CN101644507A - Process gas cooling system - Google Patents
Process gas cooling system Download PDFInfo
- Publication number
- CN101644507A CN101644507A CN200910104657A CN200910104657A CN101644507A CN 101644507 A CN101644507 A CN 101644507A CN 200910104657 A CN200910104657 A CN 200910104657A CN 200910104657 A CN200910104657 A CN 200910104657A CN 101644507 A CN101644507 A CN 101644507A
- Authority
- CN
- China
- Prior art keywords
- cooling
- chilled water
- process gas
- preparation device
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 title claims abstract description 103
- 238000000034 method Methods 0.000 title claims abstract description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 131
- 238000002360 preparation method Methods 0.000 claims abstract description 42
- 238000005057 refrigeration Methods 0.000 claims abstract description 19
- 238000005338 heat storage Methods 0.000 claims abstract description 11
- 238000007791 dehumidification Methods 0.000 claims description 13
- 238000010521 absorption reaction Methods 0.000 claims description 2
- 238000005192 partition Methods 0.000 claims description 2
- 238000001179 sorption measurement Methods 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 abstract description 8
- 238000003860 storage Methods 0.000 abstract description 7
- 238000005265 energy consumption Methods 0.000 abstract description 5
- 239000007789 gas Substances 0.000 description 25
- 230000005855 radiation Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000000498 cooling water Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Images
Landscapes
- Heat-Pump Type And Storage Water Heaters (AREA)
Abstract
本发明涉及一种工艺气体降温系统,所述工艺气体降温系统包括太阳能集热器(1)、蓄热水箱(3)、冷冻水制备装置(9)、降温换热器(12);其中所述太阳能集热器(1)中的产生的热水进入蓄热水箱(3)为所述冷冻水制备装置(9)提供所需的热水;冷冻水制备装置(9)为所述降温换热器(12)提供所需的冷冻水;降温换热器(12)对进入的工艺气体进行降温。本发明利用太阳能制冷技术,充分利用了可再生能源,节省了采用常规降温装置所需的蒸汽或电能消耗。
The invention relates to a process gas cooling system, which comprises a solar heat collector (1), a hot water storage tank (3), a chilled water preparation device (9), and a cooling heat exchanger (12); wherein The hot water produced in the solar heat collector (1) enters the heat storage tank (3) to provide the required hot water for the chilled water preparation device (9); the chilled water preparation device (9) is the The cooling heat exchanger (12) provides the required chilled water; the cooling heat exchanger (12) cools the incoming process gas. The invention utilizes solar refrigeration technology, fully utilizes renewable energy, and saves steam or electric energy consumption required by conventional cooling devices.
Description
技术领域 technical field
本发明涉及一种工艺气体的降温系统,尤其涉及一种使用太阳能对工艺气体进行降温的系统。The invention relates to a cooling system for process gas, in particular to a system for cooling process gas by using solar energy.
背景技术 Background technique
在现有的工艺气体降温过程中,采用的均为压缩机或蒸汽制冷技术,这样所需的电能多,能耗大,特别在大流量、较高大气温度条件下对工艺气体降温时,所需能耗巨大。In the existing process gas cooling process, compressors or steam refrigeration technologies are used, which require a lot of electric energy and high energy consumption, especially when cooling the process gas under the condition of large flow rate and high atmospheric temperature. The energy consumption is huge.
如在炼铁领域,高炉鼓风机运行过程中,其所需轴功率受大气条件影响较大,以4000m3高炉鼓风机为例:在夏季,假定白天平均温度为25℃,此时鼓风机运行功率约为40000kW,而早晚及夜间平均温度假定为15℃,此时鼓风机运行功率约为38800kW,此时鼓风机功耗比白天减少约3%;在春秋季,假定白天平均温度为15℃,此时鼓风机运行功率约为35000kW,而早晚及夜间平均温度假定为8℃,此时鼓风机运行功率约为34000kW,此时鼓风机功耗比白天减少约2.5%(以上参数是仅仅考虑鼓风机吸气降温,但未达到大气露点条件下的初步计算结果)。在采用脱湿鼓风的情况下,因为白天及夜间的空气温度变化对脱湿系统的稳定运行不利,并最终会影响高炉稳定运行。For example, in the field of ironmaking, during the operation of the blast furnace blower, the required shaft power is greatly affected by the atmospheric conditions. Taking the 4000m 3 blast furnace blower as an example: in summer, assuming that the average daytime temperature is 25°C, the operating power of the blower at this time is about 40,000kW, and the average temperature in the morning, evening and night is assumed to be 15°C. At this time, the operating power of the blower is about 38,800kW. At this time, the power consumption of the blower is reduced by about 3% compared with the daytime; in spring and autumn, assuming that the average temperature during the day is 15°C, the blower operates The power is about 35000kW, and the average temperature in the morning, evening and night is assumed to be 8°C. At this time, the operating power of the blower is about 34000kW. At this time, the power consumption of the blower is reduced by about 2.5% compared with that in the daytime (the above parameters are only considering the air suction and cooling of the blower, but not reached Preliminary calculation results under atmospheric dew point conditions). In the case of using dehumidification blast, the air temperature changes during the day and night are not conducive to the stable operation of the dehumidification system, and will eventually affect the stable operation of the blast furnace.
发明内容 Contents of the invention
本发明的目的是提供一种使用可再生能源的工艺气体降温系统。The object of the present invention is to provide a process gas cooling system using renewable energy.
本发明的目的是通过如下的方式实现的:The purpose of the present invention is achieved in the following manner:
一种工艺气体降温系统,其特征在于:所述工艺气体降温系统包括太阳能集热器、蓄热水箱、冷冻水制备装置、降温换热器;A process gas cooling system, characterized in that: the process gas cooling system includes a solar collector, a hot water storage tank, a chilled water preparation device, and a cooling heat exchanger;
其中所述太阳能集热器中的产生的热水进入蓄热水箱为所述冷冻水制备装置提供所需的热水;冷冻水制备装置为所述降温换热器提供所需的冷冻水;降温换热器对进入的气体进行降温。Wherein the hot water produced in the solar heat collector enters the hot water storage tank to provide the required hot water for the chilled water preparation device; the chilled water preparation device provides the required chilled water for the cooling heat exchanger; The cooling heat exchanger cools the incoming gas.
所述太阳能集热器的出水口通过管道连接所述蓄热水箱的入水口,所述蓄热水箱的出水口通过带有水泵的管道连接在所述冷冻水制备装置的热水入口,所述冷冻水制备装置的热水出口通过管道回流至所述太阳能集热器的入水口;The water outlet of the solar heat collector is connected to the water inlet of the hot water storage tank through a pipeline, and the water outlet of the hot water storage tank is connected to the hot water inlet of the chilled water preparation device through a pipeline with a water pump, The hot water outlet of the chilled water preparation device is returned to the water inlet of the solar heat collector through a pipeline;
所述冷冻水制备装置通过带有水泵的管道连接所述降温换热器的冷冻水入口与冷冻水出口。The chilled water preparation device connects the chilled water inlet and the chilled water outlet of the cooling heat exchanger through a pipeline with a water pump.
为了充分的利用鼓风机组出气口的余热,同时减少太阳辐射少时的不足,所述气体降温系统的出气口通过管道连接至鼓风机进气口;所述鼓风机的出气口还连有辅热加热器,所述辅热加热器通过管道分别与太阳能集热器的出水口和蓄热水箱的入水口相连。In order to make full use of the waste heat at the air outlet of the blower unit and reduce the deficiency when the solar radiation is low, the air outlet of the gas cooling system is connected to the air inlet of the air blower through a pipeline; the air outlet of the air blower is also connected with an auxiliary heat heater, The auxiliary heat heater is respectively connected with the water outlet of the solar heat collector and the water inlet of the heat storage tank through pipes.
为了对工艺气体进行进一步的降温及脱湿,所述降温换热器的出气口与鼓风机之间还连接有次级降温脱湿装置,所述次级降温脱湿装置包括次级降温脱湿器,次级冷冻水制备装置;In order to further cool down and dehumidify the process gas, a secondary cooling and dehumidifying device is connected between the air outlet of the cooling heat exchanger and the blower, and the secondary cooling and dehumidifying device includes a secondary cooling and dehumidifying device , secondary chilled water preparation device;
所述次级冷冻水制备装置为次级降温换热器提供所需的冷冻水,所述次级冷冻水制备装置通过带有水泵的管道连接次级降温换热器的冷冻水入口与冷冻水出口;The secondary chilled water preparation device provides the required chilled water for the secondary cooling heat exchanger, and the secondary chilled water preparation device connects the chilled water inlet of the secondary cooling heat exchanger with the chilled water through a pipeline with a water pump. exit;
为了提供质量较好的气体,所述降温换热器的进气口还连接有气体过滤器。In order to provide better quality gas, the air inlet of the cooling heat exchanger is also connected with a gas filter.
本发明的利用太阳能制冷技术,充分利用了可再生能源,可以节省采用常规蒸汽或电能降温制冷情况下约30%的能耗,同时还可节省鼓风机的驱动功率约3%。另外通过太阳能制冷技术,稳定了高炉鼓风机次级降温脱湿的运行,保证了降温及脱湿效果,保证了高炉炉况稳定和节能增产。The refrigeration technology utilizing solar energy of the present invention makes full use of renewable energy, can save about 30% of the energy consumption in the case of using conventional steam or electric energy for cooling and cooling, and can also save about 3% of the driving power of the blower. In addition, through the solar refrigeration technology, the operation of the secondary cooling and dehumidification of the blast furnace blower is stabilized, the effect of cooling and dehumidification is guaranteed, and the stability of the blast furnace condition and energy saving and production increase are guaranteed.
附图说明 Description of drawings
图1为本发明的结构示意图。Fig. 1 is a structural schematic diagram of the present invention.
图中,件(1)为太阳能集热器,件(2)为辅热加热器,件(3)为蓄热水箱,件(4)、(4’)、(5)、(6)、(7)为管道,件(8)为水泵,件(9)为冷冻水制备装置,件(10)为水泵,件(11)、(11’)为管道,件(12)为降温换热器,件(13)为次级冷冻水制备装置,件(14)为水泵,件(15)、(15’)为管道,件(16)为次级降温脱湿器,件(17)、(18)为管道,件(19)为鼓风机。In the figure, part (1) is a solar heat collector, part (2) is an auxiliary heat heater, part (3) is a heat storage tank, and parts (4), (4'), (5), (6) , (7) are pipelines, piece (8) is a water pump, piece (9) is a chilled water preparation device, piece (10) is a water pump, pieces (11), (11') are pipelines, and piece (12) is a cooling water exchange Heater, part (13) is a secondary chilled water preparation device, part (14) is a water pump, parts (15), (15') are pipelines, part (16) is a secondary cooling dehumidifier, and part (17) , (18) are pipelines, and part (19) is a blower.
具体实施方式 Detailed ways
下面结合附图对发明的实施例做进一步的说明。Embodiments of the invention will be further described below in conjunction with the accompanying drawings.
本发明可适合于高炉鼓风机吸气降温及脱湿,也可以用于其它工艺气体降温脱湿的场合(如燃气轮机压气机入口空气的降温),特别是大流量、较高大气温度条件下工艺气体降温。下面以高炉鼓风机吸气降温脱湿为例:The present invention is suitable for air suction cooling and dehumidification of blast furnace blower, and can also be used in other process gas cooling and dehumidification occasions (such as cooling of air at the inlet of gas turbine compressor), especially for process gas under the condition of large flow rate and relatively high atmospheric temperature Cool down. The following is an example of blast furnace blower air suction cooling and dehumidification:
如图1所示,太阳能集热器1的出水口通过管道5连接蓄热水箱3的入水口,蓄热水箱的3出水口通过带有水泵8的管道4’连接在冷冻水制备装置9的热水入口,冷冻水制备装置9的热水出口通过管道4回流至太阳能集热器1的入水口;冷冻水制备装置9通过带有水泵10的管道11、11’连接降温换热器12的冷冻水入口与冷冻水出口。从进气口进入降温换热器12的的空气经过降温后,在出气口流出。As shown in Figure 1, the water outlet of the
降温换热器12的进气口还连接有气体过滤器,对大气进行过滤。降温换热器12的出气口与鼓风机19之间还连接有次级降温装置,次级降温装置包括次级降温脱湿器16,次级冷冻水制备装置13;次级冷冻水制备装置13为次级降温换热器16提供所需的冷冻水,次级冷冻水制备装置13通过带有水泵14的管道15,15’连接次级降温脱湿器16的冷冻水入口与冷冻水出口;次级冷冻水制备装置13上还设有冷却水入口和出口。鼓风机组的出气口还连有辅热加热器2,辅热加热器2通过管道6、7分别与太阳能集热器1的出水口和蓄热水箱3的入水口相连。其中太阳能集热器(1)为平板集热器或真空管式集热器。辅热换热器2为管壳式换热器或间壁式换热器。冷冻水制备装置9为喷射式制冷系统、吸收式制冷系统或吸附式制冷系统。降温换热器12、次级降温脱湿器16为间壁式换热器。冷冻水制备装置13为压缩机制冷系统或蒸汽制冷系统。The air inlet of the
使用中,经过冷冻水制备装置9后温度降低的热水,通过管件4进入太阳能集热器1吸收白天太阳辐射能生产热水,热水经过管件5进入蓄热水箱3。当太阳辐射不足时,温度降低的热水通过管件6进入设置在鼓风机排气管段上的辅热加热器2,加热后的水通过管件7进入蓄热水箱3,经过辅热加热器2的空气略微降低再供往后部的热风炉。制备好的热水通过水泵8供至冷冻水制备装置9,使用完毕后再回到太阳能集热系统。如此往复使用。In use, the hot water whose temperature is lowered after passing through the chilled
由热水泵8供来的热水进入冷冻水制备装置9,冷冻水制备装置需要的冷却水由外部提供,制备好的冷冻水经过水泵10加压进入降温换热器12,使用完毕的冷冻水经过管道11’回到冷冻水制备系统。经过气体过滤器过滤的空气通过管道进入降温换热器12,空气温度由大气温度降到一定温度后再经过管道17进入到次级降温脱湿器16。通过其它能源(电能或蒸汽等)驱动的次级冷冻水制备装置13生产的冷冻水,经过水泵14加压进入次级降温脱湿器16,使用完毕的冷冻水经过管道15回到次级冷冻水制备装置13。经过第一级降温的空气在次级降温脱湿器16内降温脱湿,空气中的部分水蒸汽凝结并经除雾器去除,空气湿度降到满足炼铁工艺要求后进入高炉鼓风机19。The hot water supplied by the
在本发明中气体降温系统充分利用太阳辐射与大气温度波动一致的特点,早晚及夜间辐射较少,同时大气温度较低,气体降温系统停止运行,当白天太阳辐射逐渐增强,大气温度也逐渐升高后,气体降温系统投运,利用太阳能制冷技术对鼓风机吸气进行初次降温,将鼓风机吸气温度较为稳定的控制在早晚大气温度水平,稳定了次级降温装置的负荷,减少了单纯利用压缩机或蒸汽制冷技术所需要的电能或其它能源。当设置辅热加热器2后,在太阳辐射不足情况下,热水制备利用鼓风机排出的高温热空气作为辅热,在辅热加热器2中制备热水,保证热水的温度及冷冻水的制备,从而最终保证鼓风机吸气初级降温效果;当没有设置该辅热加热器2时,可以通过调节气体降温系统及次级降温装置的负荷比例来达到鼓风机总的吸气降温及脱湿效果。在次级降温装置中,可采用常规的电能或蒸汽制冷技术制取冷冻水,冷冻水对经过初次降温的空气进行次级降温并脱湿。In the present invention, the gas cooling system takes full advantage of the consistent characteristics of solar radiation and atmospheric temperature fluctuations. There is less radiation in the morning and evening and at night. At the same time, the atmospheric temperature is low, and the gas cooling system stops operating. After the high temperature, the gas cooling system was put into operation, using solar refrigeration technology to cool down the suction of the blower for the first time, and the temperature of the suction of the blower was controlled relatively stably at the atmospheric temperature level in the morning and evening, which stabilized the load of the secondary cooling device and reduced the use of compression alone. Electric energy or other energy required by machine or steam refrigeration technology. When the
在气体降温系统制冷降温基础上,设置次级冷冻水制备装置13,生产的冷冻水对鼓风机吸气进行次级降温,在脱湿装置内部,凝结下来的水分通过除雾器收集,使进入鼓风机的空气含湿量达到较低水平。因气体降温系统采用太阳能制冷技术,充分利用了可再生能源,节省了次级降温所需能耗,同时节省了部分驱动鼓风机的能源,稳定了高炉鼓风机吸气降温脱湿的效果,从而最终保证高炉炉况稳定和节能增产。On the basis of the cooling and cooling of the gas cooling system, a secondary chilled
鼓风机19的入口空气过滤器与降温换热器12、次级降温脱湿器16可以是整体式,即为三合一设备---空气过滤及降温脱湿组合装置,也可以是分体式。The inlet air filter of the
本发明在工程实际应用中可根据不同地区气象条件、不同的高炉操作条件确定本发明中太阳集热器1的形式及面积、制冷系统冷冻水温度及降温换热器12、次级降温脱湿器16的换热面积等主要性能参数。当然也可以级联多个气体降温装置,这样可以对气体降温达到一个更好的效果。这都受到本发明的保护。In the practical engineering application of the present invention, the form and area of the
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910104657A CN101644507A (en) | 2009-08-20 | 2009-08-20 | Process gas cooling system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910104657A CN101644507A (en) | 2009-08-20 | 2009-08-20 | Process gas cooling system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101644507A true CN101644507A (en) | 2010-02-10 |
Family
ID=41656493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910104657A Pending CN101644507A (en) | 2009-08-20 | 2009-08-20 | Process gas cooling system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101644507A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102226557A (en) * | 2011-04-29 | 2011-10-26 | 中冶赛迪工程技术股份有限公司 | Residue cold utilization temperature and humidity separate control air conditioning system |
CN106524571A (en) * | 2016-10-21 | 2017-03-22 | 广州万宝集团有限公司 | Solar energy and waste heat double-heat-source driven type adsorption refrigeration system |
CN114843548A (en) * | 2022-03-18 | 2022-08-02 | 武汉中极氢能产业创新中心有限公司 | Integrated gas-gas heater and gas-gas cooling device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57139235A (en) * | 1981-02-19 | 1982-08-28 | Matsushita Electric Ind Co Ltd | Cooler utilizing solar heat |
CN86202037U (en) * | 1986-04-08 | 1987-09-12 | 宁夏新技术应用研究所 | Solar energy bathroom facilities with afterheat-utilizing device |
CN87108120A (en) * | 1986-12-15 | 1988-06-29 | 太阳追踪有限公司 | Cooling device |
CN101074453A (en) * | 2006-09-13 | 2007-11-21 | 童裳慧 | Efficient economical dust collecting method and dust collector for iron-smelting blast furnace |
CN201016499Y (en) * | 2007-02-07 | 2008-02-06 | 广东志高空调有限公司 | Solar energy stepping utilization type air-conditioning system |
CN201463402U (en) * | 2009-08-20 | 2010-05-12 | 中冶赛迪工程技术股份有限公司 | A process gas cooling system |
-
2009
- 2009-08-20 CN CN200910104657A patent/CN101644507A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57139235A (en) * | 1981-02-19 | 1982-08-28 | Matsushita Electric Ind Co Ltd | Cooler utilizing solar heat |
CN86202037U (en) * | 1986-04-08 | 1987-09-12 | 宁夏新技术应用研究所 | Solar energy bathroom facilities with afterheat-utilizing device |
CN87108120A (en) * | 1986-12-15 | 1988-06-29 | 太阳追踪有限公司 | Cooling device |
CN101074453A (en) * | 2006-09-13 | 2007-11-21 | 童裳慧 | Efficient economical dust collecting method and dust collector for iron-smelting blast furnace |
CN201016499Y (en) * | 2007-02-07 | 2008-02-06 | 广东志高空调有限公司 | Solar energy stepping utilization type air-conditioning system |
CN201463402U (en) * | 2009-08-20 | 2010-05-12 | 中冶赛迪工程技术股份有限公司 | A process gas cooling system |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102226557A (en) * | 2011-04-29 | 2011-10-26 | 中冶赛迪工程技术股份有限公司 | Residue cold utilization temperature and humidity separate control air conditioning system |
CN102226557B (en) * | 2011-04-29 | 2013-04-17 | 中冶赛迪工程技术股份有限公司 | Waste cold utilization based air-conditioning system capable of realizing independent temperature-humidity control |
CN106524571A (en) * | 2016-10-21 | 2017-03-22 | 广州万宝集团有限公司 | Solar energy and waste heat double-heat-source driven type adsorption refrigeration system |
CN114843548A (en) * | 2022-03-18 | 2022-08-02 | 武汉中极氢能产业创新中心有限公司 | Integrated gas-gas heater and gas-gas cooling device |
CN114843548B (en) * | 2022-03-18 | 2024-05-17 | 武汉中极氢能产业创新中心有限公司 | Integrated gas-gas heater and gas-gas cooling device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101851945B (en) | Device for preparing liquid water by air | |
CN203215882U (en) | All-air energy-saving air conditioning system | |
CN103397943B (en) | The air inlet desiccant cooling system of Gas-steam Combined Cycle and method | |
CN203413824U (en) | Bypass-defrosting enhanced vapor injection type heat pump hot water machine set with low-temperature air source | |
CN104949495A (en) | Intelligent high temperature heat pump drying system with damp-heat recovery | |
CN201448954U (en) | dehumidifier | |
CN102901193A (en) | Stepless temperature regulating type condensation heat recovery air conditioning unit | |
CN103900184A (en) | Water cooling medium three-pipe refrigerating and heating air-conditioning system | |
CN101216225A (en) | A dual temperature cold water/air cooler unit | |
CN107355371B (en) | Efficient compressed air energy storage system and method | |
CN104949477A (en) | Solar-assisted intelligent high-temperature heat pump drying system | |
CN203100029U (en) | Machine room air conditioner | |
CN105715382A (en) | Evaporative cooling and absorption refrigerating combined type cooling recycling system for gas turbine | |
CN103233821B (en) | An air temperature regulation system | |
CN203284304U (en) | Device of drying sludge through solar energy-heat pump coupled liquid desiccating | |
CN102767921B (en) | Double-way pre-cooling efficient heat pump device and control method thereof | |
CN110130440A (en) | Solar Powered Compressed Air Water Dispenser | |
CN101644507A (en) | Process gas cooling system | |
CN201807261U (en) | Environmental emission reduction type gas dehumidification dust removal machine | |
CN101713579B (en) | Open low-temperature heat source refrigerating system | |
CN105299952A (en) | Air conditioner purification and dehumidification multifunctional unit and application method | |
CN201463402U (en) | A process gas cooling system | |
CN204730581U (en) | A kind of solar energy assists intelligent high temperature heat pump drying system | |
CN204739882U (en) | A high temperature heat pump drying system with intelligent adjustment function | |
CN101270899A (en) | Solar-powered compact two-stage parallel liquid desiccant air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20100210 |