一区域进行成像,然后采用离散小波变换技术,将得到的两幅图像进行融合,从而得到高分辨率的线阵三维成像合成孔径雷达图像。本发明解决了线阵三维成像合成孔径雷达获得的图像的切航迹分辨率较低的问题。The innovation of the present invention lies in the problem that the resolution of the tangential track of the image obtained by the linear array three-dimensional imaging synthetic aperture radar is low, and the same area is imaged by using two linear array three-dimensional imaging synthetic aperture radars whose motion trajectories are orthogonal, and then The discrete wavelet transform technology is used to fuse the obtained two images to obtain a high-resolution linear array three-dimensional imaging synthetic aperture radar image. The invention solves the problem that the resolution of the cut track of the image obtained by the linear array three-dimensional imaging synthetic aperture radar is low.

本发明的优点在于利用较短的阵列天线实现了线阵三维成像合成孔径雷达高分辨率成像。本发明可以应用于合成孔径雷达成像,地球遥感等领域。The invention has the advantage of realizing the high-resolution imaging of the linear array three-dimensional imaging synthetic aperture radar by using a shorter array antenna. The invention can be applied to the fields of synthetic aperture radar imaging, earth remote sensing and the like.

附图说明 Description of drawings

图1为正交轨迹三维成像合成孔径雷达工作原理图Figure 1 is a schematic diagram of the working principle of the three-dimensional imaging synthetic aperture radar with orthogonal trajectories

其中合成孔径雷达SAR-A和合成孔径雷达SAR-B分别表示正交运动的两部线阵三维成像合成孔径雷达;合成孔径雷达SAR-A和合成孔径雷达SAR-B分别沿x和y方向运动。Among them, the synthetic aperture radar SAR-A and the synthetic aperture radar SAR-B respectively represent two linear array three-dimensional imaging synthetic aperture radars that move orthogonally; the synthetic aperture radar SAR-A and the synthetic aperture radar SAR-B move along the x and y directions respectively .

图2为一维信号小波分解与重构的流程图。其中(a)为分解图,(b)为重构图。其中,“↓2”,表示1/2采样“↑2”表示在奇数位补零.h表示低通滤波器,g表示高通滤波器。ai+1表示被分解的一维信号,ai表示分解后产生的低频系数,di表示分解后产生的高频系数。Fig. 2 is a flow chart of wavelet decomposition and reconstruction of one-dimensional signal. Where (a) is an exploded view, and (b) is a reconstructed view. Among them, "↓2" means 1/2 sampling "↑2" means padding in odd bits. h means low-pass filter, g means high-pass filter. a i+1 represents the decomposed one-dimensional signal, a i represents the low-frequency coefficient generated after the decomposition, and d i represents the high-frequency coefficient generated after the decomposition.

图3为二维图像小波分解与重构的流程图。其中(a)为分解图,(b)为重构图。其中,“↓2”表示1/2采样,“↑2”表示在奇数位补零.。h表示低通滤波器,g表示高通滤波器。ai+1表示被分解的二维图像,ai表示分解后产生的低频系数矩阵,d1 i表示分解后产生的水平高频系数矩阵,d2 i表示分解后产生的垂直高频系数矩阵,d3 i表示分解后产生的对角线方向高频系数矩阵。Fig. 3 is a flowchart of wavelet decomposition and reconstruction of a two-dimensional image. Where (a) is an exploded view, and (b) is a reconstructed view. Among them, "↓2" means 1/2 sampling, and "↑2" means zero padding in odd bits. h represents a low-pass filter, and g represents a high-pass filter. a i+1 represents the decomposed two-dimensional image, a i represents the low-frequency coefficient matrix generated after decomposition, d 1 i represents the horizontal high-frequency coefficient matrix generated after decomposition, and d 2 i represents the vertical high-frequency coefficient matrix generated after decomposition , d 3 i represent the diagonal high-frequency coefficient matrix generated after decomposition.

图4为具体实施方式中采用的线阵三维成像合成孔径雷达原始图像Fig. 4 is the original image of the linear array three-dimensional imaging synthetic aperture radar adopted in the specific embodiment

图中黑色矩形1、2、3、4分别表示四个可以互相区分的散射点。The black rectangles 1, 2, 3, and 4 in the figure respectively represent four scatter points that can be distinguished from each other.

图5为具体实施方式中采用的x方向低分辨线阵三维成像合成孔径雷达图像Fig. 5 is the x-direction low-resolution linear array three-dimensional imaging synthetic aperture radar image adopted in the specific embodiment

图中黑色矩形5、6分别表示由于x方向分辨率较低导致的x方向图像的模糊。The black rectangles 5 and 6 in the figure respectively represent the blurring of the image in the x direction due to the low resolution in the x direction.

图6为具体实施方式中采用的y方向低分辨线阵三维成像合成孔径雷达图像Fig. 6 is the y-direction low-resolution linear array three-dimensional imaging synthetic aperture radar image adopted in the specific embodiment

图中黑色矩形7、8分别表示由于y方向分辨率较低导致的y方向图像的模糊。The black rectangles 7 and 8 in the figure respectively represent the blurring of the image in the y direction due to the low resolution in the y direction.

图7是采用本发明提供方法得到的图像3和图像4融合后线阵三维成像合成孔径雷达图像Fig. 7 is a linear array three-dimensional imaging synthetic aperture radar image after fusion of image 3 and image 4 obtained by the method provided by the present invention

矩形9、10、11、12分别表示采用本发明后得到的四个可以相互区分的散射点。从图4、5、6、7可以看出,本发明提出的线阵三维成像合成孔径雷达分辨率融合方法可以提高线阵三维成像合成孔径雷达图像的分辨率。Rectangles 9, 10, 11, and 12 respectively represent four scatter points that can be distinguished from each other after adopting the present invention. It can be seen from Figures 4, 5, 6, and 7 that the resolution fusion method of the linear array 3D imaging SAR proposed by the present invention can improve the resolution of the linear array 3D imaging SAR image.

图8是本发明方法流程图Fig. 8 is a flow chart of the method of the present invention

具体实施方式 Detailed ways

本发明主要采用仿真实验的方法进行验证,所有步骤、结论都在MATLAB7.0上验证正确。具体实施步骤如下:The present invention mainly adopts the method of simulation experiment to verify, and all steps and conclusions are verified correctly on MATLAB7.0. The specific implementation steps are as follows:

步骤1、对低分辨率图像的高分辨率维进行离散小波分解:Step 1. Perform discrete wavelet decomposition on the high-resolution dimension of the low-resolution image:

用Meyer小波基,对x方向低分辨率线阵三维成像合成孔径雷达图像Gx进行y方向一维离散小波分解,得到低频系数矩阵和水平方向高频系数对

Figure GSB00000644490200082
对y方向低分辨率线阵三维成像合成孔径雷达图像Gy进行x方向一维离散小波分解,得到低频系数矩阵
Figure GSB00000644490200083
和垂直方向高频系数对 d ~ j 2 ( n 1 , n 2 ) . Using the Meyer wavelet base, the y-direction one-dimensional discrete wavelet decomposition is performed on the x-direction low-resolution linear array three-dimensional imaging synthetic aperture radar image G x to obtain the low-frequency coefficient matrix and the horizontal direction high-frequency coefficient pair
Figure GSB00000644490200082
Perform one-dimensional discrete wavelet decomposition in the x-direction on the low-resolution linear array three-dimensional imaging synthetic aperture radar image G y in the y-direction to obtain the low-frequency coefficient matrix
Figure GSB00000644490200083
and vertical high-frequency coefficient pairs d ~ j 2 ( no 1 , no 2 ) .

步骤2、小波重构得到融合图像:Step 2, wavelet reconstruction to obtain the fused image:

用步骤1中得到系数矩阵

Figure GSB00000644490200085
进行离散小波重构,得到融合后的图像
Figure GSB00000644490200086
Use the coefficient matrix obtained in step 1
Figure GSB00000644490200085
Perform discrete wavelet reconstruction to obtain the fused image
Figure GSB00000644490200086

通过本发明具体实施方式可以看出,本发明所提供线阵三维成像合成孔径雷达分辨率融合方法能够将两幅图像进行融合,从而得到高分辨率的线阵三维成像合成孔径雷达图像。It can be seen from the specific embodiments of the present invention that the linear array 3D imaging synthetic aperture radar resolution fusion method provided by the present invention can fuse two images to obtain a high resolution linear array 3D imaging synthetic aperture radar image.

Claims (1)

1.一种基于离散小波变换的线阵三维成像合成孔径雷达分辨率融合方法,其特征是它包括以下步骤: 1. a linear array three-dimensional imaging synthetic aperture radar resolution fusion method based on discrete wavelet transform, is characterized in that it comprises the following steps: 步骤1、获得低分辨率合成孔径雷达图像 Step 1. Obtain a low-resolution SAR image 利用正交轨迹三维成像合成孔径雷达得到x方向低分辨率线阵三维成像合成孔径雷达图像Gx和y方向低分辨率线阵三维成像合成孔径雷达图像GyObtain the low-resolution linear array three-dimensional imaging synthetic aperture radar image G in the x direction and the low-resolution linear array three-dimensional imaging synthetic aperture radar image G y in the y direction by using the orthogonal trajectory three-dimensional imaging synthetic aperture radar; 步骤2、对低分辨率图像的高分辨率维进行离散小波分解: Step 2. Perform discrete wavelet decomposition on the high-resolution dimension of the low-resolution image: 采用Meyer小波,利用一维小波分解公式 
Figure FSB00000644490100011
Figure FSB00000644490100012
其中,h(2n)表示高分辨逼近信号通过低通滤波器h(n)滤波后对其进行1/2采样得到的信号, 
Figure FSB00000644490100013
和 
Figure FSB00000644490100014
是对应的小波正交基下的分解系数,fj+1(n)是在分辨率j+1下的离散表示形式;首先对y方向低分辨率线阵三维成像合成孔径雷达图像Gy进行x方向一维离散小波分解,得到低频系数矩阵 和水平方向高频系数矩阵 
Figure FSB00000644490100016
然后对x方向低分辨率线阵三维成像合成孔径雷达图像Gx进行y方向一维离散小波分解,得到低频系数矩阵 
Figure FSB00000644490100017
和垂直方向高频系数矩阵 
Figure FSB00000644490100018
其中,y方向和x方向的低分辨率线阵三维成像合成孔径雷达图像通过一维离散小波分解得到低频系数矩阵 
Figure FSB00000644490100019
是相同的,n1、n2分别表示二维图像的横维和纵维像素点;n1、n2的取值范围取决于二维图像的大小;
Using Meyer wavelet, using one-dimensional wavelet decomposition formula
Figure FSB00000644490100011
Figure FSB00000644490100012
Among them, h(2n) represents the signal obtained by sampling the high-resolution approximation signal through the low-pass filter h(n) and then sampling it by 1/2,
Figure FSB00000644490100013
and
Figure FSB00000644490100014
is the decomposition coefficient under the corresponding wavelet orthogonal basis, f j+1 (n) is the discrete representation at the resolution j + 1; One-dimensional discrete wavelet decomposition in the x direction to obtain the low-frequency coefficient matrix and the matrix of high-frequency coefficients in the horizontal direction
Figure FSB00000644490100016
Then, the low-resolution line array 3D synthetic aperture radar image G x in the x direction is decomposed by one-dimensional discrete wavelet in the y direction to obtain the low-frequency coefficient matrix
Figure FSB00000644490100017
and the matrix of high-frequency coefficients in the vertical direction
Figure FSB00000644490100018
Among them, the low-resolution linear array three-dimensional imaging synthetic aperture radar image in the y direction and x direction is decomposed by one-dimensional discrete wavelet to obtain the low-frequency coefficient matrix
Figure FSB00000644490100019
are the same, n 1 and n 2 represent the horizontal and vertical pixels of the two-dimensional image respectively; the value range of n 1 and n 2 depends on the size of the two-dimensional image;
步骤3、利用步骤2中得到的小波系数进行离散小波差值补零: Step 3, using the wavelet coefficients obtained in step 2 to perform discrete wavelet difference zero padding: 利用低频系数矩阵 
Figure FSB000006444901000110
水平方向高频系数矩阵 
Figure FSB000006444901000111
和垂直方向高频系数矩阵 
Figure FSB000006444901000112
按照公式:
Using the low frequency coefficient matrix
Figure FSB000006444901000110
Horizontal High Frequency Coefficient Matrix
Figure FSB000006444901000111
and the matrix of high-frequency coefficients in the vertical direction
Figure FSB000006444901000112
According to the formula:
Figure FSB000006444901000113
Figure FSB000006444901000113
计算得到低频系数矩阵 
Figure FSB00000644490100021
对应的系数矩阵 
Figure FSB00000644490100022
水平方向高频系数矩阵 
Figure FSB00000644490100023
对应的系数矩阵 
Figure FSB00000644490100024
垂直方向高频系数矩阵 
Figure FSB00000644490100025
对应的系数矩阵 
Calculate the low frequency coefficient matrix
Figure FSB00000644490100021
Corresponding coefficient matrix
Figure FSB00000644490100022
Horizontal High Frequency Coefficient Matrix
Figure FSB00000644490100023
Corresponding coefficient matrix
Figure FSB00000644490100024
Vertical high frequency coefficient matrix
Figure FSB00000644490100025
Corresponding coefficient matrix
步骤4、小波重构得到融合图像: Step 4, wavelet reconstruction to obtain the fused image: 利用步骤3中得到低频系数矩阵 
Figure FSB00000644490100027
对应的系数矩阵 
Figure FSB00000644490100028
水平方向高频系数矩阵 
Figure FSB00000644490100029
对应的系数矩阵 
Figure FSB000006444901000210
垂直方向高频系数矩阵 
Figure FSB000006444901000211
对应的系数矩阵 
Figure FSB000006444901000212
通过二维小波重构公式:
Use the low frequency coefficient matrix obtained in step 3
Figure FSB00000644490100027
Corresponding coefficient matrix
Figure FSB00000644490100028
Horizontal High Frequency Coefficient Matrix
Figure FSB00000644490100029
Corresponding coefficient matrix
Figure FSB000006444901000210
Vertical high frequency coefficient matrix
Figure FSB000006444901000211
Corresponding coefficient matrix
Figure FSB000006444901000212
Reconstruct the formula by two-dimensional wavelet:
计算得到分辨率融合后的高分辨率线阵三维成像合成孔径雷达图像 
Figure FSB000006444901000214
其中*表示卷积,n1,n2分别表示横维和纵维方向的像素点,h(n1),g(n1)表示横维方向的低通和高通滤波,h(n2),g(n2)表示纵维方向的低通和高通滤波。 
Calculate the high-resolution linear array 3D imaging synthetic aperture radar image after resolution fusion
Figure FSB000006444901000214
Where * means convolution, n 1 and n 2 represent pixels in the horizontal and vertical directions respectively, h(n 1 ), g(n 1 ) represent low-pass and high-pass filtering in the horizontal direction, h(n 2 ), g(n 2 ) represents low-pass and high-pass filtering in the longitudinal direction.
CN2008100459746A 2008-09-03 2008-09-03 Method for improving resolution of linear-array three-dimensional imaging synthetic aperture radars Expired - Fee Related CN101666879B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008100459746A CN101666879B (en) 2008-09-03 2008-09-03 Method for improving resolution of linear-array three-dimensional imaging synthetic aperture radars

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100459746A CN101666879B (en) 2008-09-03 2008-09-03 Method for improving resolution of linear-array three-dimensional imaging synthetic aperture radars

Publications (2)

Publication Number Publication Date
CN101666879A CN101666879A (en) 2010-03-10
CN101666879B true CN101666879B (en) 2012-01-11

Family

ID=41803578

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100459746A Expired - Fee Related CN101666879B (en) 2008-09-03 2008-09-03 Method for improving resolution of linear-array three-dimensional imaging synthetic aperture radars

Country Status (1)

Country Link
CN (1) CN101666879B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8184043B2 (en) * 2010-03-12 2012-05-22 The Boeing Company Super-resolution imaging radar
CN102521472B (en) * 2012-01-04 2013-06-12 电子科技大学 Method for constructing thinned MIMO (Multiple Input Multiple Output) planar array radar antenna
CN103489157A (en) * 2012-06-12 2014-01-01 中国科学院声学研究所 Filtering method and system for enhancing synthetic aperture sonar interferogram quality
CN104765023B (en) * 2015-03-20 2017-03-29 北京理工大学 A kind of satellite-borne synthetic aperture radar height resolution computational methods

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
刘振华等.SAR图像与其他源图像融合算法.《现代雷达》.2007,第29卷(第2期),56-59. *
张峰.一种应用小波变换提高SAR距离向分辨率的设想.《空间电子技术》.1995,(第3期),30-33. *
杨思天.基于小波变换的图像融合技术研究.《无线电工程》.2006,第36卷(第8期),19-21,36. *
田养军等.基于小波变换的遥感数据融合与边缘检测.《地球科学与环境学报》.2007,第29卷(第1期),103-106. *
钟志勇等.多源信息融合中小波变换的应用研究.《测绘学报》.2002,第31卷56-60. *

Also Published As

Publication number Publication date
CN101666879A (en) 2010-03-10

Similar Documents

Publication Publication Date Title
Kong et al. Pore characterization of 3D-printed gypsum rocks: a comprehensive approach
Patel et al. Compressed synthetic aperture radar
Weinstein et al. Tensorlines: Advection-diffusion based propagation through diffusion tensor fields
CN109061642B (en) A Bayesian Iterative Reweighted Sparse Autofocus Array SAR Imaging Method
CN102708576B (en) Block Image Compressive Sensing Reconstruction Method Based on Structural Dictionary
CN105954750B (en) The non-sparse scene imaging method of stripmap synthetic aperture radar based on compressed sensing
CN107037429B (en) Linear array SAR three-dimensional imaging method based on threshold gradient tracking algorithm
CN103698763B (en) Sparse Imaging Method for Linear SAR Based on Hard Threshold Orthogonal Matching Pursuit
CN101666879B (en) Method for improving resolution of linear-array three-dimensional imaging synthetic aperture radars
CN104422954A (en) Sparse sampling method in seismic data regularization
Li et al. Advances in the application of deep learning methods to digital rock technology
CN105006018B (en) Three dimensional CT core image super resolution ratio reconstruction method
CN102254054A (en) Model constructing method of sparse microwave imaging processing
CN104345340A (en) Jitter sparse sampling method in seismic data regularization
CN109188881B (en) Large-field-of-view high-resolution terahertz wave digital holographic imaging method and system
CN1484039A (en) Image fusion method based on non-separable wavelet framework
CN103675817B (en) A kind of synthetic-aperture radar side-looking three-D imaging method sparse based on transform domain
CN110133656B (en) Three-dimensional SAR sparse imaging method based on decomposition and fusion of co-prime array
CN105374020A (en) Rapid high-resolution ultrasonic imaging detection method
CN101614810B (en) Method for merging resolutions of linear array three-dimensional imaging synthetic aperture radars
CN107271981B (en) A Method for Establishing a Target Electromagnetic Scattering Data Model
CN101498787B (en) A Fast Imaging Method for Linear Array 3D Imaging Synthetic Aperture Radar
CN102298768A (en) High-resolution image reconstruction method based on sparse samples
Ullah et al. A Deep Learning Based Super-Resolution Approach for the Reconstruction of Full Wavefields of Lamb Waves
Yuan et al. Fusion of multi-planar images for improved three-dimensional object reconstruction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: WUXI UEST SCIENCE + TECHNOLOGY DEVELOPMENT CO., LT

Free format text: FORMER OWNER: UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA

Effective date: 20131101

C41 Transfer of patent application or patent right or utility model
COR Change of bibliographic data

Free format text: CORRECT: ADDRESS; FROM: 610054 CHENGDU, SICHUAN PROVINCE TO: 214135 WUXI, JIANGSU PROVINCE

TR01 Transfer of patent right

Effective date of registration: 20131101

Address after: 214135 Jiangsu New District of Wuxi City Branch Park University Chinese sensor network science and Technology Park building A room 402 business district

Patentee after: WUXI UESTC TECHNOLOGY DEVELOPMENT Co.,Ltd.

Address before: 610054 No. two, Jianshe North Road, Chengdu, Sichuan, four

Patentee before: University of Electronic Science and Technology of China

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210113

Address after: No.2006 Xiyuan Avenue, Chengdu, Sichuan 611731

Patentee after: University of Electronic Science and technology of Sichuan foundation for education development

Address before: Room 402, area a, Liye building, science and Technology Park, China sensor network university, Taike Park, New District, Wuxi City, Jiangsu Province, 214135

Patentee before: WUXI UESTC TECHNOLOGY DEVELOPMENT Co.,Ltd.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120111

CF01 Termination of patent right due to non-payment of annual fee