CN101659447B - 一步合成锰氧化物纳米粒子的方法 - Google Patents

一步合成锰氧化物纳米粒子的方法 Download PDF

Info

Publication number
CN101659447B
CN101659447B CN2009102722336A CN200910272233A CN101659447B CN 101659447 B CN101659447 B CN 101659447B CN 2009102722336 A CN2009102722336 A CN 2009102722336A CN 200910272233 A CN200910272233 A CN 200910272233A CN 101659447 B CN101659447 B CN 101659447B
Authority
CN
China
Prior art keywords
manganese oxide
solution
particles
surfactant
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009102722336A
Other languages
English (en)
Other versions
CN101659447A (zh
Inventor
黄进
王瑜
章桥新
刘璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN2009102722336A priority Critical patent/CN101659447B/zh
Publication of CN101659447A publication Critical patent/CN101659447A/zh
Application granted granted Critical
Publication of CN101659447B publication Critical patent/CN101659447B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种锰氧化物纳米粒子的制备方法。一步合成锰氧化物纳米粒子的方法,其特征在于它包括以下步骤:按锰盐∶表面活性剂∶溶剂1-十八烯的配比为(0.5~2)mmol∶(2~4)mL∶(5~10)mL,选取锰盐、表面活性剂和1-十八烯,备用;将锰盐、表面活性剂和1-十八烯混合,置于三口烧瓶中,采用无水无氧技术除去体系的空气,室温下在氮气保护下搅拌至固体完全溶解;然后加热到280~330℃,至溶液产生混浊后再反应5~60min,冷却至室温;再用正己烷和乙醇的混合液洗涤2~3次后,真空干燥,得到锰氧化物纳米粒子。该方法工艺简单、环保,所得纳米粒子分布均匀,粒径可控制在50~200nm之间,有望在氧化-还原催化、锂电池电极材料及磁性材料等方面有重要的应用。

Description

一步合成锰氧化物纳米粒子的方法
技术领域
本发明涉及一种锰氧化物纳米粒子的制备方法,属于功能无机材料领域,也属于纳米科学技术领域。
背景技术
作为一种过渡金属氧化物,锰氧化物在催化、陶瓷及作为电源电极等方面有着广泛的应用。如在催化方面,锰氧化物为催化作用较好的催化剂,如锰氧化物可有效地催化臭氧的分解。研究表明,纳米氧化物材料的不同微观形貌对其性能有着重要的影响。
纳米氧化物的制备方法包括气相法、液相法、固相法。其中液相法包括沉淀法、溶胶-凝胶法、热分解法、水热和溶剂热合成法、微乳液法等。其中,热分解法因其能对形貌有较好的控制作用而被广泛的采用。
发明内容
本发明的目的在于提供一种一步合成锰氧化物纳米粒子的方法,该方法工艺简单、环保、生产成本较低。
为了实现上述目的,本发明的技术方案是:一步合成锰氧化物纳米粒子的方法,其特征在于它包括以下步骤:按锰盐∶表面活性剂∶溶剂1-十八烯的配比为(0.5~2)mmol∶(2~4)mL∶(5~10)mL,选取锰盐、表面活性剂和1-十八烯,备用;将锰盐、表面活性剂和1-十八烯混合,置于三口烧瓶中,采用无水无氧技术除去体系的空气(即抽真空至-0.1Pa再通入氮气;反复3次),室温下在氮气保护下搅拌至固体完全溶解;然后加热到280~330℃,至溶液产生混浊后再反应5~60min,冷却至室温;再用正己烷和乙醇的混合液(正己烷∶乙醇的体积比=1∶1~4∶1)洗涤2~3次后,真空干燥,得到锰氧化物纳米粒子。
所述的锰盐为MnCl2、Mn(CH3COO)2、Mn(HCOO)2、MnCl2的含水化合物、Mn(CH3COO)2的含水化合物或Mn(HCOO)2的含水化合物。
所述的表面活性剂为油酸、硬脂酸、油胺、三辛基胺中的任意一种或任意二种以上(含任意二种)的混合,任意二种以上(含任意二种)混合时为任意配比。
所述的锰氧化物纳米粒子分布均匀,粒径在50~200nm之间。
本发明采用表面活性剂辅助的热分解法,在高温下分解Mn盐,形成锰氧化物纳米粒子,通过选择合适的表面活性剂、控制反应物的浓度、添加表面活性剂的量,有效地控制了纳米粒子的微观形貌。本发明采用一步合成法制得了锰氧化物纳米粒子,工艺简单、环保、能够较好的控制产品的形貌、尺寸、分散性。本发明作为一种新型的无机纳米材料,可用于催化、陶瓷及作为电源电极等方面。
附图说明
图1是实施例1的锰氧化物纳米粒子的形貌图;
图2是实施例2的锰氧化物纳米粒子的形貌图;
图3是实施例1的锰氧化物纳米粒子的XRD图;
具体实施方法
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容部仅仅局限于下面的实施例。
实施例1:
一步合成锰氧化物纳米粒子的方法,它包括以下步骤:取摩尔数为0.5mmol的Mn(HCOO)2,加入1mL油酸和1mL油胺作为表面活性剂,加入溶剂1-十八烯(Alfa Aesar,tech)5mL,置于三口烧瓶中,采用无水无氧技术除去体系的空气(即抽真空至-0.1Pa再通入氮气,反复3次),室温下在氮气保护下搅拌至固体完全溶解;然后加热到280℃,至溶液产生混浊后再反应5min,冷却至室温;再用正己烷和乙醇的混合液(正己烷∶乙醇的体积比=1∶1)洗涤3次后,真空干燥,得到锰氧化物(MnO)纳米粒子。
锰氧化物纳米粒子的形貌见图1,锰氧化物纳米粒子的XRD图见图3;图1说明所得纳米粒子分布均匀,粒径在50~200nm之间,图3说明所得的纳米颗粒为MnO。与传统的制备锰氧化纳米粒子的方法高温注入法相比,该方法避免使用现有技术中广泛采用的三辛基膦等昂贵且毒性大的化合物,合成步骤简单,操作简便,工艺简单,环保,生产成本较高温注入法等低20%左右。
实施例2:
一步合成锰氧化物纳米粒子的方法,它包括以下步骤:取摩尔数为1mmol的MnCl2,加入2mL油酸和2mL三辛基胺作为表面活性剂,加入溶剂1-十八烯(Alfa Aesar,tech)5mL,置于三口烧瓶中,采用无水无氧技术除去体系的空气(即抽真空至-0.1Pa再通入氮气,反复3次),室温下在氮气保护下搅拌至固体完全溶解;然后加热到310℃,至溶液产生混浊后再反应15分钟,冷却至室温;再用正己烷和乙醇的混合液(正己烷∶乙醇的体积比=1∶1)洗涤3次后,真空干燥,得到锰氧化物(MnO)纳米粒子。
锰氧化物纳米粒子的形貌见图2,图2说明锰氧化物纳米粒子分布均匀,粒径在50~200nm之间。与传统的制备锰氧化纳米粒子的方法高温注入法相比,该方法避免使用现有技术中广泛采用的三辛基膦等昂贵且毒性大的化合物,合成步骤简单,操作简便,工艺简单,环保,生产成本较高温注入法等低20%左右。
实施例3;
一步合成锰氧化物纳米粒子的方法,它包括以下步骤:取摩尔数为2mmol的Mn(CH3COO)2·4H2O,加入2mL油酸和2mL三辛基胺作为表面活性剂,加入溶剂1-十八烯(AlfaAesar,tech)10mL,置于三口烧瓶中,采用无水无氧技术除去体系的空气(即抽真空至-0.1Pa再通入氮气;反复3次),室温下在氮气保护下搅拌至固体完全溶解;然后加热到330℃,至溶液产生混浊后再反应60分钟,冷却至室温;再用正己烷和乙醇的混合液(正己烷∶乙醇的体积比=2∶1)洗涤3次后,真空干燥,得到锰氧化物(MnO)纳米粒子。
实施例4:
一步合成锰氧化物纳米粒子的方法,它包括以下步骤:取摩尔数为2mmol的Mn(CH3COO)2·4H2O,加入2mL硬脂酸和2mL三辛基胺作为表面活性剂,加入溶剂1-十八烯(AlfaAesar,tech)10mL,置于三口烧瓶中,采用无水无氧技术除去体系的空气(即抽真空至-0.1Pa,再通入氮气;反复3次),室温下在氮气保护下搅拌至固体完全溶解;然后加热到310℃,至溶液产生混浊后再反应15分钟,冷却至室温;再用正己烷和乙醇的混合液(正己烷∶乙醇的体积比=4∶1)洗涤3次后,真空干燥,得到锰氧化物(MnO)纳米粒子。
实施例5:
一步合成锰氧化物纳米粒子的方法,它包括以下步骤:取摩尔数为1mmol的MnCl2·2H2O,加入2mL油酸作为表面活性剂,加入溶剂1-十八烯10mL(Alfa Aesar,tech),置于三口烧瓶中,采用无水无氧技术除去体系的空气(即抽真空至-0.1Pa,再通入氮气;反复3次),室温下在氮气保护下搅拌至固体完全溶解;然后加热到310℃,至溶液产生混浊后反应15分钟,冷却至室温;再用正己烷和乙醇的混合液(正己烷∶乙醇的体积比=1∶1)洗涤2次后,真空干燥,得到锰氧化物(MnO)纳米粒子。
本发明所列举的各原料都能实现本发明,以及各原料的上下限、区间取值都能实现本发明,在此不一一列举实施例。本发明工艺参数(如温度、时间)的上下限、区间取值都能实现本发明,在此不一一列举实施例。

Claims (3)

1.一步合成锰氧化物纳米粒子的方法,其特征在于它包括以下步骤:按锰盐∶表面活性剂∶溶剂1-十八烯的配比为(0.5~2)mmol∶(2~4)mL∶(5~10)mL,选取锰盐、表面活性剂和1-十八烯,备用;将锰盐、表面活性剂和1-十八烯混合,置于三口烧瓶中,采用无水无氧技术除去体系的空气,室温下在氮气保护下搅拌至固体完全溶解;然后加热到280~330℃,至溶液产生混浊后再反应5~60min,冷却至室温;再用正己烷和乙醇的混合液洗涤2~3次后,真空干燥,得到锰氧化物纳米粒子;
所述的锰盐为MnCl2、Mn(CH3COO)2、Mn(HCOO)2、MnCl2的含水化合物、Mn(CH3COO)2的含水化合物或Mn(HCOO)2的含水化合物;
所述的表面活性剂为油酸、硬脂酸、油胺、三辛基胺中的任意一种或任意二种以上的混合,任意二种以上混合时为任意配比。
2.根据权利要求1所述的一步合成锰氧化物纳米粒子的方法,其特征在于:正己烷和乙醇的混合液由正己烷和乙醇组成,正己烷∶乙醇的体积比=1∶1~4∶1。
3.根据权利要求1所述的一步合成锰氧化物纳米粒子的方法,其特征在于:采用无水无氧技术除去体系的空气为:抽真空至小于0.1Pa,再通入氮气;反复3次。
CN2009102722336A 2009-09-27 2009-09-27 一步合成锰氧化物纳米粒子的方法 Expired - Fee Related CN101659447B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009102722336A CN101659447B (zh) 2009-09-27 2009-09-27 一步合成锰氧化物纳米粒子的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102722336A CN101659447B (zh) 2009-09-27 2009-09-27 一步合成锰氧化物纳米粒子的方法

Publications (2)

Publication Number Publication Date
CN101659447A CN101659447A (zh) 2010-03-03
CN101659447B true CN101659447B (zh) 2011-08-03

Family

ID=41787731

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102722336A Expired - Fee Related CN101659447B (zh) 2009-09-27 2009-09-27 一步合成锰氧化物纳米粒子的方法

Country Status (1)

Country Link
CN (1) CN101659447B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104310458B (zh) * 2014-10-10 2015-10-14 九江学院 一种制备氧化锌纳米棒的方法
CN104332599B (zh) * 2014-11-13 2016-06-15 湖南杉杉能源科技股份有限公司 一种锂钴氧化物固溶前驱体的制备方法
CN113562768B (zh) * 2021-07-23 2023-07-25 中科南京绿色制造产业创新研究院 一种纳米氧化亚锰负极材料及其制备方法和应用
CN115744993B (zh) * 2022-11-04 2024-06-07 济南大学 一种大批量合成超小Mn3O4纳米酶的方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Design》.2009,第9卷(第7期),3100-3103. *
Jongnam Park et al..Synthesis, Characterization, and Magnetic Properties of Uniform-sized MnO Nanospheres and Nanorods.《the Journal of Physical Chemistry B》.2004,第108卷(第36期),13594-13598. *
Qi Li et al..Growth of Nearly Monodisperse MnO Nanocrystals in a Two-Size Distribution System.《Crystal Growth & Design》.2009,第9卷(第7期),3100-3103.
Qi Li et al..Growth of Nearly Monodisperse MnO Nanocrystals in a Two-Size Distribution System.《Crystal Growth &amp *
Thomas D. Schladt et al..Synthesis and Characterization of Monodisperse Manganese Oxide Nanoparticles-Evaluation of the Nucleation and Growth Mechanism.《Chemistry of Materials》.2009,第21卷(第14期),3183-3190. *
Xinhua Zhong et al..Synthesis of Dumbbell-Shaped Manganese Oxide Nanocrystals.《the Journal of Physical Chemistry B》.2005,第110卷(第1期),2-4. *

Also Published As

Publication number Publication date
CN101659447A (zh) 2010-03-03

Similar Documents

Publication Publication Date Title
Pardeshi et al. SrFe2O4 complex oxide an effective and environmentally benign catalyst for selective oxidation of styrene
Zhang et al. Controlled synthesis of Mn3O4 nanocrystallites and MnOOH nanorods by a solvothermal method
Kooti et al. Magnetic cobalt ferrite nanoparticles as an efficient catalyst for oxidation of alkenes
CN105214664B (zh) 一种铜掺杂Fe3O4磁性复合纳米材料及其制备方法和应用
Zhang et al. Synthesis and characterization of α-MnO2 nanowires: Self-assembly and phase transformation to β-MnO2 microcrystals
Zhang et al. Homogeneous Pd nanoparticles produced in direct reactions: green synthesis, formation mechanism and catalysis properties
Zhang et al. Synthesis of ultrathin WSe 2 nanosheets and their high-performance catalysis for conversion of amines to imines
Wang et al. Shape-controlled synthesis of CeOHCO3 and CeO2 microstructures
Pan et al. Different copper oxide nanostructures: Synthesis, characterization, and application for C‐N cross‐coupling catalysis
Safarifard et al. Sonochemical syntheses of a new fibrous-like nano-scale manganese (II) coordination supramolecular compound; precursor for the fabrication of octahedral-like Mn3O4 nano-structure
CN102553595A (zh) 一种纳米铁酸盐/碳纳米管复合材料的制备方法
CN101659447B (zh) 一步合成锰氧化物纳米粒子的方法
CN101786668A (zh) 钴铁氧体纳米粉体的低温制备方法
Arumugam et al. Heterogenous copper (II) schiff-base complex immobilized mesoporous silica catalyst for multicomponent biginelli reaction
Kumar et al. Organized and highly dispersed growth of MnO2 nano-rods by sonochemical hydrolysis of Mn (3) acetate
Fang et al. Fe/Fe3C@ N-doped porous carbon microspindles templated from a metal–organic framework as highly selective and stable catalysts for the catalytic oxidation of sulfides to sulfoxides
Mao et al. A new route for synthesizing VO2 (B) nanoribbons and 1D vanadium-based nanostructures
CN101982418A (zh) 一种钙钛矿型LnCrO3和LnAlO3纳米材料的制备方法
CN103657641B (zh) 一种用于脱除水中酚类化合物的催化剂的制备方法
Kowsari et al. Ultrasound and ionic-liquid-assisted synthesis and characterization of polyaniline/Y2O3 nanocomposite with controlled conductivity
Karaca et al. Usage of MnFe2O4-rGO Nanocomposite as efficient Fenton catalyst for Tetracycline removal by heterogeneous sono Fenton process: Characterizations, catalytic performance assessment, and mechanism
Subbarao et al. Size and morphology controlled NiSe nanoparticles as efficient catalyst for the reduction reactions
CN103273075A (zh) 一种hpaa分散纳米铁颗粒的方法
Zhao et al. Uniform europium-based infinite coordination polymer submicrospheres: Fast microwave synthesis and characterization
Yuan et al. A cuboidal [Ni 4 O 4] cluster as a precursor for recyclable, carbon-supported nickel nanoparticle reduction catalysts

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110803

Termination date: 20130927