CN101644608B - An Integrated Surface Acoustic Wave Wireless Temperature Sensor - Google Patents
An Integrated Surface Acoustic Wave Wireless Temperature Sensor Download PDFInfo
- Publication number
- CN101644608B CN101644608B CN 200910084148 CN200910084148A CN101644608B CN 101644608 B CN101644608 B CN 101644608B CN 200910084148 CN200910084148 CN 200910084148 CN 200910084148 A CN200910084148 A CN 200910084148A CN 101644608 B CN101644608 B CN 101644608B
- Authority
- CN
- China
- Prior art keywords
- reverberator
- reflector
- distance
- saw
- piezoelectric substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000010897 surface acoustic wave method Methods 0.000 title claims abstract description 15
- 239000000758 substrate Substances 0.000 claims abstract description 57
- 238000001514 detection method Methods 0.000 claims abstract description 20
- 230000004044 response Effects 0.000 claims abstract description 13
- 239000003292 glue Substances 0.000 claims description 10
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 7
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 claims description 4
- 238000011897 real-time detection Methods 0.000 claims description 4
- 230000008878 coupling Effects 0.000 claims description 3
- 238000010168 coupling process Methods 0.000 claims description 3
- 238000005859 coupling reaction Methods 0.000 claims description 3
- 230000001902 propagating effect Effects 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 claims 3
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 230000008859 change Effects 0.000 abstract description 6
- 230000010259 detection of temperature stimulus Effects 0.000 abstract description 6
- 238000003672 processing method Methods 0.000 abstract description 4
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Landscapes
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
本发明涉及一种集成式的SAW无线温度传感器,包括在压电基片上制作一个具有EWC/SPUDT结构的叉指换能器与11个短路栅结构的反射器,由EWC/SPUDT通过无线天线接收来自于无线读取单元所发射的电磁波信号,并转换成声表面波,在压电基片表面沿个反射器方向传播,并分别由所述的个反射器所反射,反射的声波通过EWC/SPUDT2重新转换成电磁波信号,由无线天线传回无线读取单元,并通过信号处理方法,以评价时域响应的相位变化来实现对温度的检测。为降低反射器之间的多次反射,该SAW反射型延迟线的11个反射器分为两路,一路8个器件用于8位电子标签,另外1路3个反射器,用于温度检测;并通过调节反射器电极数来获得均一响应的时域S11反射峰。
The invention relates to an integrated SAW wireless temperature sensor, which comprises an interdigital transducer with an EWC/SPUDT structure and 11 reflectors with a short-circuit grid structure on a piezoelectric substrate, and is received by the EWC/SPUDT through a wireless antenna. The electromagnetic wave signal emitted by the wireless reading unit is converted into a surface acoustic wave, propagates along the direction of the reflectors on the surface of the piezoelectric substrate, and is reflected by the reflectors respectively, and the reflected sound waves pass through the EWC/ SPUDT2 is re-converted into an electromagnetic wave signal, which is sent back to the wireless reading unit by the wireless antenna, and through signal processing methods, the phase change of the time domain response is evaluated to realize the detection of temperature. In order to reduce multiple reflections between reflectors, the 11 reflectors of the SAW reflective delay line are divided into two channels, one channel with 8 devices for 8-bit electronic tags, and the other channel with 3 reflectors for temperature detection ; And by adjusting the number of reflector electrodes to obtain a uniform response time domain S11 reflection peak.
Description
技术领域 technical field
本发明涉及到一种集成电子标签的声表面波(surface acoustic wave:SAW)温度传感器,特别是涉及一种采用控制电极宽度单相单向换能器与短路栅反射器结构的SAW反射型延迟线的无线温度传感器。The present invention relates to a surface acoustic wave (surface acoustic wave: SAW) temperature sensor with an integrated electronic label, in particular to a SAW reflective delay using a single-phase unidirectional transducer with a controlled electrode width and a short-circuit grid reflector structure line of wireless temperature sensors.
背景技术 Background technique
SAW的传播速度存在着与温度的线性关联关系即Δv=v0×TCD×(T-Tref),其中TCD为压电基片的一阶延迟温度系数(取决于压电基片材料的晶体结构以及切向),Δv为速度变化,v0为SAW速度,Tref为参考温度。这样利用一些较高温度系数即高TCD值的压电基片如LiNbO3,LiTaO3以及La3Ga5SiO4可以实现对温度的检测。近年来,借助于无线识别技术,一种SAW反射型延迟线开始应用于SAW无线温度传感器应用。这种SAW反射型延迟线由一个压电基片与沿声波传播方向设置的一个叉指换能器与若干个反射器构成(其反射器数目取决于实际应用),叉指换能器通过无线天线接收来自于无线读取单元(Reader unit)发射的电磁波信号,并转换成沿压电基片表面传播的SAW,并被反射器所反射,反射的SAW通过叉指换能器重新转换成电磁波信号,通过无线天线发送回无线读取单元,由于SAW速度与温度的线性关联导致SAW反射型延迟线时域相位的线性响应,以此实现对温度的无线检测。The propagation speed of SAW has a linear relationship with temperature, that is, Δv=v 0 ×TCD×(TT ref ), where TCD is the first-order delay temperature coefficient of the piezoelectric substrate (depending on the crystal structure of the piezoelectric substrate material and Tangential), Δv is the speed change, v 0 is the SAW speed, and T ref is the reference temperature. In this way, the detection of temperature can be realized by using some piezoelectric substrates with higher temperature coefficient, ie high TCD value, such as LiNbO 3 , LiTaO 3 and La 3 Ga 5 SiO 4 . In recent years, with the help of wireless identification technology, a SAW reflective delay line has been applied to SAW wireless temperature sensor applications. This SAW reflective delay line consists of a piezoelectric substrate, an interdigital transducer and several reflectors arranged along the sound wave propagation direction (the number of reflectors depends on the actual application). The antenna receives the electromagnetic wave signal emitted by the wireless reading unit (Reader unit), and converts it into SAW that propagates along the surface of the piezoelectric substrate, and is reflected by the reflector, and the reflected SAW is converted into electromagnetic wave again through the interdigital transducer The signal is sent back to the wireless reading unit through the wireless antenna. Due to the linear correlation between the SAW speed and temperature, the linear response of the time-domain phase of the SAW reflection delay line is achieved, so as to realize the wireless detection of temperature.
作为例子,常规结构应用于无线温度传感器的一个SAW反射型延迟线1,包含一个压电基片,和在压电基片上用半导体平面工艺制作的一个叉指换能器和沿声波传播方向设置的三个反射器,如图1所示,其中9为压电基片,2为叉指换能器,3,4和5为三个反射器,反射器3与叉指换能器2以及反射器之间的距离根据时延要求予以确定。6,7与8分别为从反射器3,4与5反射的第一、第二与第三反射回波信号。压电基片9通常采用具有高温度系数的LiNbO3,LiTaO3等材料,利用其对温度的高灵敏性,声波速度随外围环境温度的变化而呈现线性变化,从而引起SAW反射型延迟线反射系数S11的时域时延/相位响应,以此实现对温度的检测。As an example, a SAW
现有技术的基于这种SAW反射型延迟线的工作频率为2.4GHz的原型SAW无线温度传感器检测范围在(室温~200℃),其灵敏度达到了34°/℃,并获得了小于0.1K的温度检测分辨率。由于这种SAW温度传感器由单个器件构成,结构简单,采用如文献1:L.M.Reindl:Wireless measurement of temperature using surface acoustic wavesensors,IEEE Trans.UFFC,51,1457-1463(2004).所描述的三个反射器结构以及相应信号处理方法将可以有效的消除由于相位检测中超过360度出现的信号歧义,有可能获得良好的温度灵敏度改善;另外采用相位作为传感器输出信号,具有较高的灵敏度分辨率,且器件本身可以实现绝对无源,适宜于在高温条件下工作,因此这种SAW无线温度传感器具有良好的应用前景,引起人们极大的兴趣。对于这种无线SAW温度传感器,SAW反射型延迟线的设计直接决定了传感器的各项性能指标,特别是检测范围等,因为随着温度的升高,声波传播衰减也相应增加,直接表现为SAW反射型延迟线的时域响应S11的损耗随温度升高而升高(文献2:R.S.Hauser,et al:A wirelessSAW-based temperature sensor for harsh environment,Proceeding of IEEE Sensors,Vol.2pp:860-863,2004),这就需要一种低损耗,高信噪比且具有均一陡直尖锐时域反射峰的SAW反射型号延迟线。但是目前应用于无线温度传感器的SAW反射型延迟线由于器件结构设计存在较大的问题,例如:The detection range of the prototype SAW wireless temperature sensor based on this SAW reflective delay line with a working frequency of 2.4GHz in the prior art is (room temperature to 200°C), and its sensitivity has reached 34°/°C, and a temperature of less than 0.1K has been obtained. Temperature detection resolution. Since this SAW temperature sensor is composed of a single device and has a simple structure, three sensors as described in Document 1: L.M.Reindl: Wireless measurement of temperature using surface acoustic wavesensors, IEEE Trans.UFFC, 51, 1457-1463 (2004) are used. The structure of the reflector and the corresponding signal processing method can effectively eliminate the signal ambiguity caused by the phase detection exceeding 360 degrees, and it is possible to obtain a good temperature sensitivity improvement; in addition, the phase is used as the sensor output signal, which has a higher sensitivity resolution, And the device itself can be absolutely passive, suitable for working under high temperature conditions, so this kind of SAW wireless temperature sensor has a good application prospect and arouses great interest of people. For this wireless SAW temperature sensor, the design of the SAW reflective delay line directly determines the performance indicators of the sensor, especially the detection range, because as the temperature increases, the sound wave propagation attenuation also increases correspondingly, which is directly expressed as SAW The time-domain response of the reflective delay line, the loss of S11 increases with the increase of temperature (Document 2: R.S.Hauser, et al: A wirelessSAW-based temperature sensor for harsh environment, Proceeding of IEEE Sensors, Vol.2pp: 860-863 , 2004), which requires a SAW reflection delay line with low loss, high signal-to-noise ratio and uniform, steep and sharp time-domain reflection peaks. However, the SAW reflective delay line currently used in wireless temperature sensors has major problems due to device structure design, such as:
1.上述常规SAW反射型延迟线1所采用的叉指换能器2采用的是一种双向换能器结构,导致声波双向传播,从而增加了声传播损耗(一般都在50~60dB);信噪比较低,这就严重影响到了温度检测范围以及无线读取距离(与器件损耗呈反比关系,文献3:C.E.Cook,M.Bernfeld:Radar signals,Norwood,MA,Artech House,1993),更直接影响到了传感器的温度检测范围。另外,现有技术的反射型延迟线的未能实现陡直尖锐的反射系数S11的时域反射峰,这就不利于时域时延信号的准确提取,从而引起检测信号的较大偏差。1. The
2.上述应用于SAW无线温度传感器的常规SAW反射型延迟线1通常采用单指型或者叉指换能器型作为延迟线的反射器。叉指型的反射器具有较大的反射系数,因此可以较好的改善器件损耗与信噪比,但是由于叉指电极指间反射以及声电再生引起较大的时域噪声。单指型的反射器可以降低器件时域噪声,但是较小的反射系数导致器件损耗较大,信噪比低。2. The above-mentioned conventional SAW
3.由于声波传播衰减,通常延迟线较长的传播路径导致源自各个反射器的反射峰均一性差,离换能器越远,其损耗越大,信噪比越低,直接影响到时域时延信号的提取。3. Due to the attenuation of sound wave propagation, usually the long propagation path of the delay line leads to poor uniformity of the reflection peaks from each reflector. The farther away from the transducer, the greater the loss and the lower the signal-to-noise ratio, which directly affects the time domain Extraction of delayed signals.
4.目前,传感器系统的一个重要发展趋势是功能的集成化,这样有利于实现对多参量的实时检测,也有利于系统小型化与便携式的实现;而现有采用SAW反射型延迟线的无线温度传感器功能单一;因此,它直接阻碍了SAW无线温度传感器的一些性能改善与实际应用。4. At present, an important development trend of the sensor system is the integration of functions, which is conducive to the real-time detection of multiple parameters, and is also conducive to the realization of system miniaturization and portability; and the existing wireless sensors using SAW reflective delay lines The temperature sensor has a single function; therefore, it directly hinders some performance improvements and practical applications of the SAW wireless temperature sensor.
发明内容 Contents of the invention
本发明的目的在于解决上述的SAW无线温度传感器所存在的问题;为了实现SAW反射型延迟线具有低损耗、高信噪比,低时域噪声与均一时域响应的特点,从而提供一种采用41°YXLiNbO3压电基片,以铝为叉指电极,采用控制电极宽度单相单向换能器(EWC/SPUDT)与短路栅反射器的用于温度检测的SAW反射型延迟线;11个短路栅反射器分两路设置,一路8个反射器用于8位电子标签,另外3个反射器则用于温度检测,实现一种对多参量的实时检测的便携式集成电子标签的SAW无线温度传感器。The purpose of the present invention is to solve the existing problems of the above-mentioned SAW wireless temperature sensor; in order to realize that the SAW reflective delay line has the characteristics of low loss, high signal-to-noise ratio, low time-domain noise and uniform time-domain response, thereby providing a method using 41°YXLiNbO 3 piezoelectric substrate, with aluminum as the interdigitated electrode, a SAW reflective delay line for temperature detection using a controlled electrode width single-phase unidirectional transducer (EWC/SPUDT) and a short-circuit grid reflector; 11 A short-circuit grid reflector is divided into two sets, one with 8 reflectors for 8-bit electronic tags, and the other 3 reflectors for temperature detection, realizing a portable integrated electronic tag SAW wireless temperature for real-time detection of multiple parameters sensor.
本发明的目的是这样实现的:The purpose of the present invention is achieved like this:
本发明提供的一种集成式的声表面波无线温度传感器,如图2a所示,包括SAW反射型延迟线11;所述的SAW反射型延迟线11由一压电基片9,和在所述的压电基片9上沿声波传播方向,在上下两边涂覆出的两条导电膜10,和所设置的一个换能器2与反射器组成;其特征在于:还包括表面贴装元件(surface mount device:SMD)12、吸声胶、阻抗匹配网络13、无线天线14和读取单元17,以及在该压电基片9设置的反射器为11个;An integrated surface acoustic wave wireless temperature sensor provided by the present invention, as shown in Figure 2a, includes a SAW
所述的压电基片9为一块Y向旋转41°沿X方向传播的铌酸锂(LiNbO3)基片,并且选择在所述的压电基片9长边的一端,沿上表面上下两边涂覆两条导电膜10,并且在所述的两条导电膜10中间涂覆第一吸声胶18,所述的EWC/SPUDT2沿导电膜10的边设置;还在所述的压电基片9长边的另一端涂覆第二吸声胶18;The
所述的表面贴装元件12用于将SAW反射型延迟线11的密封封装,形成对EWC/SPUDT2,11个反射器19~29以及压电基片9表面的保护,并完成SAW反射型延迟线11与外围阻抗匹配网络13的电连接;The
所述的换能器2为控制电极宽度单相单向换能器(EWC/SPUDT),该控制电极宽度单相单向换能器以铝做电极,具体结构如图3a所示;该控制电极宽度单相单向换能器由2个以上叉指电极对31,和在每2个叉指电极对31之间设置一电极宽度为1λ/4的反射电极30组成,其中λ:声波波长;所述的反射电极30与所述的叉指电极对31之间的距离为3λ/16,该叉指电极对31由两个1λ/8的电极组成;其中反射电极30的位置取决与基片与反射电极30的材料,例如,用41°YX LiNbO3压电基片和铝电极,反射电极30置于叉指电极对31的左侧,即与单向辐射声波相反的方向以获得单向辐射的声波传播;Described
所述的SAW反射型延迟线11的换能器的输入端N1与所述的无线天线14的信号端N3之间的连接电路中连接一个串联电感32,所述的串联电感32与所述的无线天线14的信号端N3之间的连接电路中连接一个接地的电感33;该无线天线14的接地端N4与所述的换能器2的接地端N2电连接,以此实现SAW反射型延迟线11与无线天线14之间的阻抗匹配;A series inductance 32 is connected in the connection circuit between the input end N1 of the transducer of the SAW
通过所述的无线天线14接收来自于所述的读取单元17发射的电磁波信号15,通过所述的控制电极宽度单相单向换能器2转换成SAW,并沿压电基片9表面传播并被11个反射器部分反射回该控制电极宽度单相单向换能器,重新转换成电磁波信号16,并通过无线天线14传回读取单元17,由于外围温度的变化也引起声波速度的变化,从而导致SAW反射型延迟线11的时域相位响应,通过读取单元予以评价以实现对温度的实时检测。The
在上述的技术方案中,所述的铌酸锂(LiNbO3)基片的耦合系数为17.2%,声传播速度为4750m/s,一阶延迟温度系数为85ppm/℃。In the above technical solution, the coupling coefficient of the lithium niobate (LiNbO 3 ) substrate is 17.2%, the sound propagation velocity is 4750m/s, and the first-order retardation temperature coefficient is 85ppm/°C.
在上述的技术方案中,所述的反射电极30的位置取决于反射电极30的反射相位,而它则与压电基片9与反射电极30的材料有关;短路金属栅条的反射系数由金属栅条对基片表面的压电短路与力学负载效应引起的,在图3a所示的控制电极宽度单相单向换能器结构中获得如图2b中11个反射器方向的声波单向辐射的条件是反射电极30置于叉指电极对31的左侧,即与单向辐射的声波相反的方向。In the above-mentioned technical scheme, the position of the
在上述的技术方案中,EWC/SPUDT 2指对数为10-20,以获得较为陡直尖锐的时域反射峰。In the above technical solution, the logarithm of the EWC/SPUDT 2 index is 10-20 to obtain a relatively steep and sharp time-domain reflection peak.
在上述的技术方案中,为降低反射器之间的多次反射与时域反射峰间噪声,11个反射器分为两路设置,第A个反射器19~第H个反射器26为置于一条路径,用于8为电子标签;第I个反射器27~第K个反射器29设置于另一路径,用于温度检测;另外,为补偿声波传播衰减的影响,11个反射器的电极数均按照一定规律设置,即离EWC/SPUDT2最近的第A-C个反射器19~21具有最少的电极数(例如5个宽度为λ/4的电极),随着反射器离EWC/SPUDT距离的增加,反射器电极数也相应增加,第D个反射器22~第F个反射器24具有6个电极,第G个反射器25~第H个反射器26则具有7个电极,第I个反射器27~第J个反射器28的电极数为8,离EWC/SPUDT最远的第K个反射器29具有最多的电极数(本发明中采用9个电极)。In the above technical solution, in order to reduce the multiple reflections between reflectors and the peak-to-peak noise of time-domain reflections, the 11 reflectors are divided into two sets, and the
在上述的技术方案中,用于温度检测的第A个反射器27~第K个反射器29按照一定的规律进行设置,以获得更高的检测精度,并消除相位检测中超过360度出现的信号歧义,即第K个反射器28与第J个反射器29之间的距离需要远大于第I个反射器27与第J个反射器28之间的距离,但是随着声波传播距离的增加,声波传播损耗也相应增加。因此,综合考虑,第J个反射器28与第K个反射器29之间的距离为第I个反射器27与第J个反射器28之间距离的3倍。In the above-mentioned technical solution, the
在上述的技术方案中,所述的第A个反射器19与EWC/SPUDT2之间的距离为3272.4μm,以此提供区隔环境噪声回波与传感器反射信号超过1.2μs的足够时延。In the above technical solution, the distance between the
本发明的优点在于:The advantages of the present invention are:
本发明的SAW温度传感器是集成式的,其基本结构是在压电基片之上制作一个EWC/SPUDT2与11个短路栅结构的反射器,由EWC/SPUDT通过无线天线接收来自于无线读取单元所发射的电磁波信号,并转换成声表面波,在压电基片表面沿个反射器方向传播,并分别由所述的个反射器所反射,反射的声波通过EWC/SPUDT2重新转换成电磁波信号,由无线天线传回无线读取单元,并通过信号处理方法,以评价时域响应的相位变化来实现对温度的检测。The SAW temperature sensor of the present invention is integrated, and its basic structure is to make a reflector of EWC/SPUDT2 and 11 short-circuit grid structures on the piezoelectric substrate, and the EWC/SPUDT receives the data from the wireless reading through the wireless antenna. The electromagnetic wave signal emitted by the unit is converted into a surface acoustic wave, propagates along the direction of the reflectors on the surface of the piezoelectric substrate, and is reflected by the reflectors respectively, and the reflected sound waves are reconverted into electromagnetic waves by EWC/SPUDT2 The signal is transmitted back to the wireless reading unit by the wireless antenna, and the temperature is detected by evaluating the phase change of the time domain response through a signal processing method.
由于本发明的SAW反射型延迟线11,设计了一种控制电极宽度单向单相换能器的结构,它是利用分布的反射电极反射引起的前向与反向传播的声波相位叠加,有效提升前向声波,而抑制甚至抵消反向声波的传播,这样就可以有效的改善器件损耗,提高反射型延迟线的信噪比性能。Due to the SAW
在SAW反射型延迟线11中设计了一种短路栅反射器的结构,由于该反射器具有较高的反射系数与零声电再生反射,使得SAW反射型延迟线具有良好的信噪比,同时降低反射峰间噪声。In the SAW
本发明采用了具有高压电系数(17.2%)与声传播速度(4750m/s)以及较高的一阶延迟温度系数(85ppm/℃)的41°YX LiNbO32作为压电基片。并采用铝电极的EWC/SPUDT与短路栅反射器结构,降低了器件损耗(在本实用新型中时域S11信号中反射峰损耗约40dB),改善了传感器的信噪比;通过优化设计SAW反射型延迟线的反射器电极指数、反射器声孔径,传播路径等,获得均一损耗与信噪比的时域反射器反射峰。通过优化的设计配置反射器的位置,以此获得传感器的温度补偿与灵敏度改善。The present invention adopts 41°YX LiNbO 3 2 with high piezoelectric coefficient (17.2%), sound propagation velocity (4750m/s) and higher first-order delay temperature coefficient (85ppm/°C) as the piezoelectric substrate. And adopt the EWC/SPUDT of aluminum electrode and the structure of short grid reflector, reduce device loss (in the utility model, reflection peak loss is about 40dB in the time domain S 11 signal), improve the signal-to-noise ratio of the sensor; By optimizing the design of SAW The reflector electrode index, reflector acoustic aperture, propagation path, etc. of the reflective delay line are used to obtain the time-domain reflector reflection peak with uniform loss and signal-to-noise ratio. The position of the reflector is configured through an optimized design to obtain temperature compensation and sensitivity improvement of the sensor.
本发明提供的11个采用短路栅结构的反射器分置于两路径,8个反射器为一路径用于8位电子标签,另外3个反射器设置于另外一条路径,以实现对温度的检测。The 11 reflectors using the short-circuit grid structure provided by the present invention are divided into two paths, 8 reflectors are used as one path for 8-bit electronic tags, and the other 3 reflectors are arranged on the other path to realize temperature detection .
本发明采用在压电基片9两端涂覆吸声胶18,主要用于消除声波的边缘反射,以降低器件边缘反射引起的时域噪声。The present invention adopts the coating of sound-absorbing
本发明为获得较为陡直尖锐的时域反射峰,采用有限降低EWC/SPUDT 2的指对数(10到20对),相对于已有技术是一条较为有效的途径。In order to obtain relatively steep and sharp time-domain reflection peaks, the present invention adopts limited reduction of the index logarithm (10 to 20 pairs) of EWC/SPUDT 2, which is a relatively effective way compared to the prior art.
附图说明 Description of drawings
图1是常规SAW反射型延迟线结构示意图;FIG. 1 is a schematic diagram of the structure of a conventional SAW reflective delay line;
图2a是本发明的集成式SAW无线温度传感器组成示意图;Figure 2a is a schematic diagram of the composition of the integrated SAW wireless temperature sensor of the present invention;
图2b是本发明的用于集成式无线温度传感器的SAW反射型延迟线;Fig. 2b is the SAW reflective delay line used for the integrated wireless temperature sensor of the present invention;
图3a是本发明SAW反射型延迟线所采用的(EWC/SPUDT)的结构示意图;Fig. 3a is a schematic structural diagram of the (EWC/SPUDT) used in the SAW reflective delay line of the present invention;
图3b是本发明的SAW反射型延迟线所采用的短路栅反射器的结构示意图;Fig. 3b is a structural schematic diagram of a short-circuit grid reflector used in the SAW reflective delay line of the present invention;
图4是本发明的SAW反射型延迟线的结构设计图;Fig. 4 is a structural design diagram of the SAW reflective delay line of the present invention;
图5是本发明方案中集成式SAW无线温度传感器与无线天线之间的阻抗匹配网络;Fig. 5 is the impedance matching network between the integrated SAW wireless temperature sensor and the wireless antenna in the scheme of the present invention;
图6是本发明的SAW反射型延迟线的测试时域响应曲线图。Fig. 6 is a test time-domain response curve diagram of the SAW reflective delay line of the present invention.
图面说明如下:The illustrations are as follows:
1.常规SAW反射型延迟线 2.换能器 3.第一反射器1. Conventional SAW
4.第二反射器 5.第三反射器 6.第一回波信号4. The
7.第二回波信号 8.第三回波信号 9.压电基片7.
10.导电膜 11.SAW反射型延迟线10.
12.表面贴装元件(SMD) 13.阻抗匹配网络 14.无线天线12. Surface mount components (SMD) 13.
15.电磁波信号 16.传感器信号 17.无线读取单元15.
18.第一、第二吸声胶 19.第A个反射器 20.第B个反射器18. The first and second sound-absorbing
21.第C个反射器 22.第D个反射器 23.第E个反射器21. Cth
24.第F个反射器 25.第G个反射器 26.第H个反射器24. F-
27.第I个反射器 28.第J个反射器 29.第K个反射器27. The I-
30.反射电极 31.叉指电极对 32.串连电感30.
33.并连电感33. Parallel inductor
具体实施方式 Detailed ways
为了使本发明的目的、技术方案以及优点更加清楚明白,以下结合附图和实施例对本发明做进一步详细说明。In order to make the purpose, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
参考图2a,制作一集成式SAW温度传感器,包括:一SAW反射型延迟线11、表面贴装元件12,以及SAW反射型延迟线11与无线天线14之间的阻抗匹配网络13。Referring to FIG. 2 a , an integrated SAW temperature sensor is manufactured, including: a SAW
参考图2b,本发明实施例的SAW反射型延迟线11,由一压电基片9,和在该压电基片9制作的换能器(本实施例的换能器采用的是控制电极宽度单相单向换能器,即EWC/SPUDT)2与十一个短路栅反射器组成。SAW反射型延迟线11用表面贴装元件12密封封装以保护压电基片9以及EWC/SPUDT 2与十一个短路栅反射器;本实施例的表面贴装元件12采用本领域通用的具有10条管脚的封装元件。With reference to Fig. 2 b, the SAW
本实施例的压电基片9采用沿Y向旋转41°,X方向传播的铌酸理(LiNbO3)基片作为振动膜;其压电基片9的尺寸为(a×b,a:6mm,b:18mm),即长18mm,宽6mm,厚度为350μm的41°YXLiNbO3;该压电基片具有较高的声波速度(4750m/s),压电耦合系数(17.2%)与一阶延迟温度系数(85ppm/℃)。并且选择在所述的压电基片9长边的一端,沿上表面上下两边涂覆出两条导电膜10,并且在所述的两条导电膜10中间涂覆第一吸声胶18,所述的EWC/SPUDT2沿导电膜10的一个边设置;还在该压电基片9长边的另一端涂覆第二吸声胶18(采用本专业常规技术实施的)。主要用于消除声波的边缘反射,以降低器件边缘反射引起的时域噪声。The
参考图3a,本实施例的换能器2为以铝做电极的控制电极宽度单相单向换能器(EWC/SPUDT),其中叉指电极对31和反射电极30均由铝膜制作;该单相单向换能器由6个叉指电极对31,和在6个叉指电极对31之间设置的5个电极宽度为1λ/4的反射电极30组成,当然叉指电极对31还可以是10-20之间的任何数;反射电极30与叉指电极对31(由两个1λ/8的电极组成)之间的距离为3λ/16。反射电极30的位置决定于压电基片9以及反射电极30材料。在本发明实施例中采用41°YXLiNbO3基片与铝电极材料,图3a所示的控制电极宽度单相单向换能器获得如图2a中三个反射器方向的声波单向辐射的条件是反射电极30置于叉指电极对31的左侧,即与单向辐射的声波相反的方向。With reference to Fig. 3 a, the
11个反射器(第A个反射器19~第K个反射器29)均采用短路栅反射器结构(具体结构如图3b所示),由最小为2个获得3到10个1λ/4宽度的电极短路而成。为降低反射器之间的多次反射器引起的声波衰减,11个反射器分置于两路径,第A个反射器19~第H个反射器26置于一条路径,用于8位电子标签,第I个反射器27~第K个反射器29设置于另外一条路径,用于温度检测。由于外围温度变化基于声波速度与温度线性关联特性而引起声波传播速度的线性变化,从而引起用于温度(T)检测的第I个反射器27~第K个反射器29的时域反射峰时延发生变化,其温度相位灵敏度ΔΦ可以通过式ΔΦ=l2/l1×2πf0l1/v0×TCD×(T-Tref)=l2/l1×2πf0×Δτ进行评估(文献5:L.M.Reindl,et al,Wireless measurement of temperature using surface acoustic waves sensors,IEEE,Trans.UFFC,Vol.51,No.11,2004,pp.1457-1463),其中,l1与l2分别为第J个反射器28与第K个反射器29以及第I个反射器27与第J反射器28之间的距离,f0为传感器工作频率,v0为参考温度(通常为室温)条件下声波速度,TCD为基片材料的一阶温度系数,Tref为参考温度(即室温)。l2/l1值越大越有可能获得更高的检测灵敏度,然而,考虑到声波传播的传播衰减即传播距离越远将导致很大的传播损耗,因此声波传播距离需要控制在一定范围之内以降低声传播损耗,在本发明方案中,综合考虑,l2/l1值约为3。The 11 reflectors (the
本实施例的集成式SAW温度传感器的基本结构是:在压电基片9之上制作一个EWC/SPUDT2与上述的11个短路栅结构的反射器,由EWC/SPUDT 2通过无线天线14接收来自于无线读取单元17所发射的电磁波信号15,并转换成声表面波,在压电基片9表面沿11个反射器方向传播,并分别由所述的11个反射器所反射,反射的声波通过EWC/SPUDT2重新转换成电磁波信号16,由无线天线14传回无线读取单元17,并通过信号处理方法(这是本技术领域技术人员可以胜任的),以评价时域响应的相位变化来实现对温度的检测。The basic structure of the integrated SAW temperature sensor of the present embodiment is: make an EWC/SPUDT2 and the reflector of above-mentioned 11 short-circuit grid structures on the
另外,由于声波的传播衰减影响,为保持均一的时域响应,SAW反射型延迟线11的11个反射器的电极结构需要一定的优化设计,以补偿由于声传播衰减引起的时域损耗,离EWC/SPUDT 2最近的第A个反射器19~第C个反射器21采用最少的电极数(本发明实施例中为5个电极),离EWC/SPUDT 2越远,反射器电极数越多(在本发明实施例中第D-F个反射器22~24采用6个电极,第G个反射器25~第H个反射器26采用7个电极,第I个反射器22~第J个反射器28采用8个电极,离EWC/SPUDT 2最远的第K个反射器29采用9个电极)。In addition, due to the influence of sound wave propagation attenuation, in order to maintain a uniform time-domain response, the electrode structure of the 11 reflectors of the SAW
在本发明实施例中,SAW反射型延迟线11与无线天线14之间的匹配网络13连接关系,如图5所示,SAW反射型延迟线11的换能器2的输入端N1,与无线天线14的信号端N3连接电路中串联一个电感32,和并联一个电感33;E换能器2的接地端N2与无线天线的接地端N4直接相连;通过该匹配网络13使得封装后的SAW反射型延迟线11与无线天线14之间达到阻抗匹配状态,以此获得较低损耗,改善传感器的信噪比性能。In the embodiment of the present invention, the connection relationship between the matching
在本实施例中,为获得较为陡直尖锐的时域反射峰,EWC/SPUDT 2的指对数为15,即包含如图3a所示的15个叉指电极对31,与分布于电极对之间的14个反射电极30。In this embodiment, in order to obtain relatively steep and sharp time-domain reflection peaks, the number of finger pairs of EWC/
在本实施例中,所述的SAW反射型延迟线11的第A个反射器19与EWC/SPUDT 2之间的距离为3272.4μm,以此提供区隔环境噪声回波与传感器信号所需的至少1.2μs的足够时延。In this embodiment, the distance between the
具体实施例制作的应用于无线温度传感器中,SAW反射型延迟线11的具体结构如图4所示,图中相关结构参数如下:The concrete structure of the SAW
SAW反射型延迟线11的工作频率:434MHz;声波波长λ:10.9μm;The working frequency of the SAW reflective delay line 11: 434MHz; the wavelength of the sound wave λ: 10.9μm;
a=压电基片9的宽度:6mm;The width of a=piezoelectric substrate 9: 6mm;
b=压电基片9的长度:18mm;The length of b=piezoelectric substrate 9: 18mm;
A=EWC/SPUDT 2的长度:15×λ=163.5μm;A=EWC/
B=EWC/SPUDT 2的声孔径:110×λ=1199μm;B=Acoustic aperture of EWC/SPUDT 2: 110×λ=1199μm;
C=第A个反射器19~第K个反射器29的汇流条宽度:5×λ=54.5μm;C=the width of the bus bar of the
D=第A个反射器19~第K个反射器29的声孔径:50×λ=545μm;H1=反射器19的长度:9×(1/4λ)=24.5μm;D = Acoustic aperture of
H2=第B个反射器20的长度:9×(1/4λ)=24.5μm;H3=反射器21的长度:9×(1/4λ)=24.5μm;H 2 =length of the Bth reflector 20: 9×(1/4λ)=24.5 μm; H 3 =length of the reflector 21: 9×(1/4λ)=24.5 μm;
H4=第D个反射器22的长度:11×(1/4λ)=30μm;H5=反射器23的长度:11×(1/4λ)=30μm;H 4 =length of the Dth reflector 22: 11×(1/4λ)=30 μm; H 5 =length of the reflector 23: 11×(1/4λ)=30 μm;
H6=第F个反射器24的长度:11×(1/4λ)=30μm;H7=反射器25的长度:13×(1/4λ)=35.4μm;H 6 =length of the Fth reflector 24: 11×(1/4λ)=30 μm; H 7 =length of the reflector 25: 13×(1/4λ)=35.4 μm;
H8=第H个反射器26的长度:13×(1/4λ)=35.4μm;H9=反射器27的长度:15×(1/4λ)=40.9μm;H 8 =length of the Hth reflector 26: 13×(1/4λ)=35.4 μm; H 9 =length of the reflector 27: 15×(1/4λ)=40.9 μm;
H10=第J个反射器28的长度:15×(1/4λ)=40.9μm;H11=反射器29的长度:17×(1/4λ)=46.3μm;H 10 = length of the J-th reflector 28: 15×(1/4λ)=40.9 μm; H 11 = length of the reflector 29: 17×(1/4λ)=46.3 μm;
l1=第A个反射器19与EWC/SPUDT 2间的距离:3272.4μm;l 1 = the distance between the
l2=第B个反射器20与反射器19间的距离:383.4μm;l 2 = the distance between the
l3=第C个反射器21与反射器20间的距离:386.1μm;l 3 = the distance between the
l4=第D个反射器22与反射器21间的距离:388.8μm;l 4 = the distance between the
l5=第E个反射器23与反射器22间的距离:391.5μm;l 5 = the distance between the
l6=第F个反射器24与反射器23间的距离:394.2μm;l 6 = the distance between the
l7=第G个反射器25与反射器24间的距离:396.9μm;l 7 = the distance between the
l8=第H个反射器26与反射器25间的距离:399.6μm;l 8 = the distance between the
l9=第I个反射器27与反射器26间的距离:437.4μm;l 9 = the distance between the
l10=第J个反射器28与反射器27间的距离:442.8μm;l 10 = the distance between the
l11=第K个反射器29与反射器28间的距离:1309.5μm;l 11 = the distance between the
通过这一反射器设计,SAW反射型延迟线11将获得均一的反射器时域反射峰,且具有一致的损耗与信噪比。图6示出了从HP8510网络分析仪中观察到的封装前434MHz SAW反射型延迟线11的典型时域反射系数S11的响应曲线。11个反射峰来自于SAW反射型延迟线的11个反射器,具有较为均一的损耗与信噪比性能,相应时域S11损耗大小为39~43dB;第1到第8个反射峰来自于第A个反射器19~第H个反射器26,应用于8位电子标签,第一个反射峰对应时延为1.4μs。第9到第11个反射峰来自于第I个反射器27~J个反射器29,应用于温度检测。第9个反射峰对应时延是2.81μs,第10个反射峰对应时延是3μs,第11个反射峰11对应时延是3.54μs。第10与第11个反射峰间时延差是第9个与第10个反射峰对应时延差大约3倍。从上述检测结果来看,实现了较低损耗,良好的信噪比,较为尖锐反射峰以及较低的峰间噪声。With this reflector design, the SAW
以上所述的实施例,只是本发明较优选的具体实施方式的一种,本领域的技术人员在本发明技术方案内进行的通常变化和替换都应包含在本发明的保护范围内。The embodiments described above are only one of the more preferred specific implementation modes of the present invention, and the usual changes and replacements performed by those skilled in the art within the technical solution of the present invention shall be included in the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910084148 CN101644608B (en) | 2009-05-20 | 2009-05-20 | An Integrated Surface Acoustic Wave Wireless Temperature Sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200910084148 CN101644608B (en) | 2009-05-20 | 2009-05-20 | An Integrated Surface Acoustic Wave Wireless Temperature Sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101644608A CN101644608A (en) | 2010-02-10 |
CN101644608B true CN101644608B (en) | 2013-05-29 |
Family
ID=41656588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200910084148 Expired - Fee Related CN101644608B (en) | 2009-05-20 | 2009-05-20 | An Integrated Surface Acoustic Wave Wireless Temperature Sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101644608B (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102313614B (en) * | 2011-07-14 | 2013-05-08 | 重庆大学 | Method and system for improving detection accuracy of delay line surface acoustic wave (Surface Acoustic Wave) sensor |
CN102901580B (en) * | 2011-07-25 | 2014-05-28 | 上海工程技术大学 | Multicoupler-based surface acoustic wave temperature sensor |
CN102853934B (en) | 2012-07-27 | 2015-04-15 | 上海赛赫信息科技有限公司 | Wireless temperature and humidity sensor and system and measuring method |
CN102840927B (en) * | 2012-09-14 | 2014-09-17 | 中国科学院半导体研究所 | Surface acoustic wave temperature monitoring system suitable for gas insulated switch cabinet |
CN102914384B (en) * | 2012-10-19 | 2014-04-30 | 武汉烽火富华电气有限责任公司 | Temperature detection method based on passive wireless surface acoustic wave temperature sensor |
TW201508644A (en) * | 2013-08-16 | 2015-03-01 | guan-rong Zhong | Omnidirectional surface acoustic wave wireless recognition module |
CN103954823B (en) * | 2014-05-14 | 2016-08-10 | 中国科学院声学研究所 | Surface Acoustic Wave Current Sensor |
US10041842B2 (en) * | 2014-11-06 | 2018-08-07 | Applied Materials, Inc. | Method for measuring temperature by refraction and change in velocity of waves with magnetic susceptibility |
WO2016106558A1 (en) * | 2014-12-30 | 2016-07-07 | 3M Innovative Properties Company | Surface acoustic wave (saw) based temperature sensing for electrical conductor |
RU2592055C1 (en) * | 2015-06-16 | 2016-07-20 | Открытое акционерное общество "Научно-производственное предприятие "Радар ммс" | Sensitive element on surface acoustic waves for temperature measurement |
CN105185753A (en) * | 2015-08-13 | 2015-12-23 | 北京中科飞鸿科技有限公司 | Single bare surface acoustic wave chip miniaturized package based on LTCC technology |
CN105333972A (en) * | 2015-11-26 | 2016-02-17 | 国网智能电网研究院 | Double-acoustic-path acoustic surface wave temperature sensor |
CN105527994B (en) * | 2016-01-25 | 2017-11-14 | 张津瑜 | A kind of refrigerated case temperature control method based on sound wave thermometric |
US10374266B2 (en) * | 2016-05-11 | 2019-08-06 | Ford Global Technologies, Llc | Wireless traction battery force sensor |
US9970993B1 (en) * | 2017-02-16 | 2018-05-15 | Ford Global Technologies, Llc | Sensor system for measuring battery internal state |
CN107202652A (en) * | 2017-06-07 | 2017-09-26 | 重庆工商大学 | A kind of utilization surface acoustic wave detects the system and detection method of automobile absorber temperature |
CN108692824A (en) * | 2018-03-21 | 2018-10-23 | 中电科技德清华莹电子有限公司 | A kind of passive wireless acoustic surface wave temperature sensor |
IT201900000418A1 (en) * | 2019-01-10 | 2020-07-10 | Consiglio Nazionale Ricerche | Sensorized device for the analysis of a fluid by means of acoustic waves |
CN110836679B (en) * | 2019-11-04 | 2021-08-31 | 兰州中联电子科技有限公司 | SAW surface acoustic wave passive wireless sensor device |
-
2009
- 2009-05-20 CN CN 200910084148 patent/CN101644608B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101644608A (en) | 2010-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101644608B (en) | An Integrated Surface Acoustic Wave Wireless Temperature Sensor | |
CN201535702U (en) | Wireless temperature sensor of acoustic surface wave | |
CN201417195Y (en) | A Surface Acoustic Wave Reflective Delay Line | |
CN101644618B (en) | Surface acoustic wave reflective delay line applied in wireless pressure sensor | |
CN103954823B (en) | Surface Acoustic Wave Current Sensor | |
CN107289883B (en) | A Differential Resonator Type Wireless Passive Surface Acoustic Wave Strain Sensor | |
CN101644616A (en) | Integrated surface acoustic wave wireless pressure sensor applied to TPMS | |
CN107014325A (en) | A kind of wireless passive sonic surface wave strain transducer | |
US20180209857A1 (en) | Wireless temperature sensor based chip | |
CN102052986A (en) | Wireless passive surface acoustic wave (SAW) impedance load transducer | |
KR100865040B1 (en) | Integrated surface acoustic wave based microsensor | |
CN104768113B (en) | Love wave device structure for liquid multi-parameter sensing and detection method | |
CN103929147B (en) | Single-ended pair SAW resonator with high quality factors | |
CN111044770A (en) | A wireless passive surface acoustic wave current sensor based on single-ended resonator | |
CN112729595A (en) | Delay line type surface acoustic wave sensor and manufacturing method thereof | |
CN115436686B (en) | A delay line type surface acoustic wave voltage sensor and voltage detection method | |
CN104902416A (en) | A multi-finger parallel Love wave device structure and its batch liquid detection method | |
US4322651A (en) | Acoustic surface wave device | |
CN103557956B (en) | Wireless passive sonic surface wave delay line type temperature and pressure sensor | |
CN107449955A (en) | A kind of surface acoustic wave current sensor based on graphical magnetostrictive thin film | |
US11674890B2 (en) | Saw based optical sensor device and package including the same | |
CN201464095U (en) | An Integrated Surface Acoustic Wave Wireless Pressure Sensor | |
CN211783950U (en) | Surface acoustic wave temperature sensor with time division and frequency division combined coding | |
CN105333972A (en) | Double-acoustic-path acoustic surface wave temperature sensor | |
CN205175572U (en) | Alliteration way surface acoustic wave temperature sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130529 Termination date: 20170520 |
|
CF01 | Termination of patent right due to non-payment of annual fee |