CN101630862A - 复合能源电动车的电源系统 - Google Patents

复合能源电动车的电源系统 Download PDF

Info

Publication number
CN101630862A
CN101630862A CN200910041685A CN200910041685A CN101630862A CN 101630862 A CN101630862 A CN 101630862A CN 200910041685 A CN200910041685 A CN 200910041685A CN 200910041685 A CN200910041685 A CN 200910041685A CN 101630862 A CN101630862 A CN 101630862A
Authority
CN
China
Prior art keywords
power
converter
module
circuit
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910041685A
Other languages
English (en)
Inventor
康龙云
王新运
李鹰
余开江
孙静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN200910041685A priority Critical patent/CN101630862A/zh
Publication of CN101630862A publication Critical patent/CN101630862A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明提供一种复合能源电动车的电源系统,包括复合电源控制机盒及与其连接的主电源、太阳能光伏电池和超级电容模组,复合电源控制机盒输出端连接电机驱动控制模块和辅助设备,电机驱动控制模块另一端连接电动机;复合电源控制机盒内设置相连接的硬件主电路和控制电路;硬件主电路通过单向DC/DC变换器与太阳能光伏电池连接,通过双向DC/DC变换器与超级电容模组连接;控制电路中微处理器输入端通过信号调理电路与温度检测模块、电流检测模块和电压检测模块连接,输出端通过光耦隔离电路连接电机驱动电路和辅助设备电位器。本发明能很好地提高汽车的加速性能和爬山性能,并且减少主电源的大电流放电时间,避免主电源的损坏及容量的减少。

Description

复合能源电动车的电源系统
技术领域
本发明涉及电动车电源技术领域,特别涉及一种复合能源电动车的电源系统。
背景技术
制约电动车广泛应用的一个重要因素就是其续驶里程,在当今国家大力倡导发展新能源汽车和电动车的背景下,随着太阳能光伏电池技术的高速发展,充分利用太阳能电池这类新能源,利用再生制动能量,提高电动车续驶里程具有显著的社会价值和经济效益。在现有的国内外很多试验车已经实现了利用单独太阳能作为补充能源或者单独制动能量的回收的新型电动车。
而上述方案的主要缺点就是会在行驶中频繁给主电源充电、放电,因此会对电池造成一定的损失,影响电池的寿命。还有太阳能光伏电池单独作为补充能源和主电源一起驱动电动机,在加速和爬坡时,主电源将会大电流放电,对主电源的寿命是非常不利的。
随着太阳能技术的飞速发展,太阳能是一种取之不尽,用之不竭的绿色能源,将其用于作为电动车的能源必将会对电动车的发展和能源的利用具有极大的意义。而超级电容是近些年研究开发的一种新型电容,这种超级电容容量远远大于普通电容,与普通蓄电池相比,超级电容具有功率密度大,寿命无限长等特点,非常适合瞬时大功率放电,适合电动车在加速和爬坡时的大电流放电。因此,将上述两种设备应用于电动车驱动技术将有待开发。
发明内容
本发明的目的在于克服现有技术的不足,提供一种复合能源电动车的电源系统,该电源系统能很好地提高汽车的加速性能和爬山性能,并且减少了主电源的大电流放电时间,避免了主电源的损坏及容量的减少。
本发明通过以下技术方案实现:一种复合能源电动车的电源系统,包括复合电源控制机盒及分别与其连接的主电源、太阳能光伏电池和超级电容模组,复合电源控制机盒的输出端分别与电机驱动控制模块和辅助设备连接,电机驱动控制模块的另一端与电动机连接;复合电源控制机盒内设置相连接的硬件主电路和控制电路;硬件主电路通过单向DC/DC变换器与太阳能光伏电池连接,通过双向DC/DC变换器与超级电容模组连接;控制电路中设有温度检测模块、电流检测模块、电压检测模块、微处理器和故障信号检测模块,微处理器的A/D转换输入端通过信号调理电路分别与温度检测模块、电流检测模块和电压检测模块连接,微处理器的PWM输出端通过光耦隔离电路分别与电机驱动电路和辅助设备电位器连接,微处理器的功率驱动保护中断端通过光耦隔离电路与故障信号检测模块连接。
所述单向DC/DC变换器采用布斯特变换器或布克变换器中的一种;所述双向DC/DC变换器采用电流双象限变换器、全桥变换器、T型双向升降压变换器、级联式升降压变换器、CUK双向变换器或Sepic-Zeta双向变换器中的一种。
所述单向DC/DC变换器或双向DC/DC变换器的功率器件采用金属氧化物半导体型场效应晶体管或绝缘栅双极型晶体管中的一种。
所述电流检测模块包括设于硬件主电路中的主电源电流传感器、太阳能光伏电池电流传感器和超级电容模组电流传感器连接;所述电压检测模块包括设于硬件主电路中的主电源电压传感器、太阳能光伏电池电压传感器和超级电容模组电压传感器。
所述电机驱动电路中设有电机电流传感器和电机电压传感器;所述辅助设备电位器包括油门驱动踏板电位器和刹车踏板制动电位器。
所述微处理器的输入端还连接有时钟电路及电源,微处理器内部设有用于系统保护的功率驱动保护中断模块,微处理器的输出端还连接有方便系统操作控制的显示模块。
所述微处理器采用单片机或数字信号处理器中的一种。
所述主电源采用蓄电池、锂离子电池、镍氢电池或铁离子电池中的一种。
所述电动机采用直流电动机、永磁有刷直流电动机、永磁无刷直流电动机或开关磁阻电动机中的一种。
本发明的电源系统使用时,由微处理器收集其输入端各模块的电流及电压信号,然后判断系统的工作状态,进而发出控制指令,实现对主电源和超级电容模组的状态检测及保护功能,同时完成太阳能电池的最大功率点跟踪,从而调节系统能量和功率的流动方向与配比,以及对辅助设备的供电状态进行控制。其具体的工作状态分为以下三种情况:
1、当电动车处于正常行驶状态,由主电源为电动车提供电量,太阳能光伏电池为超级电容模组充电,充满后系统控制太阳能光伏电池对电动车进行辅助驱动。
2、当电动车处于加速/爬坡状态,若电动机所需电流大于主电源的安全电流上限时,超级电容模组开始放电,为电动车提供瞬时大电流,此时太阳能光伏电池也处于辅助驱动的工作状态,使得对太阳能的利用最大化。
3、当电动车处于制动状态,系统切断辅助能源与主电源的连接通道,太阳能光伏电池仅为超级电容模组充电,此时电动机拥有可再生能量制动的功能,并通过双向DC/DC将这部分能量回收到超级电容模组中。
与现有技术相比,本发明具有以下有益效果:
1、有效增加电动车的续驶里程。主要表现在两个方面:首先采用太阳能光伏电池和作为主电源的蓄电池并联提供电力,缓解了电动车能量不足的缺点,有效延长电动车续驶里程;其次利用超级电容功率密度高、充电电流大以及充放电效率高的特点,可有效吸纳光伏电池的能量,并且在加速和爬坡时用超级电容作为辅助能源,可减少主电源大电流放电时间,避免了主电源的损坏及容量的减少,这些都使电动车的续驶里程得到有效提高。
2、提高汽车的加速性能和爬坡性能,改善起步性能。超级电容作为辅助能源,可以在电动车加速和爬坡过程中作为峰值功率发生器,将储存的太阳能释放出来协助蓄电池供电,这对电动车尤其是纯电动车的动力性能起到很大的补助作用。
3、在系统结构上,本发明的电源系统不需要对原电动车的结构进行大改动,只要加装太阳能光伏电池、超级电容模组和控制用的复合电源控制机盒,其结构简单,改造方便。
4、太阳能电动车设计的能量转换技术以及MPPT技术对于发展光伏发电系统和风力发电系统等新能源系统具有很重要的借鉴作用。MPPT可挽回由于温度变化而导致的系统失配损失,尤其失对于冬、夏及全日温差较大区域更具有明显的经济、技术意义。
5、本发明的系统采用单向DC/DC变换器实现太阳能光伏电池和复合电源控制机盒中微处理器的连接,能够较好地追踪到太阳能光伏电池的最大功率跟踪点,使太阳能光伏电池发挥最大功率;系统采用双向DC/DC变换器实现超级电容模组和微处理器的连接,能够较好地控制超级电容模组的充电或放电模式,使得电源系统能在电动车的启动、制动或加速爬坡等各种工作状态发挥最大功率。
附图说明
图1是本发明电源系统的结构示意图。
图2是本发明电源系统中的硬件主电路图。
图3是本发明电源系统中的控制电路结构示意图。
图4是电动车处于正常行驶状态时本发明电源系统的工作状态示意图。
图5是电动车处于加速/爬坡状态时本发明电源系统的工作状态示意图。
图6是电动车处于制动状态时本发明电源系统的工作状态示意图。
图7是电动车处于正常行驶状态时本发明电源系统的控制流程示意图。
图8是电动车处于加速/爬坡状态时本发明电源系统的控制流程示意图。
图9是电动车处于制动状态时本发明电源系统的控制流程示意图。
具体实施方式
下面结合实施例及附图,对本发明作进一步的详细说明,但本发明的实施方式不限于此。
实施例
本实施例一种复合能源电动车的电源系统,如图1所示,包括复合电源控制机盒及分别与其连接的主电源、太阳能光伏电池和超级电容模组,复合电源控制机盒的输出端分别与电机驱动控制模块和辅助设备连接,电机驱动控制模块的另一端与电动机连接;复合电源控制机盒内设置相连接的硬件主电路和控制电路;其中,如图2所示,硬件主电路通过单向DC/DC变换器与太阳能光伏电池连接,通过双向DC/DC变换器与超级电容模组连接;如图3所示,控制电路中设有温度检测模块、电流检测模块、电压检测模块、微处理器和故障信号检测模块,微处理器的A/D转换输入端通过信号调理电路分别与温度检测模块、电流检测模块和电压检测模块连接,微处理器的PWM输出端通过光耦隔离电路分别与电机驱动电路和辅助设备电位器连接,微处理器的功率驱动保护中断端通过光耦隔离电路与故障信号检测模块连接。
以上系统中单向DC/DC变换器可采用布斯特变换器或布克变换器中的一种;双向DC/DC变换器可采用电流双象限变换器、全桥变换器、T型双向升降压变换器、级联式升降压变换器、CUK双向变换器或Sepic-Zeta双向变换器中的一种;单向DC/DC变换器或双向DC/DC变换器的功率器件采用金属氧化物半导体型场效应晶体管或绝缘栅双极型晶体管中的一种。
电流检测模块包括设于硬件主电路中的主电源电流传感器、太阳能光伏电池电流传感器和超级电容模组电流传感器连接;电压检测模块包括设于硬件主电路中的主电源电压传感器、太阳能光伏电池电压传感器和超级电容模组电压传感器;电机驱动电路中设有电机电流传感器和电机电压传感器;辅助设备电位器包括油门驱动踏板电位器和刹车踏板制动电位器等。
如图3所示,微处理器的输入端还连接有时钟电路及电源,微处理器内部设有用于系统保护的功率驱动保护中断模块,微处理器的输出端还连接有方便系统操作控制的显示模块。
微处理器可采用单片机或数字信号处理器中的一种;主电源可采用蓄电池、锂离子电池、镍氢电池或铁离子电池中的一种;电动机可采用直流电动机、永磁有刷直流电动机、永磁无刷直流电动机或开关磁阻电动机中的一种。
本实施例中,电动车电机采用3KW的串励直流电动机,其额定电压48V,额定电流80A;主电源采用6个8V的独立铅酸蓄电池串联而成;超级电容模组为由2块电容模块(55V/50F)进行串联而成,串联后得到110V/25F的超级电容模组(该电容模块已集成均衡和保护模块,可直接使用);微处理器采用TI公司的TMS320LF2407A型DSP(数字信号处理器)芯片;主电源、太阳能光伏电池、超级电容模组及电动机的电压传感器均采用CHV-25P闭环霍尔电压传感器;主电源、太阳能光伏电池、超级电容模组及电动机的电流传感器均采用CSM005A霍尔闭环电流传感器或CHB-200S闭环霍尔电流传感器,PWM调制频率为20KHZ。
本实施例的太阳能光伏电池采用BOOST电路作为其最大功率跟踪电路,采用电流双象限变换器作为超级电容模组与直流母线的连接通道,电流双象限DC/DC变换器在电动车启动或者加速时工作在降压状态(BUCK电路),为电动汽车提供瞬时大电流,在其他工况下由光伏电池向其充电。如图2的电源系统硬件主电路图所示,图中的能量源有太阳能光伏电池、蓄电池和超级电容模组(UC),M为电动机,Umppt为太阳能光伏电池电压传感器,Imppt为太阳能光伏电池电流传感器,Ub为主电源电压传感器,Ib为主电源电流传感器,Uc为超级电容模组电压传感器,Ic为超级电容模组电流传感器,V1、V2、V3、V4分别为电力开关管,D1、D2、D3、D4、D5分别为二极管,FUSE为保险丝。电路中D1为防反充二极管,防止当负载电压高于太阳能光伏电池时对其反充电,D4为防蓄电池反接二极管,当蓄电池接反的时候,二极管D4导通,产生大电流迅速熔断保险丝,从而达到保护蓄电池的目的;C1、C2为大容量滤波电容,电力开关管V2(这里采用的是IGBT)起开关的作用,连接作为辅助电源的太阳能光伏电池及超级电容模组与主电源,通过控制其导通/关断实现能量流动方向的控制。
本实施例的电源系统使用时,由微处理器收集其输入端各模块的电流及电压信号,然后判断系统的工作状态,进而发出控制指令,实现对主电源和超级电容模组的状态检测及保护功能,同时完成太阳能电池的最大功率点跟踪,从而调节系统能量和功率的流动方向与配比,以及对辅助设备的供电状态进行控制。其具体的工作状态分为以下三种情况:
1、如图4所示,当电动车处于正常行驶状态,由主电源为电动车提供电量,太阳能光伏电池为超级电容模组充电,充满后系统调节MPPT电路,控制太阳能光伏电池对电动车进行辅助驱动,其控制流程如图7所示,其中Dmppt为太阳能光伏电池最大功率跟踪器的占空比,Uc_refh为超级电容模组满容量时的电压上限值,e0为一个值为极小量的常数。
2、如图5所示,当电动车处于加速/爬坡状态,若电动机所需电流大于主电源的安全电流上限时,超级电容模组开始放电,为电动车提供瞬时大电流,此时太阳能光伏电池也处于辅助驱动的工作状态,使得对太阳能的利用最大化。此过程控制电路的控制流程如图8所示,其中Ib_refh为主电源放电的电流极限值,Uc_refl为超级电容模组的最低安全电压极限值,Ddc是双向DC/DC变换器的占空比,进入超级电容模组放电中断子程序时,系统先采集主电源电流值、电枢电流值以及超级电容电流和电压值,判断主电源的Ib是否超过安全工作电流Ib_refh,若超过则计算超级电容模组应提供的电流,进而通过计算改变占空比Ddc的值,达到调节电流双象限DC/DC变换器的输出电流Idc工作在合适范围的目的,需要说明的是当超级电容模组的端电压Uc小于一个最低限Uc_refl时,要停止对超级电容模组的放电,以防止损坏超级电容模组。
3、如图6所示,当电动车处于刹车的制动状态,系统切断辅助能源与主电源的连接通道,太阳能光伏电池仅为超级电容模组充电,此时电动机拥有可再生能量制动的功能,并通过双向DC/DC将这部分能量回收到超级电容模组中,MPPT电路正常工作,起最大功率跟踪作用,其流程如图9所示。
如上所述,便可较好地实现本发明,上述实施例仅为本发明的较佳实施例,并非用来限定本发明的实施范围;即凡依本发明内容所作的均等变化与修饰,都为本发明权利要求所要求保护的范围所涵盖。

Claims (9)

1、复合能源电动车的电源系统,其特征在于,包括复合电源控制机盒及分别与其连接的主电源、太阳能光伏电池和超级电容模组,复合电源控制机盒的输出端分别与电机驱动控制模块和辅助设备连接,电机驱动控制模块的另一端与电动机连接;复合电源控制机盒内设置相连接的硬件主电路和控制电路;硬件主电路通过单向DC/DC变换器与太阳能光伏电池连接,通过双向DC/DC变换器与超级电容模组连接;控制电路中设有温度检测模块、电流检测模块、电压检测模块、微处理器和故障信号检测模块,微处理器的A/D转换输入端通过信号调理电路分别与温度检测模块、电流检测模块和电压检测模块连接,微处理器的PWM输出端通过光耦隔离电路分别与电机驱动电路和辅助设备电位器连接,微处理器的功率驱动保护中断端通过光耦隔离电路与故障信号检测模块连接。
2、根据权利要求1所述复合能源电动车的电源系统,其特征在于,所述单向DC/DC变换器采用布斯特变换器或布克变换器中的一种;所述双向DC/DC变换器采用电流双象限变换器、全桥变换器、T型双向升降压变换器、级联式升降压变换器、CUK双向变换器或Sepic-Zeta双向变换器中的一种。
3、根据权利要求1所述复合能源电动车的电源系统,其特征在于,所述单向DC/DC变换器或双向DC/DC变换器的功率器件采用金属氧化物半导体型场效应晶体管或绝缘栅双极型晶体管中的一种。
4、根据权利要求1所述复合能源电动车的电源系统,其特征在于,所述电流检测模块包括设于硬件主电路中的主电源电流传感器、太阳能光伏电池电流传感器和超级电容模组电流传感器;所述电压检测模块包括设于硬件主电路中的主电源电压传感器、太阳能光伏电池电压传感器和超级电容模组电压传感器。
5、根据权利要求1所述复合能源电动车的电源系统,其特征在于,所述电机驱动电路中设有电机电流传感器和电机电压传感器;所述辅助设备电位器包括油门驱动踏板电位器和刹车踏板制动电位器。
6、根据权利要求1所述复合能源电动车的电源系统,其特征在于,所述微处理器的输入端还连接有时钟电路及电源,微处理器内部设有用于系统保护的功率驱动保护中断模块,微处理器的输出端还连接有方便系统操作控制的显示模块。
7、根据权利要求1所述复合能源电动车的电源系统,其特征在于,所述微处理器采用单片机或数字信号处理器中的一种。
8、根据权利要求1所述复合能源电动车的电源系统,其特征在于,所述主电源采用蓄电池、锂离子电池、镍氢电池或铁离子电池中的一种。
9、根据权利要求1所述复合能源电动车的电源系统,其特征在于,所述电动机采用直流电动机、永磁有刷直流电动机、永磁无刷直流电动机或开关磁阻电动机中的一种。
CN200910041685A 2009-08-05 2009-08-05 复合能源电动车的电源系统 Pending CN101630862A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910041685A CN101630862A (zh) 2009-08-05 2009-08-05 复合能源电动车的电源系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910041685A CN101630862A (zh) 2009-08-05 2009-08-05 复合能源电动车的电源系统

Publications (1)

Publication Number Publication Date
CN101630862A true CN101630862A (zh) 2010-01-20

Family

ID=41575853

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910041685A Pending CN101630862A (zh) 2009-08-05 2009-08-05 复合能源电动车的电源系统

Country Status (1)

Country Link
CN (1) CN101630862A (zh)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814727A (zh) * 2010-05-18 2010-08-25 福州欣联达电子科技有限公司 永磁电机高转速限流电路
CN101859152A (zh) * 2010-06-22 2010-10-13 西南民族大学 太阳能电池板追日系统及其控制方法
CN102019889A (zh) * 2010-12-03 2011-04-20 湖北泰戈电动汽车开发有限公司 一种电动汽车及其控制系统
CN102035244A (zh) * 2010-12-16 2011-04-27 襄樊德普电气有限公司 电动汽车能量回收系统
CN102081419A (zh) * 2010-10-28 2011-06-01 华南理工大学 一种太阳能光伏发电系统的自动调压电路及方法
CN102166967A (zh) * 2011-02-25 2011-08-31 秦保营 一种太阳能电动车
CN102255355A (zh) * 2011-06-30 2011-11-23 西安交通大学 基于混合储能的电动汽车能量管理系统及其方法
CN102535563A (zh) * 2011-12-30 2012-07-04 杭州杭重工程机械有限公司 船用抓斗挖掘机的节能装置
CN102611269A (zh) * 2012-04-01 2012-07-25 浙江大学 一种基于新能源供电的开关磁阻电动机
CN102638092A (zh) * 2012-04-24 2012-08-15 武汉百楚科技有限公司 直流ups操作电源
CN103078523A (zh) * 2013-01-06 2013-05-01 中国计量学院 一种太阳能电动自行车混合能源控制系统及其控制方法
CN103580058A (zh) * 2012-08-07 2014-02-12 安奕极电源系统有限责任公司 光伏发电站
CN103738195A (zh) * 2013-11-12 2014-04-23 浙江师范大学 一种新型复合能源电动车能量控制方法
CN103956095A (zh) * 2014-03-14 2014-07-30 北京工业大学 一种风光电互补型微电网实验平台
CN104092243A (zh) * 2014-07-16 2014-10-08 安徽启光能源科技研究院有限公司 基于公共母线的电力调节系统及方法
CN104627002A (zh) * 2013-11-08 2015-05-20 李俊娇 一种燃料电池与太阳能联供型电动汽车
CN104660036A (zh) * 2013-11-22 2015-05-27 贵州航天林泉电机有限公司 一种双向互补电能输出直流电的方法及变换器
CN106059048A (zh) * 2016-07-30 2016-10-26 华帝股份有限公司 一种具有直流移动电源保护和瞬时大功率输出的电连接配件
CN106926713A (zh) * 2017-04-06 2017-07-07 东汉新能源汽车技术有限公司 车辆多能源供给系统及方法、太阳能汽车
CN107947321A (zh) * 2017-12-05 2018-04-20 上海电机学院 一种带组串式mppt的太阳能混合驱动式微型电动汽车
CN108899881A (zh) * 2017-01-19 2018-11-27 太阳能安吉科技有限公司 电动车辆充电设备
CN109039088A (zh) * 2018-08-12 2018-12-18 苏州首汇能源科技有限公司 一种光伏发电中的全桥式双向dc/dc控制系统
CN109204005A (zh) * 2018-07-18 2019-01-15 北京信息科技大学 一种光伏增程式车载复合电源控制系统及方法
CN109510253A (zh) * 2017-09-15 2019-03-22 保时捷股份公司 用于充电装置的保护电路
CN109572450A (zh) * 2018-12-26 2019-04-05 宁波石墨烯创新中心有限公司 一种复合电源供电方法及系统
CN109927559A (zh) * 2019-03-06 2019-06-25 信阳农林学院 一种基于射频识别技术和车联网的新能源汽车
CN110571908A (zh) * 2019-09-05 2019-12-13 东风商用车有限公司 一种基于超级电容、薄膜太阳能和蓄电池构成的商用车供电系统
CN113054832A (zh) * 2021-03-10 2021-06-29 东北大学 一种新能源汽车电源系统及分配方法

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814727B (zh) * 2010-05-18 2012-08-08 福州欣联达电子科技有限公司 永磁电机高转速限流电路
CN101814727A (zh) * 2010-05-18 2010-08-25 福州欣联达电子科技有限公司 永磁电机高转速限流电路
CN101859152A (zh) * 2010-06-22 2010-10-13 西南民族大学 太阳能电池板追日系统及其控制方法
CN102081419B (zh) * 2010-10-28 2013-06-12 华南理工大学 一种太阳能光伏发电系统的自动调压电路及方法
CN102081419A (zh) * 2010-10-28 2011-06-01 华南理工大学 一种太阳能光伏发电系统的自动调压电路及方法
CN102019889A (zh) * 2010-12-03 2011-04-20 湖北泰戈电动汽车开发有限公司 一种电动汽车及其控制系统
CN102019889B (zh) * 2010-12-03 2013-03-27 湖北泰戈电动汽车开发有限公司 一种电动汽车及其控制系统
CN102035244A (zh) * 2010-12-16 2011-04-27 襄樊德普电气有限公司 电动汽车能量回收系统
CN102166967A (zh) * 2011-02-25 2011-08-31 秦保营 一种太阳能电动车
CN102255355A (zh) * 2011-06-30 2011-11-23 西安交通大学 基于混合储能的电动汽车能量管理系统及其方法
CN102255355B (zh) * 2011-06-30 2013-12-04 西安交通大学 基于混合储能的电动汽车能量管理系统及其方法
CN102535563A (zh) * 2011-12-30 2012-07-04 杭州杭重工程机械有限公司 船用抓斗挖掘机的节能装置
CN102611269A (zh) * 2012-04-01 2012-07-25 浙江大学 一种基于新能源供电的开关磁阻电动机
CN102611269B (zh) * 2012-04-01 2014-03-12 浙江大学 一种基于新能源供电的开关磁阻电动机
CN102638092A (zh) * 2012-04-24 2012-08-15 武汉百楚科技有限公司 直流ups操作电源
CN103580058A (zh) * 2012-08-07 2014-02-12 安奕极电源系统有限责任公司 光伏发电站
CN103078523A (zh) * 2013-01-06 2013-05-01 中国计量学院 一种太阳能电动自行车混合能源控制系统及其控制方法
CN103078523B (zh) * 2013-01-06 2015-04-22 中国计量学院 一种太阳能电动自行车混合能源控制系统的控制方法
CN104627002A (zh) * 2013-11-08 2015-05-20 李俊娇 一种燃料电池与太阳能联供型电动汽车
CN103738195A (zh) * 2013-11-12 2014-04-23 浙江师范大学 一种新型复合能源电动车能量控制方法
CN104660036A (zh) * 2013-11-22 2015-05-27 贵州航天林泉电机有限公司 一种双向互补电能输出直流电的方法及变换器
CN103956095A (zh) * 2014-03-14 2014-07-30 北京工业大学 一种风光电互补型微电网实验平台
CN104092243A (zh) * 2014-07-16 2014-10-08 安徽启光能源科技研究院有限公司 基于公共母线的电力调节系统及方法
CN106059048A (zh) * 2016-07-30 2016-10-26 华帝股份有限公司 一种具有直流移动电源保护和瞬时大功率输出的电连接配件
CN106059048B (zh) * 2016-07-30 2018-12-21 华帝股份有限公司 一种具有直流移动电源保护和瞬时大功率输出的电连接配件
CN108899881A (zh) * 2017-01-19 2018-11-27 太阳能安吉科技有限公司 电动车辆充电设备
CN108899881B (zh) * 2017-01-19 2023-10-27 太阳能安吉科技有限公司 电动车辆充电设备
CN106926713A (zh) * 2017-04-06 2017-07-07 东汉新能源汽车技术有限公司 车辆多能源供给系统及方法、太阳能汽车
WO2018184352A1 (zh) * 2017-04-06 2018-10-11 东汉新能源汽车技术有限公司 车辆多能源供给系统及方法、太阳能汽车
CN109510253B (zh) * 2017-09-15 2022-09-16 保时捷股份公司 直流电压充电装置
CN109510253A (zh) * 2017-09-15 2019-03-22 保时捷股份公司 用于充电装置的保护电路
CN107947321A (zh) * 2017-12-05 2018-04-20 上海电机学院 一种带组串式mppt的太阳能混合驱动式微型电动汽车
CN109204005A (zh) * 2018-07-18 2019-01-15 北京信息科技大学 一种光伏增程式车载复合电源控制系统及方法
CN109204005B (zh) * 2018-07-18 2021-01-15 北京信息科技大学 一种光伏增程式车载复合电源控制系统及方法
CN109039088A (zh) * 2018-08-12 2018-12-18 苏州首汇能源科技有限公司 一种光伏发电中的全桥式双向dc/dc控制系统
CN109572450A (zh) * 2018-12-26 2019-04-05 宁波石墨烯创新中心有限公司 一种复合电源供电方法及系统
CN109927559A (zh) * 2019-03-06 2019-06-25 信阳农林学院 一种基于射频识别技术和车联网的新能源汽车
CN110571908A (zh) * 2019-09-05 2019-12-13 东风商用车有限公司 一种基于超级电容、薄膜太阳能和蓄电池构成的商用车供电系统
CN113054832A (zh) * 2021-03-10 2021-06-29 东北大学 一种新能源汽车电源系统及分配方法

Similar Documents

Publication Publication Date Title
CN101630862A (zh) 复合能源电动车的电源系统
CN108123491B (zh) 一种高度集成的电机驱动和充放电器一体化拓扑
CN201450471U (zh) 复合能源电动车的电源系统
CN102653240B (zh) 电动汽车混合电池驱动系统
CN202641416U (zh) 车载燃料电池与蓄电池及超级电容混合并联动力系统
CN103684202A (zh) 集成驱动及充放电功能的电机控制器
CN204210320U (zh) 基于电动汽车再生制动的dc/dc控制系统
CN101311024A (zh) 一种电动摩托车超级电容与蓄电池复合电源控制系统
CN203068894U (zh) 一种具有最大功率点跟踪的光伏冰箱
CN101976955B (zh) 具有储能功能的变桨伺服驱动器
CN104163111A (zh) 基于双向dc/dc的电动车复合能源增程系统
CN104108320B (zh) 一种n-pmos开关解耦的电动汽车复合电源及能量控制方法
CN102882280A (zh) 一种基于电容混合蓄能的高效率风光、市电互补供电装置
CN100386221C (zh) 电动车飞轮电池辅助电源系统的构建方法
CN101483388A (zh) Dc/dc转换器装置及驱动方法、车辆、燃料电池系统
CN203522307U (zh) 基于耦合电感逆变器的风光蓄互补发电装置
CN201458456U (zh) 一种利用风能、太阳能及电能回收的电梯
CN202806412U (zh) 电动汽车混合电池驱动系统
CN202513629U (zh) 一种电动汽车用电容充放电控制装置
Hao et al. Urban rail transit power system integrated with electric vehicles based on CLLC resonant and buck-boost converter
CN1473724A (zh) 电动汽车能量再生的辅助电源系统
WO2023125646A1 (zh) 一种电动车电源、电动车及电动车电源运行方法
CN208424249U (zh) 一种电机功率变换装置
CN101950978A (zh) 节能应急型电梯回馈电源系统
CN201774275U (zh) 节能应急型电梯回馈电源系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20100120