CN101610573B - Wireless transmitting and receiving device and method - Google Patents

Wireless transmitting and receiving device and method Download PDF

Info

Publication number
CN101610573B
CN101610573B CN 200910161636 CN200910161636A CN101610573B CN 101610573 B CN101610573 B CN 101610573B CN 200910161636 CN200910161636 CN 200910161636 CN 200910161636 A CN200910161636 A CN 200910161636A CN 101610573 B CN101610573 B CN 101610573B
Authority
CN
China
Prior art keywords
agc
wireless
signal
preamble
receiving
Prior art date
Application number
CN 200910161636
Other languages
Chinese (zh)
Other versions
CN101610573A (en
Inventor
小林崇裕
田边康彦
竹田大辅
青木亚秀
Original Assignee
株式会社东芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003-433347 priority Critical
Priority to JP2003433347 priority
Priority to JP2004357097A priority patent/JP4212548B2/en
Priority to JP2004-357097 priority
Application filed by 株式会社东芝 filed Critical 株式会社东芝
Priority to CN200410081858.12004.12.24 priority
Priority to CN200410081858.1 priority
Publication of CN101610573A publication Critical patent/CN101610573A/en
Application granted granted Critical
Publication of CN101610573B publication Critical patent/CN101610573B/en

Links

Abstract

A wireless device, method, and signal for use in communication of a wireless packet between transmitting device and a wireless receiving device via a plurality of antennas, wherein a signal generator generates wireless packet including a short-preamble sequence used for a first automatic gain control (AGC), a first long-preamble sequence, a signal field used for conveying a length of the wirelesspacket, an AGC preamble sequence used for a second AGC to be performed after the first AGC, a second long-preamble sequence, and a data field conveying data. The AGC preamble sequence is transmitted in parallel by the plurality of antennas.

Description

无线发送和接收设备及方法 The radio transmitting and receiving apparatus and method

[0001] 本申请是申请号为200410081858. 1、申请日为2004年12月24日、名称为“无线发送和接收设备及方法”的发明专利申请的分案申请。 [0001] The present application is a continuation of Application No. 200410081858.1, filed December 24, 2004, entitled "Wireless transmitting and receiving apparatus and method" in Patent Application divisional application of the present invention.

[0002] 相关专利申请交叉参考 [0002] CROSS REFERENCE TO RELATED APPLICATIONS

[0003] 本专利申请基于2003年12月26日提交的当前日本专利申请No. 2003-433347并要求其优先权,在这里参考引用其全部内容。 [0003] This patent application is based on Japanese Patent current December 26, 2003 filed and claims priority No. 2003-433347, incorporated by reference herein in its entirety.

技术领域 FIELD

[0004] 本发明涉及分别用于使用包含前同步码和数据的无线分组,在类似无线LAN的移动通信系统中发送和接收无线信号的无线发送设备和无线接收设备,以及用于该设备的无线发送方法和无线接收方法。 [0004] The present invention relates to wireless packet for respectively containing a preamble and data, transmitting and receiving radio signals in a similar wireless LAN communication system, a mobile wireless transmission device and wireless receiving device, and a wireless device for the transmission method and radio reception method.

背景技术 Background technique

[0005] 电气电子工程师协会(IEEE)现在正定义称作IEEE 802. Iln的无线LAN标准,其目标是实现IOOMbps或以上的高吞吐量。 [0005] Institute of Electrical and Electronics Engineers (IEEE) is now referred to the definition of IEEE 802. Iln wireless LAN standard, which aims to achieve a high throughput IOOMbps or more. 很有可能IEEE 802. Iln将使用在发送器和接收器中使用多个天线,称作多输入多输出(MIMO)的技术。 The IEEE 802. Iln likely that use multiple antennas at the transmitter and the receiver, a technique known as multiple input multiple output (MIMO) is. 需要IEEE 802. Iln与使用OFDM(正交频分多路复用)的标准IEEE 802. Ila共存。 IEEE 802. Iln required using OFDM (Orthogonal Frequency Division Multiplexing) standard IEEE 802. Ila coexist. 因此,需要IEEE 802. Iln无线发送设备和接收设备具有所谓向后兼容性。 Therefore, IEEE 802. Iln wireless transmitting device and the receiving device have so called backwards compatibility.

[0006]在“Backwards Compatibility,,IEEE802. ll-03/714r0 中Jan Boer 等人提出的建议介绍了用于ΜΙΜΟ的无线前同步码。在这个建议中,短前同步码序列用于时间同步,频率同步和自动增益控制(AGC),长前同步码序列用于估测信道脉冲响应,信号字段指示无线分组中所使用的调制模式,并且针对IEEE 802. Iln的另一个信号字段被首先从单个特定发送天线发送。接着,长前同步码序列被从其它三个发送天线发送。在前同步码的发送完成之后,发送数据被从所有天线发送。 [0006] In the proposed "Backwards Compatibility ,, IEEE802. Ll-03 / 714r0 in Jan Boer et al introduced a wireless preamble for ΜΙΜΟ In this proposal, a short-preamble sequence used for time synchronization, frequency synchronization and automatic gain control (the AGC), long-preamble sequence used to estimate the channel impulse response, a signal field indicating the modulation mode used in the wireless packet, and another signal field for IEEE 802. Iln is first from a single a particular transmission antenna. Subsequently, long-preamble sequences are transmitted from the other three transmit antennas. after completion of transmission of the preamble, transmission data is transmitted from all the antennas.

[0007] 从短前同步码到第一信号字段,所提出的前同步码相同于ΙΕΕΕ802. lla(其中假设单个发送天线)中规定的前同步码。 [0007] From the short-preamble to the first signal field, the proposed preamble is identical to the ΙΕΕΕ802. Lla (assuming single antenna transmission) specified in the preamble. 因此,当符合IEEE 802. Ila的无线接收设备接收包含Boer所提出的前同步码的无线分组时,他们发现分组基于IEEE 802. Ila0因而,符合IEEE 802. Ila 和IEEE 802. Iln 的所提出的前同步码使IEEE 802. Ila 和IEEE 802. Iln 能 Thus, when the line with IEEE 802. Ila wireless receiving device receives a wireless packet containing the Boer's proposed preamble, they found packets based on IEEE 802. Ila0 Thus, in line with the proposed IEEE 802. Ila and the IEEE 802. Iln preamble that the IEEE 802. Ila energy and IEEE 802. Iln

够共存。 Coexistence enough.

[0008] 通常,在无线接收设备中,所接收信号的解调由数字信号处理执行。 [0008] Generally, in wireless receiving apparatus, the received signal is demodulated by the digital signal processing performed. 因此,在用于数字化所接收的模拟信号的设备中提供模数(A/D)转换器。 Thus, analog to digital (A / D) converter apparatus for digitizing analog signals received in. A/D转换器具有输入动态范围(要转换的模拟信号的允许电平范围)。 A / D converter has an input dynamic range (allowable level range of the analog signal to be converted). 因此,有必要执行自动增益控制(AGC),以在A/D转换器的输入动态范围内调节所接收信号的电平。 Therefore, it is necessary to perform automatic gain control (the AGC), in order to adjust the input dynamic range of the A / D converter is the level of the signal received.

[0009] 由于使用上述长前同步码序列对信道脉冲响应的估测由数字信号处理执行,所以必须使用在长前同步码序列之前发送的信号执行AGC。 [0009] Since the above-mentioned long preamble sequence to estimate the channel impulse response processing performed by the digital signal, the signal must be used in the AGC is performed prior to transmission of the long preamble sequence. 在Boer的前同步码中,使用来自特定发送天线、在长前同步码序列之前发送的短前同步码序列执行AGC。 In the Boer's preamble, a transmission from a particular antenna, the short-preamble sequence transmitted before the long-preamble sequence execution AGC. 即,短前同步码序列的接收电平被测量,并且AGC被执行,使得接收电平在A/D转换器的输入动态范围内。 That is, the reception level of the short-preamble sequence is measured, and AGC is performed so that the reception level within the input dynamic range of the A / D converter. 通过使用短前同步码序列的AGC,从特定发送天线发送的长前同步码序列和数据可以被正确接收。 By using short AGC preamble sequence, the long preamble sequence and data transmitted from the particular transmit antenna can be received correctly. 如果所有天线被分开排列,则从天线发送的信号的接收电平不可避免地互不相同。 If all the antennas are arranged apart, the reception level of a signal transmitted from the antennas are inevitably different from each other. 因此,当无线接收设备接收从其它三个发送天线发送的长前同步码序列,或从所有天线发送的数据时,其接收电平可以比使用从特定发送天线发送的短前同步码序列的AGC所获得的电平高或低得多。 Thus, when the AGC short preamble sequence of a long preamble sequence wireless receiving device receives the transmission from the other three transmit antennas, or data transmitted from all antennas, a reception level which can be transmitted from the transmitting antenna than the specific electric obtained a high level or lower. 当接收电平超出A/D转换器的输入动态范围的上限时,A/D转换器的输出饱和。 When the reception level exceeds the upper limit of the A / D converter input dynamic range, the output of the saturated A / D converter. 另一方面,当接收电平低于A/D转换器的输入动态范围的下限时,A/D转换器的输出出现严重量化错误。 On the other hand, when a serious error quantized output is less than the lower limit of the reception level A / D converter input dynamic range, A / D converter occurs. 在两种情况下,A/D转换器不能执行适当转换,这消极影响了A/D转换之后的处理。 In either case, A / D converter can not perform appropriate conversion, which negatively affects the processing after A / D conversion.

[0010] 此外,从所有天线发送数据。 [0010] In addition, data is transmitted from all the antennas. 因此,在数据传输期间,接收电平的变化范围进一步增大,其恶化了A/D转换器输出的上述饱和和/或其中的量化错误,从而显著降低接收性能。 Therefore, during data transmission, the range of variation of the reception level is further increased, which deteriorates a saturated A / D converter output and / or the quantization error therein, thereby significantly reducing the reception performance.

[0011] 如上所述,在Boer提出的前同步码中,仅使用从单个发送天线发送的短前同步码序列在接收端执行AGC,这使得难以处理当接收以MIMO模式从其它天线发送的信号时可能出现的接收电平的变化。 [0011] As described above, in the Boer's proposed preamble, AGC is performed at the receiving end using only the short-preamble sequence transmitted from a single transmit antenna, which makes it difficult to handle when receiving a transmission from another antenna in the MIMO mode signal change in the reception level when possible.

发明内容 SUMMARY

[0012] 根据本发明一个方面,提供了一种无线发送设备,用于与无线接收设备通过无线分组通信,包括:多个天线;和产生被发送的无线分组的信号的信号发生器,无线分组包括:短前同步码序列,用于第一自动增益控制(AGC);第一长前同步码序列;用于传送涉及无线分组长度的信息的信号字段;AGC前同步码序列,用于在第一AGC之后执行的第二AGC ; 第二长前同步码序列;以及传送数据的数据字段,其中所述AGC前同步码序列由多个天线并行发送。 [0012] In accordance with one aspect of the present invention, there is provided a radio transmission device, via a packet for wireless communication with the receiving apparatus, comprising: a plurality of antennas; a signal generator and a signal generation wireless packet to be transmitted, the wireless packet comprising: a short-preamble sequence used for a first automatic gain control (AGC); a first long-preamble sequence; means for transmitting a signal field information relates to wireless packet length; AGC preamble sequence, for the first after executing a second AGC AGC; second long-preamble sequence; and a data field for transmitting data, wherein prior to said AGC preamble sequence transmitted from the plurality of antennas in parallel.

[0013] 由于本发明使用的信号格式包含用于精细调谐针对从多个天线发送的MIMO接收的AGC的前同步码,A/D转换器的输入电平可以在短时间内被适当调整,从而增强无线接收设备的接收性能,并且减少A/D转换器的分辨比特(resolution bits)的数量。 [0013] Since the signal format of the present invention comprises a fine tuning for a MIMO transmission from multiple antennas received AGC preamble, the input level of the A / D converter can be appropriately adjusted in a short time, thus enhanced performance of the wireless reception apparatus receiving, and reduce the number of a / D converter bit resolution (resolution bits) of.

附图说明 BRIEF DESCRIPTION

[0014] 被并入及构成说明书一部分的附图,图解了本发明的实施例,并且与上面给出的一般描述及下面给出的实施例的具体实施方式一起说明本发明的原理。 [0014] The accompanying drawings are incorporated in and constitute a part of the specification, illustrate embodiments of the present invention, to explain the principles of the present invention DETAILED DESCRIPTION Embodiments of the general description given below and above and given.

[0015] 图1的视图图解了无线分组的格式,包含在本发明的一个实施例中使用的用于无线通信的AGC前同步码; View [0015] FIG. 1 illustrates the format of the wireless packet, comprising the AGC preambles used in one embodiment of the present invention for wireless communication;

[0016] 图2的模块图根据实施例图解了无线发送设备的结构; FIG module [0016] FIG. 2 illustrates a configuration of a radio transmitting apparatus according to an embodiment;

[0017] 图3的模块图根据实施例图解了无线接收设备的结构; FIG module [0017] FIG. 3 illustrates a structure of a radio receiving apparatus according to an embodiment;

[0018] 图4的模块图图解了并入图3的设备的接收单元的结构例子; FIG module [0018] FIG. 4 illustrates a configuration example of a receiving unit incorporated in the apparatus of Figure 3;

[0019] 图5的曲线图图解了现有技术中短前同步码和数据的接收功率的分布; Graph [0019] Figure 5 illustrates a distribution of the received power of the prior art, the short preamble and data;

[0020] 图6的曲线图图解了实施例中短前同步码和数据的接收功率的分布; Graph [0020] FIG. 6 illustrates a distribution of the reception power example short preamble and data;

[0021] 图7的模块图图解了接收单元的另一个结构例子; FIG module [0021] FIG. 7 illustrates a structure of another example of a receiving unit;

[0022] 图8A是说明增益控制器的操作的流程图; [0022] FIG 8A is a flowchart illustrating the operation of the gain controller;

[0023] 图8B的流程图示出了第一AGC操作和第二AGC操作;[0024] 图9的模块图根据实施例的修改图解了无线接收设备; Process [0023] FIG. 8B illustrates a first AGC operation and second AGC operation; FIG module [0024] FIG. 9 illustrates a radio receiving apparatus according to a modified embodiment of the embodiment;

[0025] 图10的模块图图解了并入图9的无线接收设备的接收单元的结构例子; FIG module [0025] FIG. 10 illustrates a configuration example of a receiving unit incorporated in the wireless receiving device of FIG 9;

[0026] 图11的模块图图解了出现在图3中的传播路径估测单元的结构例子; FIG module [0026] FIG. 11 illustrates appear in Figure 3 configuration example of the propagation path estimation unit;

[0027] 图12的视图图解了图1中出现的AGC前同步码的结构例子; View [0027] FIG. 12 illustrates a configuration example of the AGC preambles appearing in FIG. 1;

[0028] 图13的视图图解了图1中出现的AGC前同步码的其它结构例子;以及 View [0028] FIG. 13 illustrates another configuration example of the AGC preambles appearing in FIG. 1; and

[0029] 图14的视图根据本发明的另一个实施例图解了无线发送设备。 View [0029] FIG. 14 illustrates an embodiment of a wireless transmission device according to another embodiment of the invention.

具体实施方式 Detailed ways

[0030] 本发明的实施例将参照附图详细描述。 [0030] Embodiments of the invention will be described in detail with reference to the drawings.

[0031] 图1说明了本发明的第一实施例中使用的无线分组的格式。 [0031] FIG 1 illustrates a wireless packet format used in the first embodiment of the present invention. 这个格式是MIMO模式的物理层协议数据单元格式,并且提供与IEEE802. Ila无线站的互操作性以及共存性。 This format is a physical layer protocol data unit format MIMO mode, and provides an IEEE 802. Ila interoperability and coexistence of the radio station.

[0032] 正如从图1所看到的,前同步码包含从天线Txl发送的物理层会聚协议(physical layer convergence protocol) (PLCP)信号。 [0032] As seen from Figure 1, a preamble includes a physical layer convergence protocol (physical layer convergence protocol) (PLCP) signal transmitted from the antenna Txl. PLCP信号包含短前同步码序列101,第一长前同步码序列102,第一信号字段(信号)103和第二信号字段(信号2) 104。 PLCP signal includes a short-preamble sequence 101, first long-preamble sequence 102, first signal field (SIGNAL) 103 and second signal field (SIGNAL 2) 104. 短前同步码序列101包含若干单元前同步码SP。 Short-preamble sequence 101 contains several unit preambles SP before. 长前同步码序列102包含具有相应预定长度的单元前同步码LP。 Long-preamble sequence 102 contains the unit preambles LP having respective predetermined prior length. 前同步码LP长于前同步码SP。 LP is longer than the preamble preamble SP.

[0033] 短前同步码序列101,第一长前同步码序列102和第一信号字段103符合IEEE 802. Ila,同时第二信号字段104是新无线LAN标准IEEE802. Iln所需的。 [0033] The short-preamble sequence 101, first long-preamble sequence 102 and first signal field 103 conform to IEEE 802. Ila, while the second signal field 104 is a new wireless LAN standard IEEE802. Required Iln. 符合IEEE 802. Ila的第一信号字段103可以被称作“传统信号字段”。 The first signal field 103 conform to IEEE 802. Ila may be called "legacy signal field." 由于第二信号字段104是为新的高吞吐量无线LAN标准提供的,所以可以称作“高吞吐量信号字段”。 Since the second signal field 104 is a new high throughput wireless LAN standard offers, it can be called "high throughput signal field." 保护间隔GI被插入到短前同步码序列101和长前同步码序列102之间。 The guard interval GI is inserted between the short-preamble sequence 101 and the long-preamble sequence 102.

[0034] 在PLCP信号之后,从多个天线Txl到Tx4并行发送的AGC前同步码105Α到105D 被定位。 [0034] After the PLCP signal, AGC preambles transmitted in parallel from a plurality of antennas to Tx4 105Α Txl to 105D are positioned. 从多个天线Txl到Τχ4同时发送AGC前同步码105Α到105D。 Transmitting the AGC preambles from a plurality of antennas to 105D 105Α Txl to Τχ4 simultaneously. AGC前同步码105Α 到105D用于使接收设备能够在进行MIMO通信时执行精细AGC。 105Α AGC preamble 105D for the receiving apparatus to perform fine AGC when performing MIMO communication is possible. 这些前同步码对精细调谐用于根据IEEE 802. Iln的MIMO模式接收的AGC是唯一的。 The preamble to fine tune for reception according to IEEE 802. Iln MIMO mode AGC is unique. 因此,AGC前同步码105Α到105D可以被称作“高吞吐量短序列字段”。 Accordingly, AGC preambles 105Α to 105D may be called "high throughput short sequence field." 另一方面,由于被用于粗AGC操作的短前同步码序列101符合IEEE 802. 11a,所以可以被称作“传统短序列字段”。 On the other hand, the short-preamble sequence 101 is used for coarse AGC operation due to meet IEEE 802. 11a, it may be called "legacy short sequence field."

[0035] 在AGC前同步码105A到105D之后,第二长前同步码序列106A到109A,106B至Ij 109B,106C到109C和106D到109D被定位。 [0035] After the AGC preambles 105A to 105D, second long-preamble sequences 106A to 109A, 106B to Ij 109B, 106C to 109C and 106D to 109D are positioned. 在实施例中,相同信号序列被用作AGC前同步码105A到105D。 In an embodiment, the same signal sequences are used as the AGC preambles 105A to 105D. 然而,不同信号序列可以被用作AGC前同步码105A到105D。 However, different signal sequences may be used as the AGC preambles 105A to 105D. 保护间隔GI被插入到构成第二长前同步码序列106A到109A, 106B到109B, 106C到109C和106D 到109D的每对相邻单元前同步码LP之间。 The guard interval GI is inserted constituting a second long-preamble sequence between 106A to 109A, 106B to 109B, 106C to 109C before each pair of adjacent units 109D and 106D to the preamble LP. 如下所述,第二长前同步码序列106A到109A, 106B到109B,106C到109C和106D到109D是正交关系。 As described below, the second long-preamble sequences 106A to 109A, 106B to 109B, 106C to 109C and 106D to 109D is orthogonal relationship. 每个发送天线的单元前同步码LP 106-109的数量等于MIMO模式中发送天线的数量。 Before the number of code LP 106-109 for each transmission antenna unit is equal to the synchronous MIMO mode number of transmit antennas. 为了区别两种长前同步码序列,符合IEEE 802. Ila的第一长前同步码序列可以被称作“传统长序列字段”。 In order to distinguish two kinds of long-preamble sequences, first long-preamble sequence corresponds to IEEE 802. Ila may be called "legacy long sequence field." 由于第二长前同步码序列106-109是为新的高吞吐量无线LAN标准提供的,所以可以被称作“高吞吐量长序列字段”。 Since the second long-preamble sequence 106-109 for new high throughput wireless LAN standard offers, it may be called "high throughput long sequence field."

[0036] 在每个第二长前同步码序列106A到109A,106B到109B,106C到109C和106D至Ij 109D之后,分别用于从天线Txl到Tx4发送的发送数据IlOA到IlOC的字段(数据)被定位。 [0036] In 106A to 109A, 106B to 109B, 106C to 109C and a second field of each long preamble sequence Ij after 106D to 109D, respectively, for transmission from the antenna Tx4 Txl transmits the data to IlOC IlOA (data ) is positioned. 第二长前同步码序列106A到109A, 106B到109B, 106C到109C和106D到109D被同时 The second long-preamble sequences 106A to 109A, 106B to 109B, 106C to 109C and 106D to 109D are simultaneously

从多个天线Txl到Tx4分别发送。 Txl from a plurality of antennas are transmitted to Tx4.

[0037] 现在参照图2描述基于实施例的无线发送设备。 [0037] Referring now to Figure 2 depicts a wireless transmitting apparatus based on an embodiment. 首先,数字调制器203通过混合发送数据201和上述从存储器202输出的前同步码形成无线分组的信号。 Firstly, digital modulator 203 and the transmission data from the radio signal forming a packet preamble 202 output from the memory 201 by the above-described mixing. 由此获得的无线分组的信号被发送到发送单元204Α到204D,其中他们经过发送所需的处理,例如,数模(D/ A)转换,频率转换到射频(RF)频带(上变转换)和功率放大。 Wireless packet signal thus obtained is transmitted to the transmission unit 204Α to 204D, where they are transmitted through the processing required, for example, digital to analog (D / A) conversion, frequency conversion to a radio frequency (RF) band (up-conversion) and power amplification. 其后,向对应于参照图1所描述的天线Txl到Tx4的多个天线205Α到205D发送结果信号,其中从每个发送天线205Α 到205D把RF信号发送到图3示出的无线接收设备。 Thereafter, the antenna Txl corresponds to FIG 1 described with reference to a plurality of antenna Tx4 205Α 205D transmits the result to the signal, wherein the transmitted RF signal 205Α to 205D from each transmission antenna to the radio reception apparatus shown in FIG. 在下面的描述中,图1中示出的天线Txl到Τχ4被分别称为天线205Α到205D。 In the following description, FIG. 1 shows an antenna Txl Τχ4 to be referred to 205Α antenna 205D.

[0038] 在实施例中,图1中示出的包含短前同步码序列101,第一长前同步码序列102,第一信号字段103和第二信号字段104的PLCP信号被从图2示出的发送单元204Α的发送天线205Α发送。 [0038] In an embodiment, FIG. 1 comprises a short-preamble sequence 101 shown, first long-preamble sequence 102, first signal field 103 and second signal field 104 PLCP is shown in Figure 2 a transmitting unit transmitting the transmission antenna 204Α 205Α. AGC前同步码105Α到105D,第二长前同步码序列106Α到109Α,106Β到109Β, 106C到109C和106D到109D (如图1所示被定位在PLCP信号之后),以及数据IlOA 到IlOD通过所有发送天线205Α到205D发送。 AGC preamble 105D to 105Α, second long-preamble sequences 106Α to 109Α, 106Β to 109Β, 106C to 109C and 106D to 109D (shown in Figure 1 are positioned after the PLCP signal), and the data to IlOD by IlOA All 205Α transmitting antenna to transmit 205D.

[0039] 在图3示出的无线接收设备中,多个接收天线301Α到301D接收从图2示出的无线发送设备发送的RF信号。 [0039] In the wireless receiving device shown in FIG. 3, the plurality of receiving antennas 301Α 301D receives RF signals transmitted from the wireless transmission device shown in FIG. 无线接收设备可以具有一个接收天线或多个接收天线。 Wireless receiving device may have one receiving antenna or multiple receiving antennas. 通过接收天线301Α到301D接收的RF信号被分别发送到接收单元302Α到302D。 Through the receiving antenna 301D 301Α the received RF signal is transmitted to the receiving unit respectively 302Α to 302D. 接收单元302Α 到302D均执行各种接收处理,诸如从RF频带频率转换(下变转换)到BB (基带),自动增益控制(AGC),模数转换等等,从而产生基带信号。 302Α receiving unit 302D are executed the various reception processing such as frequency conversion from RF band (variable conversion) to BB (baseband), automatic gain control (the AGC), analog to digital conversion, etc., to produce a baseband signal.

[0040] 来自接收单元302Α到302D的基带信号被发送到信道脉冲响应估测单元303Α到303D和数字解调器304。 [0040] The baseband signal from the receiving unit 302Α to 302D are sent to channel impulse response estimation units 303Α to 303D and digital demodulator 304. 这些单元303Α到303D估测图2的无线发送设备和图3的无线接收设备之间相应的传播路径的脉冲响应。 The unit impulse responses corresponding to the propagation path between the wireless transmitting device and wireless receiving device of FIG 303Α estimated to 303D in FIG. 3 2. 后面会详细描述信道脉冲响应估测单元303Α到303D。 Details will be described later channel impulse response estimation units 303Α to 303D. 根据由单元303Α到303D提供的所估测信道脉冲响应,数字解调器304解调基带信号,从而产生对应于图2示出的发送数据201的所接收数据305。 According to the estimated channel impulse response provided by units 303Α to 303D, digital demodulator 304 demodulates the baseband signal to produce the transmission data corresponding to the 201 shown in FIG. 2 receives data 305.

[0041] 更具体地,数字解调器304在其输入部分具有信道脉冲响应的均衡器。 [0041] More specifically, the digital demodulator 304 has an equalizer of the channel impulse response at its input section. 根据所估测信道脉冲响应,均衡器进行均衡以校正传播路径中畸变的接收信号。 The channel impulse response, an equalizer equalizing the estimated received signal to correct the distortion of the propagation path. 数字解调器304也以时间同步所确定的适当定时解调均衡信号,从而还原数据。 The digital demodulator 304 also time synchronized to the determined appropriate timing of the demodulation equalized signal to restore data.

[0042] 现在将描述图3示出的接收单元302Α到302D。 [0042] The receiving unit 3 will now be illustrated in FIG 302Α to 302D described. 图4详细示出了接收单元302Α的结构。 FIG 4 shows in detail a configuration of the receiving unit 302Α. 由于其它接收单元302Β到302D具有与单元302Α相同的结构,所以仅描述接收单元302Α。 Since the other receiving units 302Β 302Α unit 302D have the same structure, only the description of the receiving unit 302Α. 由接收天线301Α接收的RF接收信号被下变转换器401下变转换成基带信号。 301Α received by the receiving antenna receives an RF signal is down-converter down converter 401 into a baseband signal. 此时,RF信号可以直接转换为基带信号,或可以先转换为中频(IF)信号并且接着转换为基带信号。 In this case, the RF signal can be directly converted into a baseband signal, or may be converted into an intermediate frequency (IF) signal and then into a baseband signal.

[0043] 由下变转换器401产生的基带信号被发送到可变增益放大器402,在此它被执行AGC,即信号电平调整。 [0043] The down converter 401 by the generated baseband signal is sent to the variable gain amplifier 402, where it is performed the AGC, i.e., signal level adjustment. 来自可变增益放大器402的信号输出被A/D转换器403采样并且量化。 Output signal 402 from the variable gain amplifier 403 is sampled and quantized in A / D converter. 来自A/D转换器403的数字信号输出被发送到接收单元302外并且被发送到增益控制器404。 A digital signal output from the A / D converter 403 is transmitted to the external receiving unit 302 and sent to the gain controller 404. 增益控制器404根据来自A/D转换器403的数字信号输出执行增益计算,并且控制可变增益放大器402的增益。 The gain controller 404 performs gain according to the digital signal output from A / D converter 403 is calculated, and controls the gain of the variable gain amplifier 402. 增益控制的具体过程后面会描述。 DETAILED rear gain control process will be described.

[0044] 为接收包含图1所示格式的前同步码的无线分组而执行的图3和4所示的无线接收设备的操作如下所述。 3 and the operation of the wireless receiving device shown in FIG. 4 Packet Radio [0044] The receiver comprises a preamble format shown in FIG. 1 is performed as follows. 首先,无线接收设备接收从图2的发送天线205A发送的短前同步码序列101,并且接着使用对应于短前同步码序列101的基带信号执行分组边缘检测,时间同步,自动频率控制(AFC)和AGC。 First, the wireless reception device 101 receives from the short preamble sequence in FIG transmitting antenna 2 205A transmitted, and then use the corresponding edge detection preamble sequence baseband signal 101 performs packet before short, time synchronization, automatic frequency control (AFC) and AGC. AFC也被称作频率同步。 AFC is also called frequency synchronization. 可以使用已知技术执行分组边缘检测,时间同步和AFC,因此没有给出相关描述。 It can be performed using known techniques packet edge detection, time synchronization, and the AFC, and therefore the related description is not given. 下面只说明AGC。 The following description only the AGC.

[0045] 可变增益放大器402基于预定初始增益值放大对应于短前同步码序列101的基带信号。 [0045] The variable gain amplifier 402 amplifies the baseband signal corresponding to the preamble sequence 101 before the short based on a predetermined initial gain value. 来自可变增益放大器402的信号输出通过A/D转换器403被输入到增益控制器404。 The output signal from the variable gain amplifier 402 via the A / D converter 403 is input to the gain controller 404. 增益控制器404根据对应于短前同步码序列101、在A/D转换之后获得的接收信号的电平计算增益,并且基于所计算的增益控制可变增益放大器402的增益。 The gain controller 404 corresponding to the front short preamble sequence 101, calculates a gain level of the received signal after A / D conversion is obtained, and controls the variable gain amplifier 402 based on the calculated gain.

[0046] 在这里假设对应于短前同步码序列101、在A/D转换之前获得的基带信号的电平为X。 [0046] It is assumed here corresponding to the front short preamble sequence 101, the level of the baseband signal prior to A / D conversion is obtained X. 如果电平X为高,则输入到A/D转换器403的基带信号超出A/D转换器403输入动态范围的上限。 If level X is high, the input to the A / D converter 403 of baseband signal 403 exceeds the upper limit of the input dynamic range of the A / D converter. 结果,来自A/D转换器403的信号(数字信号)输出被饱和并且降低了信号接收的质量。 As a result, the output signal (digital signal) from the A / D converter 403 is saturated and reduces the quality of the received signal. 另一方面,如果电平X非常低,来自A/D转换器402的信号输出(S卩,通过A/ D转换获得的数字信号)出现严重的量化错误。 On the other hand, if level X is low, the output signal (S Jie, a digital signal obtained by A / D conversion) from the A / D converter 402 severe quantization error. 因而,当电平XL非常高或低时,A/D转换器403不能执行适当转换,从而显著降低了信号接收的质量。 Accordingly, when the level is very high or low XL, A / D converter 403 can not perform appropriate conversion, thereby significantly reducing the quality of the received signal.

[0047] 为克服这个问题,增益控制器404控制可变增益放大器402的增益,使得对应于短前同步码序列101的基带信号的电平X被调整为目标值Z。 [0047] To overcome this problem, the gain controller 404 controls the variable gain amplifier 402, so as to correspond to the short-preamble sequence level X of the baseband signal 101 is adjusted to a target value Z. 如果输入基带信号具有非常高的电平,以至使得A/D转换器403的输出被限制在其上限电平,或如果它具有极低电平,可变增益放大器402的增益可能被一个控制处理不恰当地控制。 If the input baseband signal has a very high level, so that even A / D converter output 403 is limited in its upper limit level, or a very low level, the gain of the variable gain amplifier 402 may be controlled if it has a processing is not appropriately controlled. 在这种情况下,重复执行增益控制。 In this case, the gain control is repeatedly performed. 作为结果,输入到A/D转换器403的基带信号的电平可以被调整为属于A/D转换器403输入动态范围的值。 As a result, the input to the A / D converter level of the baseband signal 403 may be adjusted to a value of the input dynamic range belongs to the A / D converter 403. 因而,使用对应于短前同步码序列101的基带信号适当地控制可变增益放大器402的增益,从而执行适当A/D转换以避免降低信号接收的质量。 Thus, prior to using the corresponding appropriately controlled short preamble sequence baseband signal 101 of variable gain amplifier 402, thereby performing appropriate A / D conversion to avoid degrading the quality of the received signal.

[0048] 在上面描述的实施例中,使用来自A/D转换器403的数字信号输出测量用于计算可变增益放大器402的增益所需要的接收电平。 [0048] In the above described embodiments, a digital measurement signal from the reception level of 403 A / D converter for calculating the gain of the variable gain amplifier 402 is needed. 然而,这种电平测量可以使用在A/D转换之前获得的模拟信号执行。 However, such level measurement can be performed in an analog signal before A / D conversion obtained using. 此外,在IF频带或RF频带而不是BB中测量接收电平。 Further, the reception level is measured in the IF band or RF band, instead of BB.

[0049] 无线接收设备接收从发送天线205A发送的第一长前同步码序列102,并且执行信道脉冲响应估测,即,使用对应于长前同步码序列102的基带信号估测无线发送设备到无线接收设备之间的传播路径的响应(频率传递函数)。 [0049] The wireless receiving device receives a first long-preamble sequence 102 transmitted from the transmit antenna 205A, and performs the channel impulse response estimate, i.e., using the baseband signal corresponding to the long-preamble sequence 102 to the wireless transmission device estimates response (frequency transfer function) of the propagation path between the wireless receiving device. 由于从发送天线205A发送的信号已经进行如上所述的AGC,所以当执行信道脉冲响应的估测时适当调整输入到A/D转换器403 的电平。 Since the AGC signal has been described above is transmitted from the transmit antenna 205A, when the estimated channel impulse response and to adjust the input appropriately channel A / D converter 403 level. 因此,对于从发送天线205A发送的信号,非常精确的数字信号从A/D转换器403 获得。 Thus, for a very accurate digital signal to obtain a signal transmitted from the transmit antenna 205A from the A / D converter 403. 使用所获得数字信号,信道脉冲的估测可以精确执行。 Using the obtained digital signal, the estimated channel impulse can be performed accurately.

[0050] 无线接收设备接收从发送天线205A发送的第一信号字段103,并且使用数字解调器304和上述传播路径估测结果,解调对应于第一信号字段103的基带信号。 [0050] The wireless receiving device receives a first signal field 103 transmitted from the transmit antenna 205A, and using the digital demodulator 304 and the propagation path estimation result, demodulation baseband signal corresponding to a first signal field 103. 第一信号字段103包含指示调制模式和在前同步码之后发送的数据的无线分组长度的信息。 The first signal field 103 contains information indicating the length of a wireless packet transmitted after modulation mode and the preamble data. 第一信号字段103是传送涉及无线分组的一种属性信息的字段。 The first signal field 103 is a field conveys information relating to an attribute of the packet radio. 在根据包含在第一信号字段103 中的无线分组长度信息识别的无线分组持续时间期间,无线接收设备继续使用数字解调器304解调。 During the duration of a wireless packet according to a wireless packet length information contained in the identification of a first signal field 103, wireless receiving device continues demodulation using the digital demodulator 304.

[0051] 由于从短前同步码序列101到第一信号字段103的分组格式提供与IEEE 802. Ila 站的互操作性,所以IEEE 802. Ila站能够执行正常接收操作,而不破坏无线分组。 [0051] Since the short-preamble sequence 101 to the first signal field 103, packet format interoperability provides IEEE 802. Ila station, the station is capable of IEEE 802. Ila perform normal receiving operation without destroying the wireless packet. 换句话说,符合IEEE 802. Ila标准的另一个IEEE 802. Ila无线发送和接收设备(传统站)当接收到第一信号字段103时,被禁止发送信号,直到无线分组结束,以便不破坏无线分组。 In other words, another IEEE 802. Ila radio transmitting and receiving apparatus (a legacy station) complies with standard IEEE 802. Ila when receiving the first signal field 103, a transmission signal is disabled, until the wireless packet ends so as not to destroy the wireless grouping. [0052] 接着,无线接收设备接收从发送天线205A发送的第二信号字段104。 [0052] Next, the wireless receiving device receives a second signal field 104 transmitted from the transmit antenna 205A. 第二信号字段104包含标识信息,其指示对应于除IEEE 802. Ila之外的标准,例如IEEE 802. Iln的无线分组。 The second signal field 104 contains identification information indicating that corresponds to a standard other than IEEE 802. Ila, for example, a wireless packet of IEEE 802. Iln. 换句话说,第二信号字段104指示后续AGC前同步码105A到105D,第二长前同步码序歹Ij 106A 到109A, 106B 到109B, 106C 到109C 和106D 到109D 是对应于例如IEEE802. Iln In other words, before the second signal field 104 indicates the subsequent AGC preambles 105A to 105D, second long-preamble sequences bad Ij 106A to 109A, 106B to 109B, 106C to 109C and 106D to 109D corresponding to, for example, IEEE802. Iln

的信号。 signal of.

[0053] 无线接收设备并行接收从发送天线205A到205D发送的AGC前同步码105A到105D。 [0053] The wireless receiving device receives the preamble from the front of the parallel transmission antennas 205A to 205D transmitted AGC 105A to 105D. AGC前同步码105A到105D被从已经发送短前同步码序列101,第一长前同步码序列102,第一信号字段103和第二信号字段104的发送天线205A发送,并且从到目前为止没有发送信号的发送天线205B到205D发送。 AGC preambles 105A to 105D has been transmitted from the short-preamble sequence 101, first long-preamble sequence 102, first signal field 103 and second signal field transmitting antenna 104 transmits 205A, and not far from a signal transmitting antenna 205B to 205D transmitted. 因此,虽然使用某个接收电平接收从发送天线205A 发送的信号(即,短前同步码序列101,第一长前同步码序列102,第一信号字段103和第二信号字段104),然而使用不同于来自发送天线205A的接收信号的电平的接收电平接收AGC 前同步码105A到105D。 Thus, although the reception level of a reception signal transmitted from the transmit antenna 205A (i.e., the short-preamble sequence 101, first long-preamble sequence 102, first signal field 103 and second signal field 104), but Unlike the use of a reception level from the transmission antenna level of the received signal 205A receives AGC preambles 105A to 105D. 换句话说,在使用多个发送天线的MIMO发送之后改变接收电平。 In other words, after the change in the reception level using a plurality of transmission antennas MIMO transmission.

[0054] 如上所述,无线接收设备接收第二信号字段104并且使用数字解调器304解调第二信号字段104,从而识别对应于IEEE 802. Iln的当前无线分组。 [0054] As described above, the wireless receiving device receives a second signal field 104 and using the digital demodulator 304 demodulates the second signal field 104, identifying the current wireless packet corresponding to the IEEE 802. Iln. 此后,数字解调器304 发出指令以重新启动AGC,以精细调整接收单元302A到302D,从而对AGC前同步码105A到105D重新执行AGC。 Thereafter, the digital demodulator 304 issues an instruction to restart AGC, to finely adjust the receiving units 302A to 302D, thereby re-executing AGC on the AGC preambles 105A to 105D. 作为结果,通过MIMO信道从发送天线205A到205D发送并且在接收单元302A到302D接收的信号,以适当调整的接收电平被输入到A/D转换器403。 As a result, the transmission over the MIMO channel from the transmit antennas 205A to 205D and the receiving unit 302A receives the signal to 302D, to adjust the reception level is input to the A / D converter 403.

[0055] S卩,通过使用在如图4所示的A/D转换之后获得的对应于AGC前同步码105A到105D的基带信号的电平,在可变增益放大器402上执行增益控制。 [0055] S Jie, by using after A shown in FIG. 4 / D conversion is obtained corresponding to the level of the AGC preambles 105A to the baseband signal 105D, the gain control is performed on the variable gain amplifier 402. 数字解调器304发出指令以开始使用AGC前同步码105A到105D的AGC的时间不限于获得第二信号字段104的解码结果的时间。 The digital demodulator 304 issues an instruction to start AGC using the AGC preambles 105A to 105D of time is not limited to time to obtain a decoding result of the second signal field 104. 例如,数字解调器304可以使用例如匹配滤波器确认AGC前同步码105A到105D接收,并且接着提供指令给接收单元302A到302D以开始AGC。 For example, the digital demodulator 304 may be used, for example, a matched filter to confirm the AGC preambles 105A to 105D received and then provide instructions to the receiving units 302A to 302D to start AGC.

[0056] 在Jan Boer提出的以前描述的前同步码中,只使用从单个发送天线发送的短前同步码序列(传统短前同步码)执行AGC。 [0056] preamble previously described Jan Boer proposed, only the short-preamble sequence (legacy short preamble) transmitted AGC is performed from a single transmission antenna. 使用用于从发送短前同步码序列的天线处发送的信号的接收电平执行AGC。 AGC is performed using the reception level of a signal transmitted from the transmitting antenna short preamble sequence. 当无线接收设备接收从其它三个天线发送的信号时,该设备通过使用所获得的增益执行增益控制。 When a wireless receiving device receives signals transmitted from other three antennas, the gain of the gain is performed by using the obtained device control.

[0057] 图5的曲线图图解了在使用Jan Boer提出的前同步码时获得的短前同步码和数据的接收功率的分布。 Graph [0057] Figure 5 illustrates a distribution of reception power obtained when using Jan Boer's proposed preamble short preamble and data. 信道处于多径环境,具有50纳秒的延迟扩展(一个数据符号的持续时间是4微秒)。 Channel is in a multipath environment having a delay spread of 50 nsec (the duration of one data symbol is 4 microseconds). 从这个附图可以看出,短前同步码(传统短前同步码)的接收电平与数据接收电平的比率改变显著。 As can be seen from this figure, the data reception level and short preamble (legacy short preamble) to the receiving level ratio changing significantly.

[0058] 例如,在图5的区域A,尽管数据接收电平较低,但以高接收电平接收短前同步码。 [0058] For example, in a region A of FIG. 5, although the data reception level is low, but a high reception level short preamble. 因此,如果根据短前同步码的接收功率调整AGC,则数据的接收功率比短前同步码的接收功率低,从而在A/D转换器403产生量化错误。 Accordingly, if AGC is adjusted in accordance with the received power of the short preamble, the receiving power of the data is lower than the reception power of the short preamble, resulting in a quantization error in the A / D converter 403. 在图5的区域B中,尽管数据接收电平为高, 但以低接收电平接收短前同步码。 In the area B of FIG. 5, although the receiving level of data is high, but at a low reception level short preamble. 因此,如果根据短前同步码的接收功率调整AGC,则当数据输入时A/D转换器的输出饱和。 Accordingly, if AGC is adjusted in accordance with the received power of the short preamble, the data input when the A / D converter output saturation. 因而,应当理解,由于在传统模式中数据与短前同步码的接收功率比不是常数,因量化错误或A/D转换器输出饱和而使接收特性退化。 Thus, it should be understood that, since the data before the received power in the conventional mode and the short preamble is not constant ratio due to the quantization error or A / D converter receives the output saturation characteristics are deteriorated. 另一方面,在实施例中,所有发送数据信号的天线205A到205D分别发送AGC前同步码105A到105D。 On the other hand, in the embodiment, all antennas 205A to transmit the data signals are transmitted 205D AGC preambles 105A to 105D. 图6基于实施例示出了短前同步码和数据的接收功率的分布。 FIG 6 illustrates an embodiment based on the received power distribution of the short preamble and data. 信道环境与图5的情况相同。 Channel environment is the same as the case of Figure 5.

[0059] 如图6所示,AGC前同步码的接收功率与数据IlOA到IlOD的接收功率基本上成比例。 As shown in [0059] FIG. 6, the reception power of the AGC preambles to the received data IlOA IlOD substantially proportional to the power. 这表明A/D转换器的输入电平被适当地调整,使得对比图5接收准确性被显著增强。 This indicates that the input level of the A / D converter is properly adjusted, so that the comparison of FIG 5 receives the accuracy is significantly enhanced.

[0060] 图7示出了接收单元302A的修改。 [0060] FIG. 7 shows a modification of the receiving unit 302A. 通常,为检测未知信号,可变增益放大器402使用相对较大的增益作为初值。 Typically, to detect an unknown signal, the variable gain amplifier 402 uses a relatively large gain as the initial value. 因此,如果当AGC前同步码105A到105D被接收时初始化可变放大器402的增益,则必须重复增益控制直到增益被稳定。 Thus, if and when the AGC preambles 105A to 105D initialization of the variable gain amplifier 402 is received, the gain control must be repeated until the gain is stabilized. 图7示出的修改提供了存储器405。 7 shows a modification of the memory 405 is provided in FIG. 这个存储器405存储在使用短前同步码序列101执行AGC之后获得的增益值。 This gain value is stored in the memory 405 before execution after AGC using the short-preamble sequence 101 obtained. 当接收AGC前同步码105A到105D时,如果放大器402的增益没有返回在后备状态设定的初值,而是从存储器405读取的增益被用作其初值,那么对比没有使用这种存储数值的情况, AGC可以不但被精确执行,而且在短时间内结束。 Receiving the current AGC preambles 105A to 105D, if the gain of the amplifier 402 is not returned to the initial value set in the standby state, but it is used as the initial value from the gain read from the memory 405, the storage of such comparison is not used situation values, the AGC can only be accurately performed, and ends in a short time.

[0061] 接着参照图8A的流程图,详细描述增益控制器404的操作。 Operating gain controller 404 described in detail with the flowchart of FIG. 8A [0061] Referring next.

[0062] 当接收短前同步码序列101的头时,接收设备开始AGC (步骤Si)。 [0062] When the front head 101 to receive a short preamble sequence, the receiving device starts AGC (step Si).

[0063] 接着,把0设定为计数器数值⑴(步骤S2)。 [0063] Next, the setting ⑴ 0 (step S2) as a counter value.

[0064] 接着,参照计数器数值,确定AGC是否在初级或中间级段(步骤S3)。 [0064] Next, with reference to the counter value, it is determined whether the AGC primary or intermediate stages (step S3). 此时,由于计数器数值是0,步骤S3提问的答案是“是”,从而执行到步骤S4。 At this time, since the counter value is 0, the answer to the question in step S3 is "YES", so as to perform to step S4.

[0065] 此后,确定前同步码105现在是否正被接收(步骤S4)。 [0065] Thereafter, before determining whether the preamble 105 is now being received (step S4). 在这种情况下,由于短前同步码序列101作为无线分组的头被接收,步骤S4提问的答案是“否”,从而执行到步骤S5。 In this case, since the front is received by the short-preamble sequence 101 as the head of a wireless packet, the answer to the question at step S4 is "No", thereby performing the step S5. 在步骤S5,设定预定初值。 In step S5, a predetermined initial value is set.

[0066] 在下一个步骤S6,可变增益放大器的放大系数根据设定的初值改变。 [0066] In the next step S6, the amplification factor of the variable gain amplifier is changed in accordance with the set initial value. 在下一个步骤S7,测量当前短前同步码序列的接收电平。 In the next step S7, the reception level measuring current short preamble sequence. 在步骤S8确定测量的电平是否是A/D转换器的适当电平(目标电平)。 It is determined at step S8 whether the measured level is an appropriate level of the A / D converter (target level). 如果步骤S8提问的答案是“否”,则过程执行到步骤S9。 If step S8 question the answer is "No", the process proceeds to step S9.

[0067] 在步骤S9,实现计数器数值,并且接着程序返回到步骤S3。 [0067] In step S9, the counter value is implemented, and then the program returns to step S3. 在步骤S3,确定i不是0,程序执行到步骤S10。 In step S3, it is determined that i is not zero, the program proceeds to step S10. 在步骤S10,使用在步骤S7测量的电平执行增益计算。 In step S10, using the computing power in the execution of the gain level measured at step S7.

[0068] 因而,重复S10 —S6 —S7 —S8 —S9的循环,直到接收电平到达目标电平。 [0068] Accordingly, repeated cycles of S10 -S6 -S7 -S8 -S9, until the reception level reaches the target level. 当接收电平已经到达目标电平时,在步骤Sll设定增益被写入到存储器405,从而结束对从天线Txl发送的信号执行的AGC。 When the receiving level has reached the target level, the gain is set at step Sll is written to memory 405, thereby ending the AGC performed on the signal transmitted from the antenna Txl. 对比后面会描述的使用AGC前同步码105的下一个MIMO接收的精细AGC操作(第二AGC),这个AGC操作(第一AGC)对接收设备起到“粗AGC”的作用。 Comparative described later uses the AGC operation fine AGC preambles MIMO 105 receives the next (second AGC), the AGC operation (first AGC) functions as a "coarse AGC" of the receiving device.

[0069] 然后接收单元302A接收长前同步码序列102,第一信号字段103和第二信号字段104。 [0069] The receiving unit 302A then receives the long-preamble sequence 102, first signal field 103 and second signal field 104. 接收单元302A用AGC前同步码105启动MIMO接收的AGC。 The receiving unit 302A starts AGC in MIMO reception with the AGC preambles 105. AGC从步骤Sl开始,并且转移到S2,S3和S4。 AGC starts from step Sl, and shifts to S2, S3 and S4. 在步骤S4,由于接收单元302A正在接收AGC前同步码105,程序执行到步骤S12,从而读取预先写入到存储器405的增益数值,并且后跟步骤S6。 In step S4, since the receiving unit 302A is receiving the AGC preambles 105, the program execution to step S12, thereby reading the gain value previously written to the memory 405 and followed by step S6. 在步骤S6之后,执行上述相同处理。 After step S6, a process same as described above.

[0070] 上述流程被概括如下。 [0070] The procedure is summarized as follows. 在图8B示出概括流程图。 In FIG 8B shows a generalized flowchart. 首先,在无线接收设备接收短前同步码序列101 (步骤S21)。 First, before the wireless receiving device receives a short-preamble sequence 101 (step S21). 接着,开始第一AGC操作(步骤S22)并且为可变增益放大器402A到402D设定增益(步骤S23)。 Then, start the first AGC operation (step S22), and variable gain amplifiers 402A to 402D to set the gain (step S23). 接着,把设定的增益写入到存储器405 (步骤S24)。 Next, the set gain is written to the memory 405 (step S24). 在第一AGC操作之后,接着使用通过利用MIMO技术从多个发送天线发送的AGC前同步码105A 到105D的接收结果开始第二AGC操作(步骤S25)。 After the first AGC operation, then start using the second AGC operation (step S25) by using MIMO technique transmission antenna reception result transmitted AGC preambles 105A to 105D from the plurality. 接着,参考写入存储器405的增益(步骤S26)并且为各个可变增益放大器402A到402D设定新增益(步骤27)。 Next, with reference to the writing gain (step S26) and memory 405 to each of the variable gain amplifiers 402A to 402D set the new gain (step 27).

[0071] 因而,当接收AGC前同步码105A到105D时,增益没有返回到在后备状态设定的初值,而是由第一AGC获得的存储在存储器405中的增益被用作初值。 [0071] Thus, when the former receives AGC preambles 105A to 105D, the gain is not returned to the initial value set in the standby state, but the gain obtained by the first AGC stored in the memory 405 is used as the initial value. 因为此操作,AGC前同步码105A到105D使无线接收设备能够使用短时长执行MIMO接收中的精细AGC。 Because this operation, AGC preambles 105A to 105D of the wireless receiving device to use a short duration to perform a fine AGC MIMO reception. 这个精细AGC为ΜΙΜΟ接收提供足够精度。 This fine AGC provides sufficient accuracy for the ΜΙΜΟ received.

[0072] 图9是图解图3的公共执行AGC的无线接收设备的修改的视图。 [0072] FIG. 9 is a modification of a common radio reception device performing AGC of FIG. 3 illustrates a view. 图9不同于图3, 其中在图9中,公共接收单元302被提供给天线301Α到301D。 9 differs from FIG. 3, which in FIG. 9, a common receiving unit 302 is supplied to the antenna 301Α to 301D.

[0073] 图10详细示出图9的接收单元302。 [0073] FIG. 10 shows in detail the reception unit 302 of FIG. 9. 图10的结构不同于图7的结构,其中在图10中,单个增益控制器404和存储使用短前同步码序列101获得的增益数值的存储器405 共同被提供给天线301Α到301D。 10 differs from the structure of FIG. 7 showing a configuration wherein in FIG. 10, a single gain value gain controller 404 and the memory using the short-preamble sequence 101 obtained from memory 405 is supplied to the common antenna 301Α to 301D.

[0074] 具体地,天线301Α到301D的输出信号通过下变转换器401Α到401D和可变增益放大器402Α到402D被分别输入到A/D转换器。 [0074] Specifically, the output signal becomes lower 301Α to the antenna 301D to 401D 401Α converter and variable gain amplifier 402Α to 402D are input to A / D converter. A/D转换器403Α到403D的输出信号被输入到公共增益控制器404。 Output signal of A / D converter 403Α to 403D are input to the common gain controller 404. 由增益控制器404确定的增益被共同输入到可变增益放大器402Α 到402D。 Determined by the gain controller 404 is commonly input to the gain of the variable gain amplifier 402Α to 402D. 例如,允许把在A/D转换之后由A/D转换器403Α到403D获得的最高一个电平设定为目标Z的增益可以被共同输入到可变增益放大器402Α到402D。 For example, to allow a maximum level after A / D conversion obtained by the A / D converter 403Α 403D to set the gain of the target Z, may be commonly input to the variable gain amplifier 402Α to 402D.

[0075] 同样在图9和10中示出的接收设备中,数字解调器304确认短前同步码序列101 的接收并且提供指令给接收单元302以开始第一AGC。 [0075] Also in the receiving device 9 and 10 shown in the drawings, the digital demodulator 304 confirms receiving the short-preamble sequence 101 and to provide an instruction to the receiving unit 302 to start the first AGC. 之后,数字解调器304确认第二信号字段104或AGC前同步码105的接收,并且提供指令给接收单元302以开始MIMO接收模式的第二AGC。 Thereafter, the digital demodulator 304 confirms the reception prior to the second signal field 104 or AGC preambles 105, and supplies an instruction to the receiving unit 302 to start the second AGC in MIMO reception mode.

[0076] 其后,无线接收设备接收在来自发送天线205Α到205D的AGC前同步码105Α到105D之后发送的第二长前同步码序列106Α到109Α, 106Β到109Β, 106C到109C和106D到109D。 [0076] Thereafter, the wireless receiving device receives the second long-preamble sequences 205Α to the AGC preamble 205D transmitted from the antenna after the transmission to 105D 106Α 105Α to 109Α, 106Β to 109Β, 106C to 109C and 106D to 109D . 形成第二长前同步码序列106Α到109Α, 106Β到109Β, 106C到109C和106D到109D Forming a second long-preamble sequence 106Α to 109Α, 106Β to 109Β, 106C to 109C and 106D to 109D

的单元前同步码LP基本上与形成第一长前同步码序列102的单元前同步码LP是相同信号。 LP synchronization code unit is substantially formed before the first long-preamble sequence 102 before the unit preambles LP are the same signal.

[0077] 此外,第二长前同步码序列106Α到109Α, 106Β到109Β, 106C到109C和106D到109D是使用Walsh序列进行了正交化的信号。 [0077] Further, the second long-preamble sequence 106Α to 109Α, 106Β to 109Β, 106C to 109C and 106D to 109D is a Walsh sequence of quadrature signal. 换句话说,在图1中,具有符号“-LP”的每个单元前同步码的极性与具有符号“LP”的每个单元前同步码的极性相反。 In other words, in FIG. 1, symbols having a polarity opposite the front "-LP" each cell preamble to the front of each cell having a preamble symbol "LP" is. 无线接收设备接收相互合成的第二长前同步码序列106A到109A, 106B到109B, 106C到109C禾口106D到109D。 Each wireless receiving device receives a second synthetic long-preamble sequences 106A to 109A, 106B to 109B, 106C to 109C Wo port 106D to 109D. 如后面所描述的,通过把第二长前同步码序列与Walsh序列相乘,还原从发送天线205A到205D发送的信号。 As described later, by the second long preamble sequence is multiplied with the Walsh sequence, restore signal 205A to 205D transmitted from the transmitting antenna.

[0078] 将给出信道脉冲响应估测单元303A到303D的具体描述。 [0078] will be given of the channel impulse response estimation units 303A to 303D is specifically described. 图11详细图解了信道脉冲响应估测单元303A。 Figure 11 illustrates in detail the channel impulse response estimation unit 303A. 由于其它估测单元类似于估测单元303A,只描述估测单元303A。 Since the other estimation units similar estimation unit 303A, only the estimation unit described 303A. 信道脉冲响应估测单元303A包括估测单元501A到501D,用于分别估测接收天线301A和无线发送设备的天线Txl到Tx4 (对应发送天线205Α到205D)之间的传播路径的响应。 Channel impulse response estimation unit 303A comprises estimation units 501A to 501D, respectively, for estimating the response of the propagation path between the antenna and Txl receiving antenna wireless transmission apparatus 301A to Tx4 (corresponding to the transmitting antenna 205Α to 205D).

[0079] 估测单元501Α包含数据存储器502Α到502D,用于存储所接收的第二长前同步码序列的相应符号,系数存储器503Α到503D,用于存储与所接收的第二长前同步码序列的相应符号相乘的相应系数,乘法器504Α到504D和加法器505。 [0079] The estimation unit comprises a data memory 502Α 501Α to 502D, for the respective symbols of the second long-preamble sequence stored in the received 503Α to the coefficient memory 503D, for storing the received second long-preamble respective coefficients corresponding to symbol sequences multiplied, multipliers 504Α to 504D and an adder 505. 除了与所接收第二长前同步码序列的相应符号相乘的系数数值之外,其它估测单元501Β到501D具有与估测单元501Α相同的结构。 In addition to the coefficient multiplied by the value corresponding to the second long preamble symbol sequence received, the other estimation units 501Β estimation unit 501D has the same structure 501Α. 数据存储器502Α到502D被串联连接,从而形成移位寄存器。 Data memory 502Α to 502D are connected in series to form a shift register.

[0080] 在估测单元501Α中,所接收的第二长前同步码序列106Α到109Α,106Β到109Β, 106C到109C和106D到109D被存储在数据存储器502Α到502D中。 [0080] In 501Α estimation unit, the second long-preamble sequence received 106Α the 109Α, 106Β to 109Β, 106C to 109C and 106D to 109D are stored in the data memory 502D in 502Α. 具体地,存储器502Α 存储通过混合包含在第二长前同步码序列内的长前同步码序列106Α到106D而获得的信号的值。 Long preamble sequence Specifically, the memory storage by mixing 502Α included in the second long-preamble sequence 106Α to 106D and the value of the signal obtained. 类似地,存储器502Β存储通过混合长前同步码序列107Α到107D而获得的信号的值,存储器502C存储通过混合长前同步码序列108A到108D而获得的信号的值,并且存储器502D存储通过混合长前同步码序列109A到109D而获得的信号的值。 Similarly, the value of the signal memory 502Β storage by combining the long-preamble sequence 107Α to 107D is obtained, the value of the signal of the memory 502C stores by combining the long-preamble sequence 108A to 108D is obtained, and the memory 502D stores by mixing length value of the signal preamble sequence 109A to 109D is obtained.

[0081] 假定发送天线205A到205D和接收天线301A之间传播路径的响应是hi,h2,h3和h4,分别存储在数据存储器502A,502B, 502C和502D中的信号数值S5q2a,S5q2b,S502c和S5q2d被给定为: Response of the propagation path between the [0081] assumed that the transmission antennas 205A to 205D and the receiving antenna 301A is hi, h2, h3 and h4, respectively, the data stored in the memory 502A, 502B, 502D and signal values ​​in S5q2a 502C, S5q2b, S502c and S5q2d is given by:

[0082] S502a = LP * hl+LP * h2+LP * h3+LP * h4 (1) [0082] S502a = LP * hl + LP * h2 + LP * h3 + LP * h4 (1)

[0083] S502b = LP * hl+LP * h2_LP * h3_LP * h4 (2) [0083] S502b = LP * hl + LP * h2_LP * h3_LP * h4 (2)

[0084] S502c = LP * hI-LP * h2_LP * h3+LP * h4 (3) [0084] S502c = LP * hI-LP * h2_LP * h3 + LP * h4 (3)

[0085] S502d = LP * hI-LP * h2+LP * h3_LP * h4 (4) [0085] S502d = LP * hI-LP * h2 + LP * h3_LP * h4 (4)

[0086] 乘法器504A, 504B, 504C和504D把存储在数据存储器502A, 502B, 502C和502D 中的信号值与存储在系数存储器503A,503B,503C和503D中的系数分别相乘。 [0086] multipliers 504A, 504B, the data in the memory 502A, 502B, in the coefficient memory 503A, 503B, 503C and 503D, respectively coefficient multiplied signals 502C and 502D values ​​stored in the memory 504C and 504D. 在估测单元501A中,系数1被存储在所有系数存储器503A,503B,503C和503D中,用于估测发送天线205A和接收天线301A之间的信道脉冲响应。 In the estimation unit 501A, a coefficient of 1 is stored in all coefficient memories 503A, 503B, 503C and 503D are used for the channel impulse response estimate between transmit antenna 205A and the receiving antenna 301A. S卩,存储在系数存储器503A,503B,503C和503D中的系数被表示为序列(1,1,1,1)。 S Jie, stored in the coefficient memory 503A, 503B, 503C and 503D of the coefficient is represented as a sequence (1,1,1,1).

[0087] 其后,加法器505相加乘法器504A到504D的相乘结果。 [0087] Thereafter, the adder 505 by adding multiplication result of the multiplier 504A to 504D is. 在这种情况下,由等式(1)到⑷给定的信号值S5ci2a,S5ci2b,S5c^和S5ci2d被相加。 In this case, by Equation (1) to the given signal value ⑷ S5ci2a, S5ci2b, S5c ^ and S5ci2d are added. 从等式(1)到(4)可看出,只有长前同步码PL和指示天线Txl (发送天线205A)和接收天线之间信道脉冲响应的值hi仍然作为加法结果。 As can be seen from equation (1) to (4), the value of the channel impulse response hi between only the long preamble PL and the antenna Txl indication (transmission antenna 205A) and the receiving antenna remain as the addition result. 如果形成长前同步码序列的单元前同步码PL均被提供作为无线发送设备和无线接收设备的预定位模式,则可以根据通过混合从所有发送天线205A到205D发送的信号而获得的接收信号来估测发送天线205A和接收天线301A之间的信道脉冲响应。 If the unit is formed before the long preamble PL preamble sequence are each provided as a wireless transmission apparatus and the wireless reception apparatus of the predetermined bit pattern, the received signal can be obtained according to the signal 205D transmitted from all transmit antennas 205A by mixing estimated channel impulse response between the transmit antenna 205A and the receiving antenna 301A.

[0088] 另一方面,在估测单元501B,501C和501D中,系数存储器503B,503C和503D分别存储Walsh 序列(1,1,-1,-1), (1,-1,-1,1)和(1,_1,1,_1)。 [0088] On the other hand, in the estimation units 501B, 501C and 501D, the coefficient memories 503B, 503C and 503D store Walsh sequences of (1, 1, -1, -1), (1, -1, -1, 1) and (1, selected, 1, _1). 作为结果,估测单元501B, 501C和501D可以分别估测天线Tx2,Τχ3和Τχ4 (发送天线205Β, 205C和205D)和接收天线30IA之间的信道脉冲响应。 As a result, the estimation units 501B, 501C and 501D can estimate the channel impulse response between the antennas Tx2, Τχ3 and Τχ4 (transmission antenna 205Β, 205C and 205D) and the receiving antenna, respectively 30IA.

[0089] 如上所述,信道脉冲响应估测单元303Α估测每个发送天线205Α到205D和接收天线301Α之间传播路径的响应。 Response of the propagation path between 301Α [0089] As described above, the channel impulse response estimation unit estimates 303Α 205Α to each transmitting antenna and a receiving antenna 205D. 类似地,信道脉冲响应估测单元303Β到303C估测发送天线205Α到205D和接收天线30IB到30IC之间信道脉冲响应。 Similarly, the channel impulse response estimation unit estimates the transmission antenna 303Β to 303C to 205D and the receiving antenna 205Α channel impulse response between 30IB to 30IC.

[0090] 在使用AGC前同步码105Α到105D的AGC中,使用通过利用从单个发送天线205Α 发送的信号来调整的可变增益放大器402的增益值作为初值,执行增益控制,结果实现了精细和快速的增益控制。 [0090] In AGC using the AGC preambles 105Α to 105D, the gain value formed by using a single signal transmitted from the transmitting antenna 205Α adjusts a variable gain amplifier 402 as the initial value, gain control is performed, the results achieved Narrow and quickly gain control. 现在描述AGC前同步码105Α到105D的例子。 Examples are now described previously 105Α AGC synchronizing code to 105D. 由包含多个时域采样(在图12情况下的10个采样)的信号序列形成每个在图12(a),(b),(c)和(d)中示出的AGC前同步码105A到105D。 Before each AGC (a), (b), (c) and (d) shown in FIG. 12 is formed by a synchronization code sequence comprises a plurality of time-domain signal samples (in the case of FIG. 10 of 12 samples) 105A to 105D. 例如,从天线Txl发送的AGC前同步码105A包括序列(a0, For example, AGC preamble transmitted from the antenna Txl 105A comprises a sequence of (a0,

3-1 j 3-2 j . . .,3-8 j 3-9) ο 3-1 j 3-2 j..., 3-8 j 3-9) ο

[0091] 此外,通过在单个信号序列的时域中循环移动样本,形成在图12(a),(b),(c)和(d)中示出的AGC前同步码105A到105D。 [0091] Further, by moving the sample loop in a single time domain signal sequence, before the formation AGC (a), (b), (c) and (d) shown in FIG. 12 preambles 105A to 105D. 具体地,通过在从某个参考天线发送的AGC前同步码序列的时域中循环移动样本而获得的信号序列是从另一个天线发送的AGC前同步码序列。 Specifically, when the signal sequence by the AGC transmitted from a reference antenna loop domain preamble sequence obtained by moving the sample is the AGC preamble sequence transmitted from another antenna. 例如,从天线Tx2发送的AGC前同步码序列105Β是(al, a2,…,a9, aO),它是通过循环移动一个样本而获得的,即从参考天线Txl发送的AGC前同步码105A的样本的时间位置。 For example, the AGC preamble sequence transmitted from the antenna Tx2 105Β is (al, a2, ..., a9, aO), which is obtained by cyclic movement of a sample is obtained, AGC preambles that is transmitted from the reference antenna Txl 105A of time position of the sample. [0092] 类似地,从天线Tx3发送的AGC前同步码105C是通过循环移动两个样本而获得的,即从参考天线Txl发送的AGC前同步码105Α的样本的时间位置。 [0092] Similarly, the AGC preamble 105C transmitted from the antenna Tx3 and moving the two samples are obtained by the circulation, the time position of the sample i.e. the AGC preamble transmitted from the reference antenna Txl 105Α. 从天线Τχ4发送的AGC 前同步码105D是通过循环移动三个样本而获得的,即从作为参考的天线Txl发送的AGC前同步码105Α的样本的时间位置。 AGC preamble transmitted from the antenna through the circulation moving Τχ4 105D is obtained by three samples, i.e. from the AGC time position as a reference transmission antenna Txl samples 105Α the preamble.

[0093] 如果AGC前同步码105Α到105D由互相相同的信号序列形成,那么在发送期间他们会相互干扰。 [0093] If the AGC preambles 105Α to 105D each formed of the same signal sequences, then they interfere with each other during transmission. 根据多径状态或接收点,这种干扰可以导致类似于当执行定向天线发送时出现的电场。 The multipath state or receiving point, such interference can cause an electric field similar to that occurring when directional antenna transmission is performed. 作为结果,可出现零点。 As a result, there may be zero. 换句话说,可能出现一个接收点,在这个接收点处没有AGC前同步码能被接收,并且接收电平可能未被精确测量。 In other words, a reception point may occur, not at the AGC preambles can be received at this reception point, the reception level and may not be accurately measured.

[0094] 在实施例中,由通过循环移动其样本的时间位置而获得的信号序列(即,AGC前同步码105Α到105D)形成的多径被有意产生。 [0094] In an embodiment, the signal sequence by cyclically moving the sample time position thereof is obtained (i.e., the AGC preambles 105Α to 105D) formed multipath is intentionally generated. 在这种情况下,即使信号序列中某个样本的接收电平由于信号干扰而被降低,其它样本的接收电平出现降低的概率也较低。 In this case, even if the reception level of the signal sequence for a sample due to signal interference is reduced, reducing the probability of the reception level of the other samples appeared lower. 因此,实现精确接收电平测量,这增强了无线接收设备的接收性能。 Therefore, accurate receiving level measurement, which enhances the receiving performance of the radio reception device. 例如,可以实现不违背在IEEE 802. 11中规定的CSMA/CA(具有冲突避免的载波探测多路访问)协议的通信系统。 For example, it may be implemented without departing from the CSMA / CA specified in the IEEE 802. 11 (with collision avoidance Carrier Detection Multiple Access) communication system protocol.

[0095] 图13(a)到(d)示出AGC前同步码105A到105D的其它例子。 [0095] FIG. 13 (a) to (d) shows another example 105A to 105D of the AGC preamble. 图12(a)到(d)中示出的AGC前同步码105A到105D是通过彼此循环移动其样本的时间位置而获得的时域信号序列。 Figure 12 (a) to (d) shown in the AGC preambles 105A to 105D are moved by the cycle time of the position which the sample is obtained another domain signal sequence. 另一方面,图13(a)到(d)中示出的AGC前同步码105A到105D是频域信号序列, 并且具有不同频率分量。 On the other hand, FIG. 13 (a) to (d) shown in the AGC preambles 105A to 105D are frequency-domain signal sequences, and have different frequency components. 在图13中,f0到Π5指示副载波频率,并且带阴影线的副载波传送信号,同时无阴影线的副载波不传送信号。 In FIG 13, f0 indicates the subcarrier frequency Π5, and transmits the signal with the subcarrier hatched, while non-hatched subcarriers do not transmit signals.

[0096] 例如,从天线Txl发送的AGC前同步码105A由副载波f0,f4, f8和Π2形成。 [0096] For example, the AGC preamble 105A transmitted from the antenna Txl subcarriers f0, f4, f8 and Π2 formed. 类似地,从天线Τχ2发送的AGC前同步码105Β由副载波fl,f5,f9和fl3形成。 Similarly, transmitted from the antenna Τχ2 105Β by the AGC preamble subcarriers fl, f5, f9 and fl3 formed. 从天线Tx3 发送的AGC前同步码105C是由副载波f2,f6,f 10和f 14形成。 Transmitted from the antenna Tx3 AGC preamble 105C by subcarriers f2, f6, f 10 and f 14 are formed. 此外,从天线Tx4发送的AGC前同步码105D由副载波f3,fl, fll和fl5形成。 In addition, preamble 105D antenna Tx4 is formed from the AGC transmitted by subcarriers f3, fl, fll, and fl5. 从天线Txl发送的副载波不被任何其他天线发送。 Subcarriers transmitted from the antenna Txl not sent to any other antenna. 类似地,从天线Tx2发送的副载波不被任何其他天线发送。 Similarly, the subcarriers transmitted from the antenna Tx2 are not sent by any other antenna.

[0097] 实际上,AGC前同步码105Α到105D在其通过快速富立叶逆变换(IFFT)或离散富立叶变换(DFT)转换成时域信号序列之后被发送。 [0097] In fact, the AGC preambles 105Α to 105D are transmitted after it is converted into time-domain signal sequences by inverse fast Fourier transform (IFFT) or discrete Fourier transform (DFT). 在无线发送设备中,如图14所示,存储器202存储作为AGC前同步码、涉及如图13(a)到(d)所示频域信号序列的数据。 In the radio transmission apparatus, shown in Figure 14, the memory 202 stores, as AGC preambles, to FIG. 13 (a) to (d) frequency-domain signal sequence data shown in FIG. 从存储器202读取的频域信号序列数据被IFFT电路206转换成时域信号序列,并且输入到数字调制器203。 Frequency-domain signal sequence data read from the memory 202 IFFT circuit 206 are converted into a time-domain signal sequence and input to the digital modulator 203. 数字调制器203可以引入IFFT电路206的功能。 The digital modulator 203 may introduce functional IFFT circuit 206. 此外,存储器202可以预先存储时域信号序列数据(由图13(a)到(d)中示出的频域信号序列数据转换而来)。 Further, the memory 202 may store in advance data signal sequence domain (frequency-domain signal sequence data shown in FIG. 13 (a) to (d) converted from). 在这种情况下,不需要IFFT电路206。 In this case, no IFFT circuit 206.

[0098] 如图13 (a)到(d)所示,由于AGC前同步码105A到105D在4个天线上频率交织, 来自天线Txl到Tx4的信号不包含相同频率分量,因此可以无相互干扰地到达无线接收设备。 [0098] FIG. 13 (a) to (d), since the AGC preambles 105A to 105D frequency interleaving on four antennas, the signal from the antenna Txl to Tx4 do not contain the same frequency component, therefore no mutual interference reach the wireless receiving device. 作为结果,无线接收设备可以执行精确接收电平测量,并且因此表现高接收性能。 As a result, the wireless receiving device can perform accurate receiving level measurement and hence exhibit high receiving performance.

[0099] 本发明不限于上述实施例,而是可以通过不偏离范围的各种方式修改。 [0099] The present invention is not limited to the above embodiments, but may be modified in various ways without departing from the scope. 例如,在图2示出的实施例中,数模(D/A)转换在发送单元204Α到204D被分别执行。 For example, in the embodiment 2 illustrated in FIG., A digital to analog (D / A) conversion is performed in the transmitting unit, respectively 204Α to 204D. 然而,可修改成由数字调制器203而不是发送单元204Α到204D执行这种D/A转换。 However, such D / A converter may be modified to be executed by a digital modulator 203 instead of being sent to the unit 204Α 204D. 类似地,在图3示出的实施例中,模数(A/D)转换在接收单元302Α到302D分别执行。 Similarly, in the embodiment illustrated in Figure 3, analog to digital (A / D) conversion in the receiving unit 302D 302Α performed separately. 然而,可以修改成由数字解调器304而不是单元302Α到302D执行这种A/D转换。 However, this may be modified to perform the A / D converted by the digital demodulator 304 instead of unit 302Α to 302D.

[0100] 对于分组格式,短前同步码序列101,第一长前同步码序列102,第一信号字段(信号)103和第二信号字段(信号2) 104被从如图1所示天线Txl发送。 [0100] For packet format, the short-preamble sequence 101, first long-preamble sequence 102, first signal field (SIGNAL) 103 and second signal field (SIGNAL 2) 104 are shown in Figure 1 from the antenna Txl send. 然而,可以从至少一个发送天线发送这种前同步码信号。 However, such a preamble signal transmitted from the at least one transmission antenna. 每个第二长前同步码序列可以象图13(a)到(d)示出的AGC前同步码105A到105D —样具有不同频率分量。 Each of the second long-preamble sequences may as in FIG. 13 (a) to (d) shows the AGC preambles 105A to 105D - like having different frequency components.

[0101] 本领域的技术人员容易想到其它优点和修改。 [0101] Those skilled in the art will readily occur Additional advantages and modifications. 因此,本发明在其范围方面不限于特定细节和这里说明和描述的代表实施例。 Accordingly, the present invention is not limited in its scope to the specific details and the representative herein illustrated and described embodiments. 相应地,在不偏离根据所附权利要求书及其等同表述所定义的总的发明构思的实质或范围的前提下进行各种修改。 Accordingly, various modifications without departing from the appended claims and their premise spirit or scope of the general inventive concept as defined by the equivalent expressions.

Claims (10)

1. 一种无线发送设备,用于通过使用多个天线与无线接收设备通信,包括: 信号发生器,被配置成用于产生所发送的无线分组的信号,该无线分组包括短前同步码,用于在无线接收设备处的第一自动增益控制(第一AGC),第一长前同步码,用于进行无线发送设备和无线接收设备之间的第一信道脉冲响应的估测,信号字段,用于传送涉及所述无线分组的信息,AGC前同步码,用于在接收设备处的第一自动增益控制之后执行的第二自动增益控制(第二AGC),第二长前同步码,用于进行无线发送设备和无线接收设备之间的第二信道脉冲响应的估测,以及传送数据的数据字段,其中通过所述多个天线发送所述AGC前同步码。 1. A radio transmission apparatus for a communication by using a plurality of antennas and the wireless reception apparatus, comprising: a signal generator generates wireless packet signal is transmitted is configured for the wireless packet comprising a short preamble, for a first automatic gain control (first AGC) at the wireless receiving device, a first long preamble, estimating the channel impulse response for the channel between a first wireless transmission apparatus and wireless receiving device, a signal field for transmitting information related to said wireless packet, the AGC preamble, a second automatic gain control is performed after receiving the first automatic gain control at the device (the AGC second), the second long preamble, estimating the channel impulse response for a second wireless channel between a transmitting device and wireless receiving device, and a data field conveying data, wherein the AGC preamble before transmitting through the plurality of antennas.
2.如权利要求1所述的无线发送设备,其中对所述AGC前同步码应用时间位置的循环移动。 2. The radio transmitting apparatus according to claim 1, wherein said cyclic movement of the AGC preambles application time position.
3.如权利要求1所述的无线发送设备,其中所述AGC前同步码包含不同频率分量。 The wireless transmission device according to claim 1, wherein prior to said AGC preambles contain different frequency components.
4.如权利要求1所述的无线发送设备,其中:所述信号字段包括第一信号字段和第二信号字段,并且所述短前同步码、第一长前同步码和第一信号字段符合IEEE 802. Ila,以及所述AGC前同步码和所述数据字段符合IEEE802. Iln0 4. The radio transmitting apparatus according to claim 1, wherein: said signal field comprises a first field signal and a second signal field, and the short preamble, the first long preamble and a first signal field meet IEEE 802. Ila, and the AGC preamble and said data field in line with IEEE802. Iln0
5.如权利要求1所述的无线发送设备,其中第二长前同步码和所述数据字段被所述多个天线发送。 5. The wireless transmission apparatus according to claim 1, wherein the second long preamble and the data field transmitted by the plurality of antennas.
6.如权利要求1至5中任何一个所述的无线发送设备,进一步包括所述多个天线。 1 to 5, a wireless transmission device according to any of claim, further comprising a plurality of antennas.
7. 一种无线接收设备,用于与无线发送设备通信,包括:接收器,被配置成通过多个天线接收无线分组,该无线分组包括短前同步码,用于在无线接收设备处的第一自动增益控制(AGC),第一长前同步码,用于进行无线发送设备和无线接收设备之间的第一信道脉冲响应的估测,信号字段,用于传送涉及所述无线分组的信息,AGC前同步码,用于在接收设备处的第一自动增益控制之后执行的第二自动增益控制(AGC),第二长前同步码,用于进行无线发送设备和无线接收设备之间的第二信道脉冲响应的估测,以及传送数据的数据字段;可变增益放大器,被配置成用于放大由接收器接收的信号;以及增益控制器,被配置成用于当接收AGC前同步码时控制可变增益放大器的增益。 A receiving wireless communication apparatus for communicating with a wireless transmitting apparatus, comprising: a receiver configured to receive wireless packets through a plurality of antennas, the wireless packet comprising a short preamble, the first wireless receiving device for at an automatic gain control (the AGC), a first long preamble, estimating the channel impulse response for the channel between a first wireless transmission apparatus and wireless receiving device, a signal field, for transmitting information related to said radio packet , the AGC preamble, a second automatic gain control (the AGC), a second long preamble performed after receiving the first automatic gain control at the device, between the wireless transmitting device and wireless receiving device for carrying out the estimating the channel impulse response of a second channel, and a data field for transmitting data; a variable gain amplifier configured to amplify a signal received by the receiver; and a gain controller configured to when receiving the AGC preambles before when the control variable gain amplifier.
8.如权利要求7所述的无线接收设备,还包括:模数转换器,被配置成用于把从可变增益放大器输出的信号转换成数字信号。 8. The radio reception apparatus according to claim 7, further comprising: analog to digital converter configured for converting a signal outputted from the variable gain amplifier into a digital signal.
9.如权利要求7所述的无线接收设备,还包括:信道脉冲响应估测器,被配置成用于使用包含在从模数转换器输出的数字信号中的第一长前同步码和第二长前同步码估测信道脉冲响应;以及解调器,被配置成用于根据所估测的信道脉冲响应解调从模数转换器输出的数字信号。 9. The wireless receiving apparatus according to claim 7, further comprising: a channel impulse response estimator, configured for containing a first long preamble and the digital signal output from the analog to digital converter two long preamble estimated channel impulse response; and a demodulator configured to demodulate the digital signal in response to output from the analog to digital converter according to the estimated channel impulse.
10.如权利要求7至9中任何一个所述的无线接收设备,进一步包括所述多个天线。 7 to 9, 10 to any wireless receiving device according to claim one, further comprising a plurality of antennas.
CN 200910161636 2003-12-26 2004-12-24 Wireless transmitting and receiving device and method CN101610573B (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003-433347 2003-12-26
JP2003433347 2003-12-26
JP2004357097A JP4212548B2 (en) 2003-12-26 2004-12-09 Radio transmitting apparatus, radio receiving apparatus, radio transmission method and radio reception method
JP2004-357097 2004-12-09
CN200410081858.1 2004-12-24
CN200410081858.12004.12.24 2004-12-24

Publications (2)

Publication Number Publication Date
CN101610573A CN101610573A (en) 2009-12-23
CN101610573B true CN101610573B (en) 2011-06-08

Family

ID=40321206

Family Applications (2)

Application Number Title Priority Date Filing Date
CN 200910161636 CN101610573B (en) 2003-12-26 2004-12-24 Wireless transmitting and receiving device and method
CN 200910150540 CN101594671B (en) 2003-12-26 2004-12-24 The radio transmitting and receiving apparatus and method

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN 200910150540 CN101594671B (en) 2003-12-26 2004-12-24 The radio transmitting and receiving apparatus and method

Country Status (2)

Country Link
JP (5) JP4764464B2 (en)
CN (2) CN101610573B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1757041A1 (en) * 2004-06-01 2007-02-28 Philips Electronics N.V. Method, apparatuses and signal for transmitting/receiving information comprising primary and secondary messages in a same transmission
KR101559295B1 (en) 2009-12-04 2015-10-12 삼성전자주식회사 Communication systen using spartial division-mimo
CN102656822B (en) 2009-12-18 2015-01-14 韩国电子通信研究院 Method for sending/receiving data in a wireless packet communication system in which there is simultaneous communication with various terminals
US9167476B2 (en) 2010-03-12 2015-10-20 Intellectual Discovery Co., Ltd. Method and apparatus for transmitting/receiving packet in wireless communication system
KR101800171B1 (en) 2010-03-12 2017-11-24 한국전자통신연구원 Method and apparatus for transmitting/receiving packet in wireless communication system
JP2013005161A (en) 2011-06-15 2013-01-07 Ricoh Co Ltd Automatic gain control device and automatic gain control method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000315966A (en) * 1999-02-25 2000-11-14 Texas Instr Inc <Ti> Space time transmission diversity for tdd/wcdma
US6289000B1 (en) * 2000-05-19 2001-09-11 Intellon Corporation Frame control encoder/decoder for robust OFDM frame transmissions
JP2002290177A (en) * 2001-03-23 2002-10-04 Matsushita Electric Ind Co Ltd Receiver and automatic gain control method
US7548506B2 (en) * 2001-10-17 2009-06-16 Nortel Networks Limited System access and synchronization methods for MIMO OFDM communications systems and physical layer packet and preamble design
JP3756121B2 (en) * 2002-03-05 2006-03-15 シャープ株式会社 Ofdm demodulator and power weighting scheme
JP2003309501A (en) * 2002-04-17 2003-10-31 Sharp Corp Radio receiver and radio receiving method
JP2003348055A (en) * 2002-05-22 2003-12-05 Matsushita Electric Ind Co Ltd Receiver and demodulation method
JP3938885B2 (en) * 2002-05-22 2007-06-27 松下電器産業株式会社 Midamble code judging method and a radio communication terminal device
WO2005006701A1 (en) * 2003-06-30 2005-01-20 Agere Systems Inc. Method and apparatus for communicating symbols in a multiple input multiple output communication system using interleaved subcarriers across a plurality of antennas
JP4323985B2 (en) * 2003-08-07 2009-09-02 パナソニック株式会社 Radio transmitting apparatus and radio transmission method
US7616698B2 (en) * 2003-11-04 2009-11-10 Atheros Communications, Inc. Multiple-input multiple output system and method

Also Published As

Publication number Publication date
JP5460285B2 (en) 2014-04-02
CN101594671A (en) 2009-12-02
JP5599496B2 (en) 2014-10-01
CN101594671B (en) 2011-12-14
CN101610573A (en) 2009-12-23
JP2009005409A (en) 2009-01-08
JP5398794B2 (en) 2014-01-29
JP2013255268A (en) 2013-12-19
JP2012135013A (en) 2012-07-12
JP2010063181A (en) 2010-03-18
JP5597213B2 (en) 2014-10-01
JP4764464B2 (en) 2011-09-07
JP2011259480A (en) 2011-12-22

Similar Documents

Publication Publication Date Title
US9173217B2 (en) Base station calibration
EP1382133B1 (en) Spatial processing and timing estimation using a training sequence in a radio communications system
CN1864338B (en) Method and device for selecting and receiving antenna according to signal quality metrics
CN100388641C (en) Method for determining a gain offset between transmission channels
JP5356415B2 (en) Channel sounding and estimation method for antenna selection in MIMO systems
JP4402294B2 (en) Method and apparatus for determining the spatial signatures for calibrating a communication terminal having an antenna array
JP4746243B2 (en) Data transmission method and data transmission system
JP4536435B2 (en) Transmission method and transmission apparatus
CN100534077C (en) A method and system for multiple channel wireless transmitter and receiver with phase and amplitude calibration
US7885360B2 (en) Wireless communication apparatus and receiving method
KR101126812B1 (en) Method and apparatus for preamble training in a multiple antenna communication system
CN100409594C (en) Wireless relay system, wireless relay apparatus, and wireless relay method
JP5133346B2 (en) Calibration correction method of implicit beamforming in wireless mimo communication system
CN1930842B (en) Conveying additional signaling information in an OFDM-based wireless local area network
CN100566314C (en) Equipment for wireless communications
JP4562542B2 (en) Calibration method and a base station apparatus using the same, the terminal device and the wireless device
CN102355720B (en) Radio transmitting apparatus and radio transmission method
US20090262859A1 (en) Long training sequence for MIMO WLAN systems
US7480497B2 (en) Multicarrier receiver and method for carrier frequency offset correction and channel estimation for receipt of simultaneous transmissions over a multi-user uplink
EP1671431B1 (en) Apparatus and method of multiple antenna transmitter beamforming of high data rate wideband packetized wireless communication signals
US20030012308A1 (en) Adaptive channel estimation for wireless systems
EP1847050B1 (en) Wireless messaging preambles allowing for beamforming and legacy device coexistence
CN1939016B (en) Channel estimation for a communication system using spectral estimation
EP1851926B1 (en) Method and apparatus for preamble training with shortened long training field in a multiple antenna communication system
CN102938668B (en) Transmission method and receiving method and apparatus using their wireless

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted