CN101614778A - 电力继电保护线路的接线分析方法 - Google Patents

电力继电保护线路的接线分析方法 Download PDF

Info

Publication number
CN101614778A
CN101614778A CN200910023405A CN200910023405A CN101614778A CN 101614778 A CN101614778 A CN 101614778A CN 200910023405 A CN200910023405 A CN 200910023405A CN 200910023405 A CN200910023405 A CN 200910023405A CN 101614778 A CN101614778 A CN 101614778A
Authority
CN
China
Prior art keywords
phase
winding
balance
circuit
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910023405A
Other languages
English (en)
Inventor
穆明建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XI'AN AIBANG ELECTRIC CO Ltd
Original Assignee
XI'AN AIBANG ELECTRIC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XI'AN AIBANG ELECTRIC CO Ltd filed Critical XI'AN AIBANG ELECTRIC CO Ltd
Priority to CN200910023405A priority Critical patent/CN101614778A/zh
Publication of CN101614778A publication Critical patent/CN101614778A/zh
Priority to CN2009102666177A priority patent/CN101788630B/zh
Priority to CN2009102666162A priority patent/CN101788629B/zh
Priority to CN2009102666181A priority patent/CN101782619B/zh
Priority to CN2009102168222A priority patent/CN101788634B/zh
Priority to CN2009102154643A priority patent/CN101762768B/zh
Priority to CN200910215486XA priority patent/CN101788625B/zh
Priority to CN2009102666054A priority patent/CN101762771B/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明涉及一种电力系统中继电保护线路的接线分析方法,该方法包括以下步骤:3)根据已经换算的主变压器差动保护各绕组测量值或母线差动保护各线路测量值判断接线是否正确;4)进行第一次修正,并进行判断;第一次修正进行完毕之后,判断接线方式是否正确;5)进行第二次修正并进行判断;6)生成修正后的电流有效值并保存满足正确性条件时的修正值;7)输出分析结果。本发明提供了一种判断分析可靠性高、使用简单、操作方便的电力继电保护线路中的接线分析方法。

Description

电力继电保护线路的接线分析方法
技术领域
本发明涉及一种电力系统中继电保护线路的接线分析方法,尤其涉及一种对电力系统中主变压器(简称为主变)差动保护线路、母线差动保护线路的电流互感器CT的接线是否正确进行分析判断并给出错误位置和错误类型的接线分析方法。
背景技术
对于主变压器差动保护,要计算电源侧各相的合成矢量及负荷侧各相的合成矢量。当各绕组都满足相角平衡,即相与相之间相差120°,并且相序相同,均为正序或者负序。同时电源侧和负荷侧每相的矢量和为零时,即幅值相等、角度相差180°即可判定接线是正确的。
对于母线差动保护,要计算输入线路的合成矢量及输出线路的合成矢量。当所有线路都满足相角平衡,即相与相之间相差120°,并且相序相同。同时输入线路合成矢量和输出线路合成矢量每相的矢量和为零时,即幅值相等、角度相差180°即可判定接线是正确的。
综合两种方式归纳出接线正确的条件是:
1)电源侧合成矢量与负荷侧合成矢量(或输出线路合成矢量和输入线路合成矢量)的矢量和为零(即幅值相等、相角相差180°);
2)所有绕组(或线路)满足相角平衡,即相与相之间相差120°;
3)所有绕组(或线路)相序相同且都是正序,即在向量图中顺时针依次显示为A、B、C。
当接线错误时,电源侧(或输入线路)与负荷侧(或输出线路)的矢量和不为零,根据实测的相量图可以判断出接线错误的地方。
接线错误的情况下一般有两种基本情况,一为某相的极性接反,如火线误接到零线,零线误接到火线;二为某两相之间接错,如A相误接到B相,B相误接到A相,从而导致电源侧与负荷侧的矢量和不为零。
如果某相的极性接反,将会导致绕组三相间相位不平衡。如果某两相间相互接错,将会导致绕组相序错误。
那么,理论上只要进行平衡修正和相序修正,将这两类基本错误修正,再根据电源侧与负载侧的矢量和不为零就可以得到正确的绕组(或线路)电流参数值,然后再与原数据对比即可得到接线错误的位置。
继电保护线路接线的正确与否,直接影响供电系统的正常运行。对继电保护线路接线的正确性及时作出分析,是变电站投建、检修中必不可少的重要环节,目前电力系统的继电保护线路接线正确性分析,主要靠人工进行——工作人员要经过大量的计算,手工绘制电流向量图,然后再根据计算结果和向量图得出继电保护线路接线分析的结果。整个分析过程计算量大,且需要工作人员根据经验进行判断,故存在效率低、误差大的缺点。传统人工方法分析继电保护线路接线正确性的流程如下:
1)获取数据:获取变压器差动保护线路或母线差动保护线路各绕组(或线路)各相的电流幅值、相位数据及相关参数。一般通过电力测量仪器获得,如使用双钳伏安相位表。对于双圈变压器,使用双钳伏安相位表依次测量高压侧CT及低压侧CT的各相(A、B、C、N)电流幅值及相位。
2)计算电流:先根据额定电压(或变压器变比)及CT变比计算各侧的平衡系数,然后再根据平衡系数对电流幅值进行换算。
3)调整相位:根据接线方式对电流相位进行调整。
4)绘制向量图:根据电流幅值、相位等参数手工绘制向量图。
5)分析判断:根据转换后的电流值以及向量图判断接线正确性,如果接线错误需分析纠正方法。根据电源侧合成矢量与负荷侧(或输出线路和输入线路)合成矢量应该大小相等、方向相反的基本条件判断接线是否正确。如果不正确,则由工作人员根据经验进行判断,给出纠正方案,此步没有标准的流程,完全由工作人员素质决定,如果没有经验,那么判断费时费力,且对于较复杂的错误情况很难判断出来。
传统的继电保护线路接线分析的人工方法,存在下述缺点或不足:
1、分析结果可靠性以及准确性差。由于没有统一的操作规程,所以操作存在一定的随意性;另外,工作人员业务水平的高低、客观环境因素等,都会影响分析的准确性。
2、对操作人员的业务能力要求高。操作人员既要熟悉电力系统理论知识,并要具备丰富的实践经验,方能判断出继电保护线路接线是否正确,继而分析出错在哪里、如何修正。
3、工作复杂程度高,工作效率低。分析判断过程中数据计算量大,人工操作工作效率低,费时费力,且在复杂的操作流程和大量的数据计算过程中,难免发生错误。
发明内容
为了解决目前人工情况下对继电保护线路接线错误情况判断时费时费力、对工作人员要求高的情况,本发明提供了一种判断分析可靠性高、使用安全简单、操作方便的电力继电保护线路中的接线分析方法。
本发明的技术解决方案是:本发明提供了一种电力继电保护线路中的接线分析方法,其特殊之处在于:该方法包括以下步骤:
3)根据已经换算的主变压器差动保护各绕组测量值或母线差动保护各线路测量值判断接线是否正确?如果正确则执行步骤6);如果不正确则执行步骤4);
4)进行第一次修正,并进行判断:第一次修正包括参考绕组或线路修正、各绕组或线路相角平衡修正以及相角正序修正;第一次修正进行完毕之后,判断接线方式是否正确?若是,则进行步骤6);若否,则进行步骤5);
5)进行第二次修正并进行判断:
5.1)修正:通过对绕组或线路进行旋转角度修正,修正后进行步骤5.2);
5.2)判断:若接线正确则进行步骤6);若接线不正确,则返回步骤5.1)继续进行修正;
6)生成修正后的电流有效值,并保存满足正确性条件时的修正值;
7)输出分析结果。
上述电力继电保护线路中的接线分析方法在步骤3)之前还包括:
1)获取主变压器差动保护线路测量值及参数、母线差动保护线路测量值及参数:
主变压器差动保护线路测量值及参数包含各绕组的电流有效值及相位、主变压器的接线方式、各绕组CT变比、各绕组额定电压、各绕组供电方式、二分接线情况、是否经过二次接线调整及各绕组编号;
母线差动保护线路测量值及参数包括各线路的电流有效值及相位、各线路CT变比、线路所在母线、线路供电方式及线路编号。
上述电力继电保护线路中的接线分析方法在步骤1)和步骤3)之间还包括:
2)根据主变压器参数对主变压器差动保护线路测量值进行换算或根据母线参数对母线差动保护线路测量值进行换算,其具体实现方式是:
2.1)用绕组或线路的N相电流修正该绕组或线路的A、B、C相电流;
2.2)计算变压器各绕组或母线各线路的平衡系数;
2.3)根据变压器各绕组或母线各线路的平衡系数换算该绕组或该线路的电流有效值;
2.4)将所有电流相位减去用户输入的参考相功率角;
2.5)判断参考电压是否是Ua,如果是则直接执行步骤2.6);如果不是则将参考电压转换为Ua后再执行步骤2.6);
2.6)判断是对主变压器差动保护线路进行分析还是对母线差动保护线路进行分析,如果选择对主变压器差动保护线路进行分析,则统一变压器的接线方式,然后保存换算后的参数并执行步骤3);如果选择对母线差动保护线路进行分析,则直接保存换算后的参数并转入步骤3)。
上述步骤5.2)之后还包括:
5.3)如果在步骤5.1)和步骤5.2)的循环过程中对所有绕组或线路都依次旋转了6次进行修正判断后依然不能满足正确性条件,则无法对其进行分析直接跳至步骤7)。
上述步骤2.2)中对于主变差动保护的平衡系数的计算方法是:
2.2.1.1)计算各绕组的二次额定电流;
公式一: S = 3 × U × I
根据公式一有: S = 3 × U × Ie × Nct
则有公式二: Ie = S / ( 3 × U × Nct )
其中,S是变压器的容量;
U是绕组一次侧额定电压;
I是绕组一次侧额定电流;
Ie是绕组二次额定电流;
Nct是绕组CT变比。
根据上述公式二计算各绕组的二次额定电流。
2.2.1.2)设各绕组额定电流最大的一项的平衡系数为1,折算其他绕组的平衡系数;
2.2.1.3)平衡系数应该小于等于4,如果各侧平衡系数中有大于4的,那么将其设为4,再将其他绕组的平衡系数进行转换。
上述步骤2.2)中对于母线差动保护的平衡系数的计算方法是:各线路的CT变比视为其平衡系数;同时保证所有线路的平衡系数不大于4,即找出平衡系数最大的线路,将其平衡系数设为4,再将其他线路的平衡系数转换。
上述步骤2.2)中主变压器差动保护平衡系数的计算方法是:
以双圈变为例,根据公式二有:
Ihe = S / ( 3 × Uh × Nhct )
Ile = S / ( 3 × Ul × Nlct )
其中,Ihe是高压侧额定电流;Uh是高压侧额定电压;Nhct是高压侧CT变比;
Ile是低压侧额定电流;Ul是低压侧额定电压;Nlct是低压侧CT变比。
以高压侧为基准,计算其他绕组的平衡系数,即设高压侧平衡系数Kh为1,则低压侧平衡系数K1=(Uh×Nhct)/(U1×Nlct)。
同理可计算三圈变或其它情况时各绕组的平衡系数。
上述步骤4)中参考绕组修正的具体实现方式是:直接将A相相位设为0°、B相设为120°、C相设为240°,或根据其三相电流相位判断错误使用对应的方法进行修正。
上述步骤4)中对于某一绕组或线路进行相角平衡修正时,首先判断是否有某一相与其他两相间的相位都是60°?如果是,则进行修正,如果不是,则不进行修正;其修正的具体实现方式是:找出三相电流中的中间相,即与其他2个夹角为60°的相,然后给中间相相角加180°。
上述步骤4)中对于某一绕组或线路进行相角正序修正时,首先判断三相相位中B相相位是否等于A相相位加120°?如果是,则不需要修正;如果不是,则要进行修正,其修正的具体实现方式是:交换A、B两相的相位即可完成修正。
上述步骤5)中,以旋转角度方式进行修正时,其具体实现修正及判断过程是:以60°为间隔在一个周期内循环旋转,每次旋转一个绕组,一次旋转60°,每次旋转后进行一次正确性判断,如果满足正确条件,则执行步骤6);如果不满足则进行步骤5)继续旋转,直至满足正确性条件为止;若所有绕组都依次旋转完毕依然不能满足正确性条件,即无法判断接线是否正确则进行步骤7)。
上述步骤7)中生成的分析结果是:接线正确、接线错误或无法判断。
上述步骤7)是输出分析结果,如果结果为接线错误则进一步输出错误情况,即将步骤6)修正后的电流有效值与步骤2)保存的参数进行比较,然后生成分析结果。
上述步骤7)中生成的分析结果是接线错误时,进一步输出各绕组或线路各相的接线状态。
上述步骤7)中,根据输出的接线状态对错误情况进行纠正。对于某绕组或线路而言其各相的接线状态分别有:
A相有:A相接线正确、A相与B相接反、A相与C相接反、A相极性接反、A相与B相接反且当前B相极性接反、A相与C相接反且当前C相极性接反;
B相有:B相接线正确、B相与A相接反、B相与C相接反、B相与A相接反且当前A相极性接反、B相极性接反、B相与C相接反且当前C相极性接反;
C相有:C相接线正确、C相与A相接反、C相与B相接反、C相与A相接反且当前A相极性接反、C相与B相接反且当前B相极性接反、C相极性接反。
本发明的优点是:
1、分析结果可靠,准确性大幅提高。本发明所提供的电力系统中继电保护线路的接线分析方法进行两次修正并进行判断,最终形成的分析结果中会给出完善的错误情况及纠正方案,无需再人为进行判断,其分析结果可靠性明显比传统的分析方法强,并且不受工作人员主观素质以及客观环境因素等方面影响,使得分析结果的准确性大幅提高。
2、操作简单,安全可靠。本发明使电力继电保护回路接线分析工作简单化,只需要进行简单测量即可自动分析并给出结果,对工作人员技术水平要求大幅降低。
附图说明
图1为本发明所提供的接线分析方法的流程示意图;
图2为本发明在分析过程中当相位接反时三相电流的向量示意图;
图3为各绕组正确时三相电流的向量示意图。
具体实施方式
本发明提供了一种电力继电保护线路中的接线分析方法,该方法包括以下步骤:
1)获取测量值及变压器参数,其测量值包括变压器各绕组或母线各线路的电流有效值及相位。变压器差动保护线路参数包括变压器接线方式、各绕组CT变比、各绕组额定电压、各绕组供电方式,二分接线情况及各绕组编号;母线差动保护线路参数包含各线路CT变比、各线路供电方式,是单母线还是双母线、双母线时各线路属于哪一母线,以及各绕组编号。
2)将测量值转化为电流有效值以及对电流幅值进行调整,其具体实现过程是:
2.1)用绕组或线路的N相电流修正该绕组或线路的A、B、C相电流;
2.2)计算变压器各绕组或母线各线路的平衡系数;
2.3)根据变压器各绕组或母线各线路的平衡系数换算该绕组或该线路的电流有效值;
2.4)将所有电流相位减去用户输入的参考相功率角;
2.5)判断参考电压是否是Ua,如果是则直接执行步骤2.6);如果不是则将参考电压转换为Ua后再执行步骤2.6);
2.6)判断是对主变差动保护线路进行分析还是对母线差动保护线路进行分析,如果是选择对主变差动保护线路进行分析,则统一变压器的接线方式,然后保存换算后的参数并执行步骤3);如果是选择对母线差动保护线路进行分析,则直接保存换算后的参数并转入步骤3)。
3)根据已经换算的主变压器差动保护各绕组测量值或母线差动保护各线路测量值判断接线是否正确?如果正确则执行步骤6);如果不正确则执行步骤4);
4)第一次正确性修正以及修正后的判断,该正确性修正包括参考绕组修正、相角平衡修正以及相角正序修正,经修正后,判断接线是否正确?若是,则进行步骤6),若否,则进行步骤5);
其中参考绕组修正的具体实现方式是:直接将A相相位设为0°、B相设为120°、C相设为240°或根据其三相电流相位判断错误情况并使用对应的方法进行修正。
进行相角平衡修正是指依次对除参考绕组外的其他所有绕组(或线路)进行修正,对于某一绕组(或线路)首先判断是否有某一相与其他两相间的相位都是60°?如果是,则进行修正,如果不是,则不进行修正。其修正的具体实现方式是:找出三相电流中的中间相,即与其他2个夹角为60°的相,然后给中间相相角加180°。
进行相角正序修正是指依次对除参考绕组外的其他所有绕组(或线路)进行修正,对于某一绕组(或线路)首先判断三相相位中B相相位是否等于A相相位加120°?如果是,则不需要修正;如果不是,则要进行修正。其修正的具体实现方式是:交换A、B两相的相位即可完成修正。
5)第二次正确性修正以及修正后的判断,该正确性修正包括旋转角度,以60°为间隔在一个周期内循环旋转,每次旋转一个绕组,一次旋转60°,每次旋转后进行一次正确性判断,经修正后,若接线正确则进行步骤6);若接线不正确,则继续执行步骤5)进行修正;若无法判断接线是否正确,则进行步骤7);
6)生成修正后的电流有效值,并保存满足正确性条件时的修正值;
7)输出分析结果。
为了便于理解,本发明以相序为正序时为例进行详细说明该接线分析方法,负序和正序的判断分析过程是一样的。
接线分析的具体流程如下:
1、获取测量值及变压器参数:
通过仪表测量获得变压器差动保护线路各绕组/母线差动保护线路各线路的电流(A、B、C、N)有效值及相位。在测量时需选定一个参考电压,所测的电流相位是指被测电流相对于此参考电压的相位。参考电压可在测量时由操作者自行选择。
在进行分析前输入变压器/母线参数。
对于变压器差动保护线路:包含变压器接线方式、各绕组CT变比、各绕组额定电压、各绕组供电方式,二分接线情况及各绕组编号(用于绘制向量图);变压器是否经过CT二次接线调整;输入所选的参考电压,参考相功率角(即参考电压所在相的功率角,来自测量回路)。
对于母线差动保护线路:包含各线路CT变比、各线路所在母线、各线路供电方式,及各绕组编号(用于绘制向量图);输入所选的参考绕组(即参考电压所在的绕组)、参考电压,参考相功率角(即参考电压所在相的功率角,来自测量回路)。
2、电流换算:
2.1)用N相电流修正A、B、C相电流。
在三相不平衡时N相会产生电流,理想情况下,使用N相修正A、B、C三相,可使三相平衡。修正过程即给A、B、C三相的电流矢量分别加上N相电流矢量即可。
2.2)计算平衡系数。
公式一: S = 3 × U × I
根据公式一有: S = 3 × U × Ie × Nct
则有公式二: Ie = S / ( 3 × U × Nct )
其中,S是是变压器的容量;
U是是绕组一次侧额定电压;
I是绕组一次侧额定电流;
Ie是绕组二次额定电流;
Nct是绕组CT变比。
首先,根据上述公式二计算各绕组的二次额定电流。例如在主变差动保护两圈变中分别根据公式二计算出高压侧二次额定电流Ihe、低压侧二次额定电流Ile;
然后,设各侧额定电流最大的一项的平衡系数为1,计算其他侧的平衡系数。如Ihe、Ile分别为1A、5A,则设Ile的平衡系数Kl为1,则Kh=Ile/Ihe;
最后,平衡系数应该小于等于4(如果过大会将电流误差放大)。如果各侧平衡系数中有大于4的,那么将其设为4,再将其他绕组的平衡系数转换。如上Kh、Kl分别为5、1,则设Kh为4,那么,Kl=1×4/5。
主变差动保护平衡系数的其他计算方法:
根据公式二可推导其他计算方法。如:对于双圈变,可得到
Ihe = S / ( 3 × Uh × Nhct )
Ile = S / ( 3 × Ul × Nlct )
其中,Ihe是高压侧二次额定电流;Uh是高压侧额定电压;Nhct是高压侧CT变比;Ile是低压侧二次额定电流;Ul是低压侧额定电压;Nlct是低压侧CT变比。
以高压侧为基准,计算平衡系数,即设高压侧平衡系数Kh为1,则低压侧平衡系数Kl=(Uh×Nhct)/(Ul×Nlct)。
同理可计算三圈变或其它情况时各绕组的平衡系数。
对于母线差动保护,由于各线路电压等级相同,所以可将各线路的CT变比视为其平衡系数;同时保证所有线路的平衡系数不大于4,即找出平衡系数最大的线路,将其平衡系数设为4,再将其他线路的平衡系数转换。
2.3)根据平衡系数换算电流有效值。
将各绕组(或线路)电流乘以其对应的平衡系数。如上例中,则将各绕组(或线路)(A、B、C三相,下同)所测电流幅值乘以其平衡系数,即在主变差动保护双圈变中高压侧三相电流幅值乘以Kh、低压侧乘以Kl。
另外,对于变压器,如果经过了二次接线调整,那么需要对三角形接线(即△-1、△-3…△-11)的绕组三相电流都乘以1.732(即3的二次方根)。
2.4)根据选项进行电流幅值调整。
2.4.1)给所有电流相位减去参考相功率角。
如果参考绕组接线正确,那么给所有电流相位减去参考相功率角后,其参考相电流相位应为0°。
2.4.2)将参考电压转换为Ua。
在测量时可以根据现场情况选择任一电压作为参考,那么参考电压有可能是Ua、Ub、Uc、Uab、Ubc、Uca之一,需将参考相转换为Ua,以方便后续分析。
根据电力系统原理有5种情况:Ub滞后Ua120°,Uc滞后Ua240°,Uab滞后Ua330°,Ubc滞后Ua90°,Uca滞后Ua210°。
转换方式为:根据选择的参考电压,将所有的电流相位都加上对应的角度即可。具体如下:
当参考电压为Ub时,参考绕组A相电流相角为-120°,那么只要对所有绕组各相都加上120°,即可将参考电压转换为Ua;
当参考电压为Uc时,A相相角为-240°,给各绕组各相加240°。
当参考电压为Uab时,A相相角为30°,给各绕组各相加330°。
当参考电压为Ubc时,A相相角为-90°,给各绕组各相加90°。
当参考电压为Uac时,A相相角为-210°,给各绕组各相加210°。
2.4.3)统一变压器的接线方式。
这一步仅用于变压器差动保护线路,母线差动保护线路中则会跳过这一步继续运行。在这一步需要将所有绕组的接线方式调整为与参考绕组相同。对于变压器某一绕组而言,其接线方式有13种(Y、△-1、Y-2、△-3、Y-2、△-3、Y-4、△-5、Y-6、△-7、Y-8、△-9、Y-10、△-11、Y-12)。假设某变压器是三圈变,接线方式为Y/Y/△-11,如果测量时选择高压侧Ua为参考电压,则在这一步要将中压侧及低压侧调整为Y接线。
调整方式为:将绕组各相相位同时减去一个角度φ。
φ=30×(B1-B0)
其中,B0为参考绕组的接线方式下标,B1为所要调整的绕组的接线下标。
如上述变压器中高压侧接线方式为Y,则其接线方式下标为0。中压侧接线方式为Y,则将中压侧各相电流相位都减去0°(即30×(0-0)),低压侧接线方式为△-11,那么,给低压侧A、B、C三相同时减去330°即30×(11-0))即可将其调整为Y接线。
3、第一次正确性修正以及修正后的判断。
3.1)首先是在未进行任何修正的时候判断接线是否正确。
对于主变差动保护线路:在此步如果满足下面三个条件即表示相位平衡,则证明接线正确,直接跳转到第5步输出结果;如果不满足,则证明接线错误,那么需要先将转换过的电流值保存一个副本作为原始值(用于输出结果),然后进入第3.2步;
条件1,所有绕组(或线路)相序相同且都是正序,即在向量图中顺时针依次显示为A、B、C;
条件2,所有绕组(或线路)满足相角平衡,即相与相之间相差120°;
条件3,电源侧与负荷侧的幅值相等、相角相差180°(即矢量和为零)。此处指纵差。
对于母线差动保护线路:需要先根据输入的参数判断是双母线还是单母线。
如果是单母线,则如果满足三个条件即表示相位平衡,该条件和主变的条件是相同的,则证明接线正确,直接跳转到第5步输出结果;如果不满足,则证明接线错误,那么需要先将转换过的电流值保存一个副本作为原始值(用于输出结果),然后进入第3.2步;
如果是双母线:则需要同时满足小差一平衡,小差二平衡,大差平衡,则证明接线正确,直接跳转到第5步输出结果;如果不满足,则证明接线错误,那么需要先将转换过的电流值保存一个副本作为原始值(用于输出结果),然后进入第3.2步。其中小差一平衡指母线一中的所有线路满足上述三个条件;小差二平衡指母线二中的所有线路满足上述三个条件;大差平衡指母线一及母线二的所有线路满足上述三个条件。
3.2)当不能满足3.1中的正确性条件时,则需要对以下内容进行修正,然后判断其接线是否正确:
3.2.1)参考绕组修正。由于参考绕组是参考电压所在的绕组,并且已经将参考电压转换为Ua,且对所有电流参数都已减去了其功率角。所以,理想状态下参考绕组A相应该为0°,B相为120°,C相为240°。根据这些条件可以将接线错误的参考绕组直接修正正确,修正方法有两种:
A)直接将A相相位设为0°,B相设为120°,C相设为240°。
B)针对每一错误情况分别进行不同的修正,对于单一绕组的错误情况有47种,每种错误情况下的相位都与其它错误情况不同,所以根据其三相电流相位可以判断其错误情况,并使用对应的方法进行修正。
实现方式:采用状态码的方式。先假设6个角度状态,并用整数表示:0°时,状态码为0;60°为1;120°为2;180°为3;240°为4;300°为5。然后对各相进行对比,得到其角度的状态码,再根据状态码做对应的修正。如:接线正确的情况下,A相为0°,状态码为0,B相120,状态码为2,C相240°,状态码为4;那么得到此绕组的状态码为024,再做对应的处理即可对参考绕组进行正确的修正。错误情况及对应的修正方法如表1所示:
表1  错误情况与修正方法对应关系表
Figure G2009100234056D00131
Figure G2009100234056D00151
3.2.2)相角平衡修正。是指依次对除参考绕组(或线路)外的其他所有绕组(或线路)进行修正。相位平衡是指某绕组的三相幅值相等,相位互成120°,或者说,在三相电流幅值相等时三相的矢量和为零。在此处判断时不考虑幅值相等,只判断相位是否互成120°,如果互成120°则认为平衡。
参见图2a、图2b、图2c,当相位接反时,三相电流的向量示意图会出现如下几种情况:
当任意一相的相位反时出现如图2a形状的向量图;当接线正确或者全部接反时会出现图2b形状的向量图;当任意两相的相位同时接反时出现图2c形状的向量图。
判断方法:
在此步只判断图2a及图2c两种情况,因为图2b中三相是平衡的。
判断是否有某一相与其他两相间的相位都是60°,如果是则进行修正,如果不是则不修正。
修正方法:
导致三相相角不平衡的原因有两种:1、三相中任意一相极性接反(如图2a,A相接反);2、三相中任意两相极性接反(如图2c)。
针对这两种情况,找出其中的中间相,即与其他2个夹角为60°的相,然后给其相角加180°,即反了一下相,向量图变成图2b形状。
3.2.3)相角正序修正。是指依次对除参考绕组(或线路)外的其他所有绕组(或线路)进行修正。正序是指A相超前B相120°,B相超前C相120°,C相超前A相120°。其判断方法是:
判断B相相位是否等于A相相位加120°,如果是则证明是正序,不用修正;如果不是则证明不是正序,要进行修正。
修正方法:
交换A、B两相的相位即可完成修正。如果A相相位为X、B相相位为Y,将A相相位置为Y,将B相相位置为X即可。
例:
Figure G2009100234056D00171
A超前C 120°,C超前B120°,负序。交换A、B相。就完成了修正。
4、第二次正确性修正以及修正后的判断。
首先,判断接线是否正确。对于主变差动保护线路:在此步如果满足下面条件即表示相位平衡,则证明接线正确,直接跳转到第5步输出结果;如果不满足,则证明接线错误,并继续执行第4步。
正确条件:电源侧合成矢量与负荷侧合成矢量的幅值相等、角度相差180°(即矢量和为零)。此处指纵差。
对于母线差动保护线路:需要先根据输入的参数判断判断是双母线还是单母线。对于单母线,如果满足上述正确条件即表示相位平衡,则证明接线正确,直接跳转到第5步输出结果;如果不满足,则证明接线错误,进入第4步。而对于双母线,则需要同时满足小差一平衡,小差二平衡,大差平衡,则证明接线正确,直接跳转到第7步输出结果;如果不满足,则证明接线错误,进入第4步,其中,小差一平衡指母线一中的所有线路满足上述正确条件条件;小差二平衡指母线二中的所有线路满足上述正确条件条件;大差平衡指母线一及母线二的所有线路满足上述正确条件条件。
第二次修正的主要方式是旋转角度,以平衡修正中的情况为例,图2b中相位是平衡的,同时也是正序,也就是说,不用对其修正。这样的情况下就必须对其进行旋转才能得到正确的结果。如果某绕组进行过相角或者正序修正,那么应该对该绕组的三相相角分别进行加+0,+60,+120,+180,+240,+300°进行正确性判断,即以60°为间隔在一个周期内循环旋转。
每次旋转一个绕组,一次旋转60°,每次旋转后进行一次正确性判断(使用第7条所描述的判断方法),如果满足正确条件,则退出旋转,直接输出分析结果;如果不满足则继续旋转,直至满足正确性条件为止。如果所有绕组都依次旋转完毕依然不能满足正确性条件,则无法判断出错误情况。
5、输出结论
最后的分析结果有三种情况:一是接线正确,二是接线错误,三是无法判断。
如果从3.1)步直接跳转至本步骤,则输出接线正确;
如果进入4)步分析,且在4)步中所有绕组都依次旋转完毕依然不能满足正确性条件,则输出无法判断;无法判断的原因是输入参数有误或系统误差过大。
如果进入4)步分析,且在4)步正确性判断时满足正确性条件,则输出接线错误,并进一步判断错误情况,输出纠正方案。
错误情况的判断方法如下:
将修正后的电流值与第3步保存的原始值逐相比较,判断的相角A’,B’,C’与原始值A,B,C,-A,-B,-C的相角关系,根据相角关系输出每一绕组每相的结论。此处A,B,C表示原值,-A表示A加180°,-B,-C同理;A’,B’,C’表示修正过的值。
结论如下表,表格中相交的格子中表示横行和竖行的值相等。如果某绕组(或线路)修正后的值A’与-A相等,那么此绕组A相极性接反,同理输出所有绕组(或线路)的结果。
  A   B   C   -A  -B  -C
A’ 接线正确   B相与A相接反   C相与A相接反   A相极性接反  B相与A相接反且当前B相极性接反  C相与A相接反且当前C相极性接反
B’ A相与B相接反 接线正确 C相与B相接反   B相与A相接反且当前A相极性接反 B相极性接反  B相与C相接反且当前C相极性接反
C’ A相与C相接反 B相与C相接反 接线正确   A相与C相接反且当前A相极性接反  B相与C相接反且当前B相极性接反 C相极性接反
例:对于主变压器双圈变,则先使用上述方法输出高压侧结果,再输出低压侧结果。
假设实际情况中低压侧B相极性接反了,又将A相接到了C相,C相接到了A相,那么输出的结果如下:
接线错误:
高压侧:A相接线正确,B相接线正确,C相接线正确;
低压侧:A相与C相接反,B相极性接反,C相与A相接反。
本例的分析结果说明了当前接线错误情况,可根据此结果进行接线纠正。
6.算法基本理论验证和结论(幅值平衡的条件下)
此处的验证前提条件是假设绕组三相幅值平衡。由于加上幅值不平衡的情况,错误的可能会很多,不再一一列举。
以下列举了绕组中所有可能出现的错误类型,并根据该错误类型随机举例根据以上的算法进行推导,按输出的结果给出结论,为便于说明,所有的例子认为绕组正确时的向量图如图3,实际由于功率因数不为1以及参考相的选择的不同,相角不一定是这样的,但三相的相角差应该是120°。举例假定只有一处绕组有错误其他绕组接线时正确的,这个假定不影响判断的结果,假如有多处错误的话,实际要输出的结果的过程中判断的次数要多一些,但对于出错的绕组的结论是相同的。
6.1一相相位接反,例如某绕组B相极性接反表2所示:
表2
6.2两相极性接反,例如某绕组A,C相极性接反如表3所示:
表3
Figure G2009100234056D00201
6.3三相相位接反,例如某绕组A,B、C相极性接反时如表4所示:
表4
6.4两相位置相互接反,例如某绕组A,B相接反,如表5所示:
表5
Figure G2009100234056D00203
6.5三相位置相互接反,例如某绕组A相错接到C相,C相错接到B相,B相错接到A相时,如表6所示:
表6
Figure G2009100234056D00211
6.6两相位置相互接反,其中一相又极性接反,例如某绕组B相错接到C相,B相极性接反时,如表7所示:
表7
Figure G2009100234056D00212
6.7两相位置相互接反,第三相又极性接反,例如某绕组B相错接到C相,A相极性接反时,如表8所示:
表8
Figure G2009100234056D00213
6.8两相位置相互接反,这两相的极性也全接反,例如某绕组A相错接到C相,A,C相的极性接反时,如表9:
表9
Figure G2009100234056D00221
6.9两相位置相互接反,其中一相和第三相的极性接反时,例如某绕组A相错接到B相,C相和B相的极性接反时,如表10所示:
表10
6.10两相位置相互接反,极性全部接反,例如某绕组A相错接到C相,3相相位接反时,如表11所示:
表11
Figure G2009100234056D00223
Figure G2009100234056D00231
6.11三相位置相互接反,其中一相极性接反,例如某绕组A相错接到B相,B相错接到C相,C相错接到A相,C相极性接反时,如表12所示:
表12
Figure G2009100234056D00232
6.12三相位置相互接反,其中两相极性接反,例如某绕组A相错接到C相,C相错接到B相,B相错接到A相,A,B相极性接反时,如表13所示:
表13
Figure G2009100234056D00233
6.13三相位置相互接反,极性全部接反,例如某绕组A相错接到B相,B相错接到C相,C相错接到A相时,如表14所示:
表14
Figure G2009100234056D00241
6.14结论
从实际情况推导根据算法推导的结论与实际错误情况完全相符合。

Claims (14)

1、一种电力继电保护线路的接线分析方法,其特征在于:该方法包括以下步骤:
3)根据已经换算的主变压器差动保护各绕组测量值或母线差动保护各线路测量值判断接线是否正确?如果正确则执行步骤6);如果不正确则执行步骤4);
4)进行第一次修正,并进行判断:第一次修正包括参考绕组或线路修正、各绕组或线路相角平衡修正以及相角正序修正;第一次修正进行完毕之后,判断接线方式是否正确?若是,则进行步骤6);若否,则进行步骤5);
5)进行第二次修正并进行判断:
5.1)修正:通过对绕组或线路进行旋转角度修正,修正后进行步骤5.2);
5.2)判断:若接线正确则进行步骤6);若接线不正确,则返回步骤5.1)继续进行修正;
6)生成修正后的电流有效值并保存满足正确性条件时的修正值;
7)输出分析结果。
2、根据权利要求1所述的电力继电保护线路的接线分析方法,其特征在于:所述电力继电保护线路中的接线分析方法在步骤3)之前还包括:
1)获取主变压器差动保护线路测量值及参数、母线差动保护线路测量值及参数:
主变压器差动保护线路测量值及参数包含各绕组的电流有效值及相位、主变压器的接线方式、各绕组CT变比、各绕组额定电压、各绕组供电方式、二分接线情况、是否经过二次接线调整及各绕组编号;
母线差动保护线路测量值及参数包括各线路的电流有效值及相位、各线路CT变比、线路所在母线、线路供电方式及线路编号。
3、根据权利要求2所述的电力继电保护线路的接线分析方法,其特征在于:所述电力继电保护线路中的接线分析方法在步骤1)和步骤3)之间还包括:
2)根据主变压器参数对主变压器差动保护线路测量值进行换算或根据母线参数对母线差动保护线路测量值进行换算,其具体实现方式是:
(2.1)用绕组或线路的N相电流修正该绕组或线路的A、B、C相电流;
2.2)计算变压器各绕组或母线各线路的平衡系数;
2.3)根据变压器各绕组或母线各线路的平衡系数换算该绕组或该线路的电流有效值;
2.4)将所有电流相位减去用户输入的参考相功率角;
2.5)判断参考电压是否是Ua,如果是则直接执行步骤2.6);如果不是则将参考电压转换为Ua后再执行步骤2.6);
2.6)判断是对主变压器差动保护线路进行分析还是对母线差动保护线路进行分析,如果是选择对主变压器差动保护线路进行分析,则统一变压器的接线方式,然后保存换算后的参数并执行步骤3);如果是选择对母线差动保护线路进行分析,则直接保存换算后的参数并转入步骤3)。
4、根据权利要求1或2或3所述的电力继电保护线路的接线分析方法,其特征在于:所述步骤5.2)之后还包括:
5.3)如果在步骤5.1)和步骤5.2)的循环过程中对所有绕组或线路都依次旋转了6次进行修正判断后依然不能满足正确性条件,则无法对其进行分析直接跳至步骤7)。
5、根据权利要求4所述的电力继电保护线路的接线分析方法,其特征在于:所述步骤2.2)中对于主变差动保护的平衡系数的计算方法是:
2.2.1.1)根据公式 Ie = S / ( 3 × U × Nct ) 计算各绕组的二次额定电流;
2.2.1.2)设各绕组二次额定电流最大的一项的平衡系数为1,计算其他绕组的平衡系数;
2.2.1.3)平衡系数应该小于等于4,如果各侧平衡系数中有大于4的,那么将其设为4,再将其他绕组的平衡系数进行转换。
6、根据权利要求4所述的电力继电保护线路的接线分析方法,其特征在于:所述步骤2.2)中对于母线差动保护的平衡系数的计算方法是:各线路的CT变比视为其平衡系数;同时保证所有线路的平衡系数不大于4,即找出平衡系数最大的线路,将其平衡系数设为4,再将其他线路的平衡系数转换。
7、根据权利要求4所述的电力继电保护线路的接线分析方法,其特征在于:所述步骤2.2)中主变差动保护平衡系数的计算方法是:
Ihe = S / ( 3 × Uh × Nhct )
Ile = S / ( 3 × Ul × Nlct )
其中,Ihe:高压侧二次额定电流;Uh:高压侧额定电压;Nhct:高压侧CT变比;
Ile:低压侧二次额定电流;Ul:低压侧额定电压;Nlct:低压侧CT变比;
以高压侧为基准,计算其他绕组的平衡系数,即设高压侧平衡系数Kh为1,则低压侧平衡系数Kl=(Uh×Nhct)/(Ul×Nlct)。
8、根据权利要求4所述的电力继电保护线路的接线分析方法,其特征在于:所述步骤4)中参考绕组修正的具体实现方式是:直接将A相相位设为0°、B相设为120°、C相设为240°,或根据其三相电流相位判断错误使用对应的方法进行修正。
9、根据权利要求4所述的电力继电保护线路的接线分析方法,其特征在于:所述步骤4)中对于某一绕组或线路进行相角平衡修正时,首先判断是否有某一相与其他两相间的相位都是60°?如果是,则进行修正,如果不是,则不进行修正;其修正的具体实现方式是:找出三相电流中的中间相,即与其他2个夹角为60°的相,然后给中间相相角加180°。
10、根据权利要求4所述的电力继电保护线路的接线分析方法,其特征在于:所述步骤4)中对于某一绕组或线路进行相角正序修正时,首先判断三相相位中B相相位是否等于A相相位加120°?如果是,则不需要修正;如果不是,则要进行修正,其修正的具体实现方式是:交换A、B两相的相位即可完成修正。
11、根据权利要求4所述的电力继电保护线路的接线分析方法,其特征在于:所述步骤5)中,以旋转角度方式进行修正时,其具体实现修正及判断过程是:以60°为间隔在一个周期内循环旋转,每次旋转一个绕组,一次旋转60°,每次旋转后进行一次正确性判断,如果满足正确条件,则执行步骤6);如果不满足则进行步骤5)继续旋转,直至满足正确性条件为止;若所有绕组都依次旋转完毕依然不能满足正确性条件,即无法判断接线是否正确则进行步骤7)。
12、根据权利要求4所述的电力继电保护线路的接线分析方法,其特征在于:所述步骤7)中生成的分析结果是下列情况之一:接线正确,接线错误或无法判断。
13、根据权利要求12所述的电力继电保护线路的接线分析方法,其特征在于:所述步骤7)是输出分析结果,如果结果为接线错误则进一步输出错误情况,即将步骤6)修正后的电流有效值与步骤2)保存的参数进行比较,然后生成分析结果。
14、根据权利要求13所述的电力继电保护线路的接线分析方法,其特征在于:所述步骤7)中生成的分析结果是接线错误时,进一步输出各绕组或线路各相的接线状态,对于某绕组或线路而言其各相的接线状态分别有:
A相有:A相接线正确、A相与B相接反、A相与C相接反、A相极性接反、A相与B相接反且当前B相极性接反、A相与C相接反且当前C相极性接反;
B相有:B相接线正确、B相与A相接反、B相与C相接反、B相与A相接反且当前A相极性接反、B相极性接反、B相与C相接反且当前C相极性接反;
C相有:C相接线正确、C相与A相接反、C相与B相接反、C相与A相接反且当前A相极性接反、C相与B相接反且当前B相极性接反、C相极性接反。
CN200910023405A 2009-07-23 2009-07-23 电力继电保护线路的接线分析方法 Pending CN101614778A (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN200910023405A CN101614778A (zh) 2009-07-23 2009-07-23 电力继电保护线路的接线分析方法
CN2009102666177A CN101788630B (zh) 2009-07-23 2009-12-31 电力系统常规变压器继电保护线路的接线分析方法
CN2009102666162A CN101788629B (zh) 2009-07-23 2009-12-31 电力系统常规变压器继电保护ct回路接线分析方法
CN2009102666181A CN101782619B (zh) 2009-07-23 2009-12-31 电力系统母线继电保护线路的接线分析方法
CN2009102168222A CN101788634B (zh) 2009-07-23 2009-12-31 电力系统自耦变压器继电保护线路中的接线分析方法
CN2009102154643A CN101762768B (zh) 2009-07-23 2009-12-31 自耦变压器差动保护ct回路接线的分析方法
CN200910215486XA CN101788625B (zh) 2009-07-23 2009-12-31 电力继电保护线路的接线分析方法
CN2009102666054A CN101762771B (zh) 2009-07-23 2009-12-31 电力系统母线差动保护ct回路接线分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910023405A CN101614778A (zh) 2009-07-23 2009-07-23 电力继电保护线路的接线分析方法

Publications (1)

Publication Number Publication Date
CN101614778A true CN101614778A (zh) 2009-12-30

Family

ID=41494525

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910023405A Pending CN101614778A (zh) 2009-07-23 2009-07-23 电力继电保护线路的接线分析方法

Country Status (1)

Country Link
CN (1) CN101614778A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101907670A (zh) * 2010-06-25 2010-12-08 江苏省电力公司泗洪县供电公司 变压器差动保护二次接线回路正确性校验方法
CN102005729A (zh) * 2010-12-10 2011-04-06 丹东华通测控有限公司 智能型电动机保护控制器自适应交流输入信号的方法
CN102692556A (zh) * 2011-03-25 2012-09-26 深圳市锐能微科技有限公司 一种三相电量计算方法及装置
CN102692535A (zh) * 2011-03-25 2012-09-26 深圳市锐能微科技有限公司 一种电能计量芯片及三相四线电能表
CN104459435A (zh) * 2014-11-21 2015-03-25 国家电网公司 一种用于变电站的接线验证方法及装置
CN105988055A (zh) * 2014-10-07 2016-10-05 三菱电机株式会社 电力测量仪器以及交流电路与电力测量仪器的接线状态判断方法
CN108008232A (zh) * 2017-10-23 2018-05-08 国网山东省电力公司青岛供电公司 二次电流回路检测方法及装置
CN109149519A (zh) * 2018-09-11 2019-01-04 国网江苏省电力有限公司泰州供电分公司 一种基于花瓣式电网的配变差动保护方法
CN109283421A (zh) * 2018-10-16 2019-01-29 中铁电气化(武汉)设计研究院有限公司 一种铁路牵引变电所低电压通电检测试验方法及装置
CN110441622A (zh) * 2018-05-02 2019-11-12 国网青海省电力公司海北供电公司 无线带负荷向量测试仪
CN111123172A (zh) * 2019-12-26 2020-05-08 深圳供电局有限公司 母线差动保护的各间隔ct二次绕组极性的一致性校验方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101907670A (zh) * 2010-06-25 2010-12-08 江苏省电力公司泗洪县供电公司 变压器差动保护二次接线回路正确性校验方法
CN102005729A (zh) * 2010-12-10 2011-04-06 丹东华通测控有限公司 智能型电动机保护控制器自适应交流输入信号的方法
CN102005729B (zh) * 2010-12-10 2013-05-22 丹东华通测控有限公司 一种智能型电动机保护控制器自适应交流输入信号的方法
CN102692556B (zh) * 2011-03-25 2015-12-16 深圳市锐能微科技有限公司 一种三相电量计算方法及装置
CN102692556A (zh) * 2011-03-25 2012-09-26 深圳市锐能微科技有限公司 一种三相电量计算方法及装置
CN102692535A (zh) * 2011-03-25 2012-09-26 深圳市锐能微科技有限公司 一种电能计量芯片及三相四线电能表
CN102692535B (zh) * 2011-03-25 2014-11-26 深圳市锐能微科技有限公司 一种电能计量芯片及三相四线电能表
CN105988055A (zh) * 2014-10-07 2016-10-05 三菱电机株式会社 电力测量仪器以及交流电路与电力测量仪器的接线状态判断方法
CN105988055B (zh) * 2014-10-07 2019-09-03 三菱电机株式会社 电力测量仪器以及交流电路与电力测量仪器的接线状态判断方法
CN104459435A (zh) * 2014-11-21 2015-03-25 国家电网公司 一种用于变电站的接线验证方法及装置
CN104459435B (zh) * 2014-11-21 2017-06-16 国家电网公司 一种用于变电站的接线验证方法及装置
CN108008232A (zh) * 2017-10-23 2018-05-08 国网山东省电力公司青岛供电公司 二次电流回路检测方法及装置
CN108008232B (zh) * 2017-10-23 2020-11-10 国网山东省电力公司青岛供电公司 二次电流回路检测方法及装置
CN110441622A (zh) * 2018-05-02 2019-11-12 国网青海省电力公司海北供电公司 无线带负荷向量测试仪
CN109149519A (zh) * 2018-09-11 2019-01-04 国网江苏省电力有限公司泰州供电分公司 一种基于花瓣式电网的配变差动保护方法
CN109283421A (zh) * 2018-10-16 2019-01-29 中铁电气化(武汉)设计研究院有限公司 一种铁路牵引变电所低电压通电检测试验方法及装置
CN109283421B (zh) * 2018-10-16 2024-02-09 中铁电气化(武汉)设计研究院有限公司 一种铁路牵引变电所低电压通电检测试验方法及装置
CN111123172A (zh) * 2019-12-26 2020-05-08 深圳供电局有限公司 母线差动保护的各间隔ct二次绕组极性的一致性校验方法
CN111123172B (zh) * 2019-12-26 2022-01-25 深圳供电局有限公司 母线差动保护的各间隔ct二次绕组极性的一致性校验方法

Similar Documents

Publication Publication Date Title
CN101614778A (zh) 电力继电保护线路的接线分析方法
CN101762768B (zh) 自耦变压器差动保护ct回路接线的分析方法
CN101118269B (zh) 电力保护线路用的接线分析装置
CN101788629B (zh) 电力系统常规变压器继电保护ct回路接线分析方法
CN101762771B (zh) 电力系统母线差动保护ct回路接线分析方法
CN102095958A (zh) 二绕组常规变压器单开关差动保护ct接线正确性分析方法
CN101788625B (zh) 电力继电保护线路的接线分析方法
CN101788630B (zh) 电力系统常规变压器继电保护线路的接线分析方法
CN101788634B (zh) 电力系统自耦变压器继电保护线路中的接线分析方法
CN102095963A (zh) 三绕组常规变压器单开关差动保护ct接线正确性分析方法
CN102095971A (zh) 励磁变压器差动保护ct回路接线分析方法
CN101782619B (zh) 电力系统母线继电保护线路的接线分析方法
CN102095981A (zh) 用于实现励磁变压器差动保护ct回路接线分析的方法
CN102096005A (zh) 双母线单分段ct回路接线检验判定方法
CN102096006A (zh) 三绕组常规变压器多开关差动保护ct接线正确性分析方法
CN102095991A (zh) 两绕组常规变压器ct回路接线检验判定方法
CN102095974A (zh) 三绕组常规变压器差动保护正确接线判定方法
CN102096014A (zh) 四绕组自耦变压器ct回路接线正确性分析方法
CN102096012A (zh) 双母接线母线差动保护ct回路接线正确性分析方法
CN102109564A (zh) 一种励磁变压电流互感器接线信息检测方法
CN102095978A (zh) 主变压器差动保护线路接线分析方法
CN102095982A (zh) 高压电抗器差动保护接线正确性分析方法
CN102095984A (zh) 电力系统短引线差动保护正确性分析方法
CN102095975A (zh) 电力系统单母线分段接线差动保护判定分析方法
CN102095983A (zh) 单母接线母线ct回路接线正确性分析方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20091230