CN101625732A - Forecasting method of water level of potamic tidewater - Google Patents
Forecasting method of water level of potamic tidewater Download PDFInfo
- Publication number
- CN101625732A CN101625732A CN200910101080A CN200910101080A CN101625732A CN 101625732 A CN101625732 A CN 101625732A CN 200910101080 A CN200910101080 A CN 200910101080A CN 200910101080 A CN200910101080 A CN 200910101080A CN 101625732 A CN101625732 A CN 101625732A
- Authority
- CN
- China
- Prior art keywords
- function
- data
- training
- water level
- tidewater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 47
- 238000013277 forecasting method Methods 0.000 title abstract 4
- 238000012549 training Methods 0.000 claims abstract description 56
- 238000012360 testing method Methods 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 27
- 238000013528 artificial neural network Methods 0.000 claims abstract description 14
- 238000003062 neural network model Methods 0.000 claims abstract description 11
- 239000011159 matrix material Substances 0.000 claims description 20
- 230000007704 transition Effects 0.000 claims description 8
- 230000001537 neural effect Effects 0.000 claims description 6
- 238000004364 calculation method Methods 0.000 claims description 3
- 238000010276 construction Methods 0.000 claims description 3
- 230000008676 import Effects 0.000 claims description 3
- 210000002569 neuron Anatomy 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 238000004088 simulation Methods 0.000 abstract description 2
- 238000002955 isolation Methods 0.000 abstract 1
- 238000013459 approach Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000009428 plumbing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001869 rapid Effects 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009101010809A CN101625732B (en) | 2009-08-03 | 2009-08-03 | Forecasting method of water level of potamic tidewater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009101010809A CN101625732B (en) | 2009-08-03 | 2009-08-03 | Forecasting method of water level of potamic tidewater |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101625732A true CN101625732A (en) | 2010-01-13 |
CN101625732B CN101625732B (en) | 2011-11-30 |
Family
ID=41521579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009101010809A Expired - Fee Related CN101625732B (en) | 2009-08-03 | 2009-08-03 | Forecasting method of water level of potamic tidewater |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101625732B (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101819407A (en) * | 2010-04-02 | 2010-09-01 | 杭州电子科技大学 | Sewage pump station water level prediction method base on neural network |
CN101908104A (en) * | 2010-09-03 | 2010-12-08 | 北京师范大学 | Technique for calculating lake level of historical period |
CN102221389A (en) * | 2011-04-11 | 2011-10-19 | 国家海洋信息中心 | Method for predicting tide-bound water level by combining statistical model and power model |
CN103090855A (en) * | 2013-01-17 | 2013-05-08 | 杭州电子科技大学 | Method for determining arrival of tidal bore based on water velocity |
US9122996B2 (en) | 2012-02-15 | 2015-09-01 | National Applied Research Laboratories | Method of performing real-time correction of a water stage forecast |
CN106127612A (en) * | 2016-07-05 | 2016-11-16 | 中国长江电力股份有限公司 | Power station is non-abandons water phase level of tail water change procedure Forecasting Methodology |
CN109373981A (en) * | 2018-09-29 | 2019-02-22 | 大连海事大学 | A kind of Exact Forecast method of breakwater inside waters increase and decrease water |
CN109764931A (en) * | 2019-01-21 | 2019-05-17 | 常德天马电器股份有限公司 | A kind of sponge city river water level forecast method for early warning |
CN111414807A (en) * | 2020-02-28 | 2020-07-14 | 浙江树人学院(浙江树人大学) | Tidal water identification and crisis early warning method based on YO L O technology |
CN111753461A (en) * | 2020-05-12 | 2020-10-09 | 中山大学 | Tidal water level correction method, target residual water level acquisition method, device and equipment |
CN113077110A (en) * | 2021-04-21 | 2021-07-06 | 国家海洋信息中心 | GRU-based harmonic residual segmented tide level prediction method |
CN114548487A (en) * | 2022-01-10 | 2022-05-27 | 杭州市水文水资源监测中心 | River tidal bore forecasting method based on convolutional neural network |
CN114593792A (en) * | 2022-03-29 | 2022-06-07 | 中国水利水电科学研究院 | Underground water level monitoring method and device and storage medium |
CN114693002A (en) * | 2022-05-23 | 2022-07-01 | 中国海洋大学 | Tide level prediction method, device, electronic equipment and computer storage medium |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1336620A (en) * | 2000-07-27 | 2002-02-20 | 新鼎系统股份有限公司 | Method and system of applying neuroid networks to predict economic indexes |
AU2004298527A1 (en) * | 2003-12-10 | 2005-06-30 | Novartis Ag | RNAi potency prediction method |
CN101276454A (en) * | 2007-12-05 | 2008-10-01 | 中原工学院 | Method for model building, forecasting and decision-making of stock market based on BP neural net |
-
2009
- 2009-08-03 CN CN2009101010809A patent/CN101625732B/en not_active Expired - Fee Related
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101819407A (en) * | 2010-04-02 | 2010-09-01 | 杭州电子科技大学 | Sewage pump station water level prediction method base on neural network |
CN101819407B (en) * | 2010-04-02 | 2011-09-07 | 杭州电子科技大学 | Sewage pump station water level prediction method base on neural network |
CN101908104A (en) * | 2010-09-03 | 2010-12-08 | 北京师范大学 | Technique for calculating lake level of historical period |
CN101908104B (en) * | 2010-09-03 | 2011-11-09 | 北京师范大学 | Technique for calculating lake level of historical period |
CN102221389A (en) * | 2011-04-11 | 2011-10-19 | 国家海洋信息中心 | Method for predicting tide-bound water level by combining statistical model and power model |
CN102221389B (en) * | 2011-04-11 | 2012-12-19 | 国家海洋信息中心 | Method for predicting tide-bound water level by combining statistical model and power model |
US9122996B2 (en) | 2012-02-15 | 2015-09-01 | National Applied Research Laboratories | Method of performing real-time correction of a water stage forecast |
CN103090855A (en) * | 2013-01-17 | 2013-05-08 | 杭州电子科技大学 | Method for determining arrival of tidal bore based on water velocity |
CN106127612A (en) * | 2016-07-05 | 2016-11-16 | 中国长江电力股份有限公司 | Power station is non-abandons water phase level of tail water change procedure Forecasting Methodology |
CN109373981A (en) * | 2018-09-29 | 2019-02-22 | 大连海事大学 | A kind of Exact Forecast method of breakwater inside waters increase and decrease water |
CN109764931A (en) * | 2019-01-21 | 2019-05-17 | 常德天马电器股份有限公司 | A kind of sponge city river water level forecast method for early warning |
CN111414807A (en) * | 2020-02-28 | 2020-07-14 | 浙江树人学院(浙江树人大学) | Tidal water identification and crisis early warning method based on YO L O technology |
CN111414807B (en) * | 2020-02-28 | 2024-02-27 | 浙江树人学院(浙江树人大学) | Tidal water identification and crisis early warning method based on YOLO technology |
CN111753461A (en) * | 2020-05-12 | 2020-10-09 | 中山大学 | Tidal water level correction method, target residual water level acquisition method, device and equipment |
CN113077110A (en) * | 2021-04-21 | 2021-07-06 | 国家海洋信息中心 | GRU-based harmonic residual segmented tide level prediction method |
CN114548487A (en) * | 2022-01-10 | 2022-05-27 | 杭州市水文水资源监测中心 | River tidal bore forecasting method based on convolutional neural network |
CN114593792A (en) * | 2022-03-29 | 2022-06-07 | 中国水利水电科学研究院 | Underground water level monitoring method and device and storage medium |
CN114693002A (en) * | 2022-05-23 | 2022-07-01 | 中国海洋大学 | Tide level prediction method, device, electronic equipment and computer storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN101625732B (en) | 2011-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101625732B (en) | Forecasting method of water level of potamic tidewater | |
CN101794495B (en) | Optimization method of real-time correction models in flood forecast system | |
CN104318077B (en) | Climate change and mankind's activity change quantitative analysis method to river flow | |
CN101819407B (en) | Sewage pump station water level prediction method base on neural network | |
CN101625733B (en) | Tidewater water level and time forecasting method based on neural network | |
CN102829967B (en) | A kind of time domain fault recognition method based on regression model index variation | |
CN102722759A (en) | Method for predicting power supply reliability of power grid based on BP neural network | |
CN104376361A (en) | Nuclear accident source item inversion method based on BP neural network algorithm | |
Eelsalu et al. | Ensemble approach for projections of return periods of extreme water levels in Estonian waters | |
CN104102832A (en) | Wind power ultrashort-term prediction method based on chaotic time series | |
CN104182634B (en) | Cascade hydropower station combined operation water level control section optimization method | |
CN116467933A (en) | Storm surge water increasing prediction method and system based on deep learning | |
CN114819322B (en) | Forecasting method for flow of lake entering lake | |
Bao et al. | Dynamic correction of roughness in the hydrodynamic model | |
CN103088783B (en) | Reservoir regulation scheme generating method facing ecology | |
CN102810183B (en) | Based on improve away from water resource energy efficiency extension ecological evaluation method | |
Ma et al. | Bayesian statistic forecasting model for middle-term and long-term runoff of a hydropower station | |
Marshall | The influence of restoration efforts in the freshwater Everglades on the salinity regime of Florida Bay | |
Conrads et al. | Simulation of salinity intrusion along the Georgia and South Carolina coasts using climate-change scenarios | |
Lu et al. | Prediction of river water quality considering spatiotemporal correlation and meteorological factors | |
Zhang et al. | An evaluation model of water quality based on learning vector quantization neural network | |
Liu et al. | Long-term prediction for autumn flood season in danjiangkou reservoir basin based on osr-bp neural network | |
CN113792919A (en) | Wind power prediction method based on combination of transfer learning and deep learning | |
Pang et al. | Improved stochastic simulation technique and its application to the multivariate probability analysis of typhoon disaster | |
Wang | Interval Water Demand Forecasting Mod-el in Deep Confidence Network based on Wavelet Model or BP Neural Network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20201214 Address after: No.68, Jiefang Road, Wulian County, Rizhao City, Shandong Province Patentee after: RIZHAO XINTENG INFORMATION TECHNOLOGY Co.,Ltd. Address before: Room 3003-1, building 1, Gaode land center, Jianggan District, Hangzhou City, Zhejiang Province Patentee before: Zhejiang Zhiduo Network Technology Co.,Ltd. Effective date of registration: 20201214 Address after: Room 3003-1, building 1, Gaode land center, Jianggan District, Hangzhou City, Zhejiang Province Patentee after: Zhejiang Zhiduo Network Technology Co.,Ltd. Address before: 310018 No. 2 street, Xiasha Higher Education Zone, Hangzhou, Jianggan District, Zhejiang Patentee before: HANGZHOU DIANZI University |
|
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20111130 |