CN101639564B - 激光应用大孔径的光学镜头 - Google Patents

激光应用大孔径的光学镜头 Download PDF

Info

Publication number
CN101639564B
CN101639564B CN2009101067949A CN200910106794A CN101639564B CN 101639564 B CN101639564 B CN 101639564B CN 2009101067949 A CN2009101067949 A CN 2009101067949A CN 200910106794 A CN200910106794 A CN 200910106794A CN 101639564 B CN101639564 B CN 101639564B
Authority
CN
China
Prior art keywords
lens
laser
wide
curved
aperture optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009101067949A
Other languages
English (en)
Other versions
CN101639564A (zh
Inventor
高云峰
周朝明
李家英
李红梅
孙博
张维臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Han s Laser Technology Industry Group Co Ltd
Original Assignee
Shenzhen Hans Laser Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Hans Laser Technology Co Ltd filed Critical Shenzhen Hans Laser Technology Co Ltd
Priority to CN2009101067949A priority Critical patent/CN101639564B/zh
Publication of CN101639564A publication Critical patent/CN101639564A/zh
Application granted granted Critical
Publication of CN101639564B publication Critical patent/CN101639564B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)

Abstract

一种激光应用大孔径的光学镜头,包括透镜组和位于透镜组前方的光阑,该透镜组包括三个透镜,分别为第一、第二、第三透镜,该三个透镜依次布局成“负-正-正”分离的光焦度系统,其中第一透镜为弯月型负透镜,其曲面向着光阑方向弯曲;第二透镜和第三透镜都为弯月型正透镜,曲面也向着光阑方向弯曲所述各透镜的光焦度与系统的光焦度比率符合以下要求:-0.5<f1/fw<-0.4,0.55<f2/fw<0.65,0.8<f3/fw<1,本镜头的主要优点在于:与一般的同焦距的激光应用fθ镜头相比,该镜头的相对孔径和通光直径都比普通的激光应用fθ镜头要大2-3倍,该镜头的通光直径最大可达到30mm;且要求视场大、焦距长。

Description

激光应用大孔径的光学镜头
【技术领域】
本发明涉及一种激光应用大孔径的F-theta光学镜头。
【背景技术】
目前,激光焊接应用已深入到我们现代生活的各个方面。如电子元件、五金制品、精密机械、汽车配件、工艺礼品等行业。在配有振镜工作台的激光焊接机中更是离不开为了符合各种工艺要求的各种应用光学系统。此种类型的激光焊接具有焊接速度快,焊点小,变形小,焊缝平整美观,可实现某些异种材料间的焊接等优点。
fθ(F-theta)镜头是一种大视场、中小孔径、中长焦距的照相物镜,从它要负担的参数来说,选用“三片”型的照相物镜,应该是较为合适的。激光振镜打标机是因为有了fθ(F-theta)镜头才得以实现。带有振镜工作台的激光焊接机就是因为有了fθ镜头才得以实现的。
但现有fθ镜头要可以接受直径是20-30mm左右的入射光斑,比激光打标所用的fθ镜头入光直径大2-3倍;而且要求焊接光斑精细,能量集中度高,这在光学设计中又增加了很大的难度。为了解决了这一难题,我们把这种fθ镜头设计成大孔径的镜头。目前我们研发出的此种大孔径的光学镜头还是国内独创,国外此种镜头尽管有,但只是个别镜头,不成系列;而且体积大,价格也很昂贵。我们的同类镜头与其相比,体积小,使用起来灵活方便;成本低,使用国产环保材料,完全是自己设计,研发,已成系列,有独立的知识产权,而且目前已经批量生产。
图1是一种典型的fθ镜光学系统,光束顺次经两块绕x轴和y轴转动的振镜1、2,最后通过fθ镜3聚焦在像面4上,由振镜扫描形成图像。fθ镜头3是一种平像场的聚焦镜,在打标时,要求在成像面上像高η与X振镜1和Y振镜2的扫描角度θ成线性关系,即:η=f·θ(Sr)。其中,f为fθ镜头3的焦距,θ为振镜的扫描角度(单位为弧度)。
由高斯光学成像理论知,像高η与镜头焦距f和振镜转角θ为下列关系:η=f·tgθ。它不满足η=f·θ(Sr)关系式。因此,激光加工用常规的镜头是不可行的,这是因为像高η与振镜的转角θ不是呈线性关系变化,所刻出来的图形与实物不相似,反而是一个变形的图像。
为了解决这个问题,要求在光学设计时的象差校正中,有意引入畸变Δη,使得满足下式所示关系:η=(ftgθ-Δη)=fθ。这个结论是非常重要的,虽然Δη是有意引入的,但决不意味着畸变就可以不考虑,随意大小都可以,Δη应满足下式:
Δη=f·tgθ-f·θ=f(tgθ-θ)
上式表明:畸变应为振镜转角的正切和弧度之差与镜头焦距f的乘积时才能满足要求。能满足这个条件的才能称作f-θ镜头。
光学设计的另一个特点,就是要求所有在成像范围内的聚焦点,应有相似的聚焦质量,且不允许有渐晕,以保证所有像点都相一致和清晰。
为了解决以上的问题,我们又想到采用“负-正-正”的光焦度分布型式。由于该镜头要求孔径比较大,焦距比较长,用“三片”型的光焦度分配就可以满足要求,这样我们镜头的结构就是“负-正-正”的结构。这种结构它的畸变很容易达到fθ镜要求,是一种“无变形”的焊接,其余的象差也比以“正-负-正”分布光焦度的fθ镜好一些,而且结构更加紧凑。
【发明内容】
本发明所要解决技术问题在于提供一种相对孔径和通光直径都比普通的激光应用fθ镜头要大2-3倍,该镜头的通光直径最大可达到30mm,且视场大、焦距长的激光应用大孔径的fθ光学镜头。
从它要负担的参数来说,选用“三片”型的照相物镜,应该是较为合适的。一种是采用典型的“COOK”三片照相物镜一样,以“正-负-正”形式分配光焦度。从象差理论分析中说明,“三片”型的擅长是容易校正光栏在镜头内对称结构的象差,而现在的入瞳是在镜头之外,而且离镜头相当远,这对于用对称的结构要校正不对称光束的象差是困难的。
本发明所采用的技术方案是提供一种激光应用大孔径的光学镜头,包括透镜组和位于透镜组前方的光阑,该透镜组可通过最大直径为30mm的入射光束,该透镜组包括三个透镜,分别为第一、第二、第三透镜,该三个透镜依次布局成“负-正-正”分离的光焦度系统,其中第一透镜为弯月型负透镜,其曲面向着光阑方向弯曲;第二透镜和第三透镜都为弯月型正透镜,曲面也向着光阑方向弯曲,所述各透镜的光焦度与系统的光焦度比率符合以下要求:-0.5<f1/fw<-0.4,0.55<f2/fw<0.65,0.8<f3/fw<1,其中f1为第一透镜的光焦度,f2为第二透镜的光焦度,f3为第三透镜的光焦度,fw为整个系统的光焦度。
其中,f1/fw=-0.49,f2/fw=0.62,f3/fw=0.93。
其中,所述第一透镜与光阑的距离为20-60mm。
本发明所达到的技术效果是:本发明光学镜头采用三个透镜布局成“负-正-正”分离的光焦度系统,使得通过该镜头的最大光束直径可达到30mm,而且在全视场上成像均匀,没有渐晕存在。
【附图说明】
图1是一种典型的激光应用fθ镜头光学系统。
图2是本发明镜头的光学系统结构示意图。
图3为本发明镜头较佳实施例中的光线追迹图。
图4为本发明镜头较佳实施例中的像散、场曲及畸变图。
图5为本发明镜头较佳实施例中的视场分别为0、0.3、0.5、0.7、0.85以及1.0各视场上的光程差图。
图6为本发明镜头较佳实施例中的光学传递函数MTF图。
【具体实施方式】
下面参照附图结合实施例对本发明作进一步的描述。
本发明一种激光应用大孔径fθ光学镜头,该镜头的主要优点在于:与一般的同焦距的激光应用fθ镜头相比,该镜头的相对孔径和通光直径都比普通的激光应用fθ镜头要大2-3倍,该镜头的通光直径最大可达到30mm;而且要求视场大、焦距长,这就给设计增加了很大的难度。本发明就是要解决这一难题。
如图2所示,本发明激光应用大孔径fθ光学镜头采用三片式“负-正-正”的光焦度分布进行设计,包括透镜组和光阑(振镜)1、2,所述光阑(振镜)1、2位于透镜组的前方,透镜组包括三个透镜,分别为第一、第二、第三透镜L1、L2、L3,共有三个透镜L1、L2、L3构成,其中第一透镜L1的光焦度f1为负,第二、第三透镜L2、L3的光焦度f2、f3均为正,其中各透镜的光焦度与系统的光焦度fw比率按以下要求:
-0.5<f1/fw<-0.4
1.0<f2/fw<1.2
0.5<f3/fw<0.6
其中,通过该镜头的入射光束直径为30mm;fw为整个透镜系统的光焦度,f1、f2、f3分别为三个透镜的光焦度,2ω为视场角,D/fw为数值孔径。
透镜L1距Y振镜2距离d0为20-60mm,透镜L1为弯月型负透镜,曲面向着Y轴振镜2方向弯曲,透镜L2、L3都为弯月型正透镜,它们的所在曲面也均向着Y振镜2方向弯曲。
它们的具体结构及参数表述为:系统由L1、L2、L3三个透镜构成,L1分别由曲率半径为R1、R2的两个曲面S1、S2构成,其中心厚度d1,材料光学参数为Nd1∶Vd1;L2分别由曲率半径为R3、R4的两个曲面S3、S4构成,其中心厚度d3,材料光学参数为Nd3∶Vd3;L3分别由曲率半径为R5、R6的两个曲面S5、S6构成,其中心厚度d5,材料光学参数为Nd5∶Vd5;第一透镜L1与第二透镜L2的间隔为d2,第二透镜L2与第三透镜L3的间隔为d4。
结合以上的参数,本发明设计了一组镜头,其具体参数分别如下所示:
第一透镜L1分别由曲率半径为R1=-61.08mm、R2=-146.22mm的两个曲面S1、S2构成,其光轴上的中心厚度d1=5.9mm,材料为Nd1∶Vd1约为1.5/64;第二透镜L2分别由曲率半径为R3=-114.55mm、R4=-76.43mm的两个曲面S3、S4构成,其光轴上的中心厚度d3=10.5mm,材料为Nd3∶Vd3约为1.8/25.4;第三透镜L3分别由曲率半径为R5=-642.7mm、R6=-210mm的两个曲面S5、S6构成,其光轴上的中心厚度d5=8mm,材料为Nd5∶Vd5约为1.8/25.4;第一透镜L1与第二透镜L2在光轴上的间隔为d2=3.2mm,第二透镜L2与第三透镜L3在光轴上的间隔为d4=0.3mm,第三透镜L3与成象面在光轴上的距离为d6=485mm。并列表如下:
结合以上的参数,我们设计了一个镜头,其具体数据分别如下所示:
  曲面S   曲率R(mm)   面间隔d(mm)   材料Nd/Vd
  1   -61.08   5.9   1.5/64
  2   -146.22   3.2
  3   -114.55   10.5   1.8/25.4
  4   -76.43   0.3
[0037]
  5   -642.7   8   1.8/25.4
  6   -210   485
根据上表,可得出数据如下:
fw=430.9mm,D/fw=1∶14.4,
λ=1064nm,2ω=50°,
f1/fw=-0.49,f2/fw=0.62,f3/fw=0.93,
由于f1/fw=-0.49满足-0.5<f1/fw<-0.4,f2/fw=0.62满足1.0<f2/fw<1.2,f3/fw=0.93满足0.5<f3/fw<0.6。
光束顺次经两块绕x轴和y轴转动的振镜1、2,再依序通过三个透镜L1、L2、L3,聚焦在像面4上。
图3为上例中的光线追迹图,图4为像散、场曲及畸变图,图5为视场分别为0、0.3、0.5、0.7、0.85以及1.0各视场上的光程差图,图6为光学传递函数MTF图。
由以上各图说明:系统的像散与场曲得到很好的较正,光程差最大不超过±λ,且从光学传递函数MTF图上看,各视场的MTF值均较一致,说明在全视场上成像均匀,没有渐晕存在。在实际中的使用效果来看,本发明确实达到了预期的效果,且与一般的同焦距的激光应用fθ镜头相比,该镜头的相对孔径和通光直径都比普通的激光应用fθ镜头要大2-3倍,该镜头的通光直径最大可达到30mm;且视场大、焦距长。

Claims (3)

1.一种激光应用大孔径的光学镜头,包括透镜组和位于透镜组前方的光阑,其特征在于:该透镜组可通过最大直径为30mm的入射光束,该透镜组包括三个透镜,分别为第一、第二、第三透镜,该三个透镜依次布局成“负-正-正”分离的光焦度系统,其中第一透镜为弯月型负透镜,其曲面向着光阑方向弯曲;第二透镜和第三透镜都为弯月型正透镜,曲面也向着光阑方向弯曲,所述各透镜的光焦度与系统的光焦度比率符合以下要求:
-0.5<f1/fw<-0.4,
0.55<f2/fw<0.65,
0.8<f3/fw<1,
其中f1为第一透镜的光焦度,f2为第二透镜的光焦度,f3为第三透镜的光焦度,fw为整个系统的光焦度。
2.如权利要求1所述的激光应用大孔径的光学镜头,其特征在于:f1/fw=-0.49,f2/fw=0.62,f3/fw=0.93。
3.如权利要求1所述的激光应用大孔径的光学镜头,其特征在于:所述第一透镜与光阑的距离为20-60mm。
CN2009101067949A 2009-04-29 2009-04-29 激光应用大孔径的光学镜头 Active CN101639564B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009101067949A CN101639564B (zh) 2009-04-29 2009-04-29 激光应用大孔径的光学镜头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009101067949A CN101639564B (zh) 2009-04-29 2009-04-29 激光应用大孔径的光学镜头

Publications (2)

Publication Number Publication Date
CN101639564A CN101639564A (zh) 2010-02-03
CN101639564B true CN101639564B (zh) 2010-10-06

Family

ID=41614635

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101067949A Active CN101639564B (zh) 2009-04-29 2009-04-29 激光应用大孔径的光学镜头

Country Status (1)

Country Link
CN (1) CN101639564B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014019159A1 (zh) * 2012-08-01 2014-02-06 深圳市大族激光科技股份有限公司 一种红外激光加工光学镜头及激光加工设备
WO2014067097A1 (zh) * 2012-10-31 2014-05-08 深圳市大族激光科技股份有限公司 一种远红外激光加工用Fθ镜头及激光加工设备
CN107797224B (zh) * 2016-08-30 2020-09-18 大族激光科技产业集团股份有限公司 光学镜头及激光加工设备和激光加工方法
CN114326055B (zh) * 2021-12-30 2024-01-12 深圳市韵腾激光科技有限公司 一种大扫描角度的红外场镜

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936155A (en) * 1973-01-10 1976-02-03 Heinrich Reichmann Three-element projection lenses
CN101236290A (zh) * 2007-01-30 2008-08-06 深圳市大族激光科技股份有限公司 F-theta光学镜头
CN101369047A (zh) * 2008-04-28 2009-02-18 深圳市大族激光科技股份有限公司 光学镜头

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936155A (en) * 1973-01-10 1976-02-03 Heinrich Reichmann Three-element projection lenses
CN101236290A (zh) * 2007-01-30 2008-08-06 深圳市大族激光科技股份有限公司 F-theta光学镜头
CN101369047A (zh) * 2008-04-28 2009-02-18 深圳市大族激光科技股份有限公司 光学镜头

Also Published As

Publication number Publication date
CN101639564A (zh) 2010-02-03

Similar Documents

Publication Publication Date Title
CN101369047B (zh) 光学镜头
CN101324696B (zh) 光学镜头
CN101414047B (zh) 光学镜头
CN100593742C (zh) 光学镜头
CN101324697A (zh) 光学镜头
CN101639564B (zh) 激光应用大孔径的光学镜头
CN101639565B (zh) 激光应用大孔径的光学镜头
CN101866043B (zh) 一种紫外激光应用的光学镜头
CN1776462A (zh) 用于激光二维线性扫描的光学镜头
CN101639566B (zh) 激光应用大孔径的光学镜头
CN109633865A (zh) 一种高精度激光加工远心F-Theta扫描透镜
CN110133843A (zh) 一种激光扫描单元以及激光打印机
CN101639568B (zh) 激光应用大孔径的光学镜头
CN101639567A (zh) 激光应用大孔径的光学镜头
CN100476489C (zh) 激光应用光学fθ镜头
CN104297897A (zh) 一种高功率紫外激光应用的光学镜头
CN104375261A (zh) 一种应用于紫外激光打标的F-theta光学镜头
CN101866044B (zh) 一种光学镜头
CN102062931A (zh) 一种激光扫描镜头
CN201060306Y (zh) 激光应用fθ镜头
CN104076493A (zh) 投影装置
CN201004108Y (zh) 用于激光打标系统中的fθ镜头
CN205787327U (zh) 一种大幅面复消色差F‑theta镜头系统
CN109507789A (zh) 一种用于激光加工的远心镜头、激光加工装置及加工方法
CN213764515U (zh) 一种激光微加工长工作距物镜组

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address

Address after: 518051 Dazu laser building, 9 new West Road, North Nanshan District high tech park, Shenzhen, Guangdong

Patentee after: HANS LASER TECHNOLOGY INDUSTRY GROUP CO., LTD.

Address before: 518057 Dazu Laser Building, No. 9 Xinxi Road, North District, Nanshan High-tech Park, Shenzhen City, Guangdong Province

Patentee before: Dazu Laser Sci. & Tech. Co., Ltd., Shenzhen

CP03 Change of name, title or address