CN101605587A - 引起全球变暖效应的温室气体的分子转化方法以及使用固体颗粒捕集器的转化单元 - Google Patents

引起全球变暖效应的温室气体的分子转化方法以及使用固体颗粒捕集器的转化单元 Download PDF

Info

Publication number
CN101605587A
CN101605587A CNA2007800513091A CN200780051309A CN101605587A CN 101605587 A CN101605587 A CN 101605587A CN A2007800513091 A CNA2007800513091 A CN A2007800513091A CN 200780051309 A CN200780051309 A CN 200780051309A CN 101605587 A CN101605587 A CN 101605587A
Authority
CN
China
Prior art keywords
solid particle
greenhouse gases
conversion unit
plasma
transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007800513091A
Other languages
English (en)
Other versions
CN101605587B (zh
Inventor
伊凡·德索扎·贡萨尔维斯
尼托·安吉洛·德巴切尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Funda O De Ensino De Engenharia De Santa Catarina
Carbonobrasil Tecnologia E Servicos Ltda
Original Assignee
Funda O De Ensino De Engenharia De Santa Catarina
Carbonobrasil Tecnologia E Servicos Ltda
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Funda O De Ensino De Engenharia De Santa Catarina, Carbonobrasil Tecnologia E Servicos Ltda filed Critical Funda O De Ensino De Engenharia De Santa Catarina
Publication of CN101605587A publication Critical patent/CN101605587A/zh
Application granted granted Critical
Publication of CN101605587B publication Critical patent/CN101605587B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/50Means for discharging electrostatic potential
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/007Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/32Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00
    • B01D53/323Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by electrical effects other than those provided for in group B01D61/00 by electrostatic effects or by high-voltage electric fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/017Combinations of electrostatic separation with other processes, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/818Employing electrical discharges or the generation of a plasma
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S423/00Chemistry of inorganic compounds
    • Y10S423/09Reaction techniques
    • Y10S423/10Plasma energized

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Treating Waste Gases (AREA)
  • Plasma Technology (AREA)
  • Filtering Materials (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

本发明涉及引起全球变暖效应的温室气体的分子转化方法以及使用固体颗粒捕集器的转化单元。这是一种工业方法,它能够通过转化气体分子以形成例如清洁气体等新化合物来改变例如内燃机、工厂烟囱等任何来源的温室气体的化学组成。这一方法可以通过利用固体颗粒捕集器的分子转化处理转化单元进行,所述转化单元由产生等离子体射流的等离子体转化室(II)和收集固体颗粒的静电过滤器(III)组成。

Description

引起全球变暖效应的温室气体的分子转化方法以及使用固体颗粒捕集器的转化单元
技术领域
本发明涉及一种通过热等离子体技术转化气体分子的方法,它是一种能够改变作为废气从内燃机、工厂烟囱等排放的温室气体的化学组成的工业方法。这种转化方法使气体分子降解或分解并形成新物质,例如,二氧化碳(CO2)为温室气体的主要成分之一,它通过这种方法得到的转化产物为固体碳和气态氧(O2)。利用固体颗粒捕集器的分子转化装置由等离子体燃烧室和供收集固体颗粒的静电过滤器组成。所述等离子体燃烧室具有等离子体炬(plasma torch),其产生通过阴极与阳极之间的放电形成的等离子体射流或电离气体。
背景技术
现今,人类所面临的最严峻的问题之一是环境污染,这主要是由人类和工业活动引起。矿物燃料燃烧(例如汽油、煤和天然气)为地球大气中二氧化碳(CO2)增加的主要原因之一。每年会释放约240亿吨CO2,相当于每年释放65亿吨碳。2007年1月,夏威夷的莫纳罗亚天文台(Mauna LoaObservatory,Hawaii)测量发现,大气中二氧化碳的浓度为0.0383体积%(383ppm/v):超过到1950年时所观测的值的平均值105ppm/v或38%。地球大气的平均温度因称为温室气体的某些气态分子(例如CO2)的物理和化学特性而保持恒定。如果此类气体的浓度改变,那么地球温度也将改变。引起全球变暖的主要温室气体有:水蒸汽,其占约36到70%;二氧化碳(CO2),其占约9到26%;甲烷(CH4),其占约4到9%;和最后,臭氧(O3),其占约3到7%。
一氧化二氮(N2O)和如氯氟碳化物等CFC(CFxClx)为大气中浓度较低的其它温室气体。在严峻的情况面前,全世界所有的研究人员都在寻求能控制和截留温室气体排放的技术。专利文献PI8100960-7、PI9500855-1、PI0205677-1、PI0301592-0、PI0305789-5、PI0317946-0、JP2003326155和PI0604646-0中描述了吸收大气中的二氧化碳气体的设备和方法。目前主要的技术是寻找能通过改进化学反应过程解决问题的方法。然而,应注意,还没有使用旨在转化温室气体分子并产生新物质的热等离子体技术的工业生产设备。有关本发明的信息可以访问http.//www.cmdl.noaa.gov/ccgg/trends/,(01/18/2007)以及“Shukman,David(14March 2006).Sharp rise in CO 2 ,levels recorded.BBC News”。
关于热等离子体技术,有必要考虑产生等离子体的不同方式,并且任何此类选择都视应用的目的而定。最常用的方法为电感耦合等离子体(inductivecoupling plasma,ICP)和直流电弧等离子体(直流)。射频产生ICP,它主要用于分析目的。ICP由气流(通常为氩气)形成,所述气流横穿具有由射频发生器系统馈入的感应线圈的区域。感应线圈包含2或4匝水内冷线圈。这类等离子体也用于化学废液的处理。将废液注入温度较高的炬管中心,而且这有助于使其受到完全破坏。
直流电弧等离子体:当在一些负或正电荷载流子存在下,气体在一定电位差和高电流下流过两个电极之间时,在电极间产生电弧,从而形成直流(DC)等离子体或交流(AC)等离子体。所述电弧可能为自由电弧(电弧焊或电弧炉)或约束电弧(在等离子体炬中)。在自由电弧中,电弧与环境气体之间的热交换过程是通过自然对流发生。在约束电弧中,热交换是通过强制对流发生,这比自然对流有效得多。归因于所述有效性,约束电弧的温度(20.000K)比自由电弧的温度(3000K)高得多。尽管在本方法中可能应用不同类型的等离子体产生方法,但将使用直流电弧等离子体系统来予以描述。
此项技术的当前状态可以参考例如以下相关文献:
1.CUBAS,A.L.V.;CARASEC,E.R.;DEBACHER,N.A.:SOUZA,I.G.,Development of a DC-Plasma Torch for Decomposition on OrganochlorineCompounds.Journal of the Brazilian Chemical Society,Br.,第16卷,第3B期,第531-534页,2005年。
2.CUBAS,A.L.V.;CARASEC,E.R;DEBACHER,N.A.;SOUZA,I.G.Use of Solid Phase Microextraction to Monitor gases Resulting from ThermalPlasma Pyrolysis.Chromatographia,Germany,第60卷,第1/2期,第85-88页,2004年。
3.STALEY,L.Site Demonstration of Retech Plasma Centrifugal Furnace:The Use of Plasma to Vitrify Contaminated Soil.Air & management Association,第42卷,第10期,第1372-1376页,1992年。
4.BONIZZONI,G.:VASSALO,E.Plasma Physics and Technology:Industrial Applications.Vaccum.第64卷,第327-336页,2002年1月。
5.BbULOS,M.;FAUCHAIS,P.;PFENDER,E.Fundamentals andApplications.Thermal plasma,第1卷,1995年。
6.IWAO,T.;INABA T.Treatment of Waste by dc Arc Discharge Plasma.IEEE Transactions on Dielectrics and Electrical Insulation,第7卷,第5期,第684-692页,2000年10月。
发明内容
温室气体的分子转化方法是建立在通过热等离子体转化温室物质(分子)的基础上。此类分子的转化将产生物理-化学物质,它完全不同于初始物质,诸如固体碳和非温室气体。
转化过程是通过等离子体炬、等离子体转化室和静电过滤器进行。为了能更好地予以解释,使用作为引起温室效应的主要成分之一的二氧化碳(CO2)为例,其通过本方法得到的转化产物为固体碳(C)和气态氧(O2)。利用固体颗粒捕集器的分子转化装置由等离子体转化室和收集固体颗粒的静电过滤器组成。等离子体转化室装备有等离子体炬,它产生通过阴极与阳极之间的放电形成的等离子体射流或电离气体。
温室气体的热转化方法的操作设置如下。转化室装备有等离子体电弧炬,其在约10,000K的温度下产生通过阴极与阳极之间的放电形成的等离子体射流或电离气体。等离子体炬与高电流电源连接,所述电源的容量根据待电离气体或气体混合物而变化。所述设备具有固体颗粒收集过滤器。由热等离子体进行的分子转化过程遵循两个步骤。在第一个步骤中,由电离气体(等离子体)产生的高温破坏分子的化学键并形成高反应性且不稳定的自由基;在第二个步骤中,所述自由基在气态混合物冷却期间自发重组并以熵有利的过程形成分子量较低的新物质。
附图说明
为补充本发明的表述,并且为了能更容易地理解本发明的特征,提供图1(此图仅用于说明的目的)。图1绘示利用固体颗粒捕集器的温室气体分子转化装置的展开图,所述装置由以下组件构成:等离子体炬(I);等离子体转化室(II);静电过滤器(III);和高电流电源(IV)。
具体实施方式
所需供实施“温室气体的热转化方法”的设备含有用于向所述方法提供能量的高电流电源(IV);用于混合和高温转化排出气体的等离子体炬(II)和等离子体转化室(II);以及分离气态混合物与固体颗粒的静电过滤器(III)。
高电流电源(IV)具有以下特征。其提供10KW到20KW的功率,并且具有高频电子点火器来产生电弧以便形成等离子体。
等离子体转化可直接和间接进行。在直接方式中,将温室气体与炬管维持气体一起引入电极之间。在间接方式中,将温室气体与转化室中的等离子体射流充分混合。在本专利中,将描述间接方法。在本文中,等离子体转化室(II)是由非转移弧式等离子体炬(I)和直流式管状转化室(7)形成。等离子体转化室(II)为分子转化的主要组件。高温分解或分子转化机制都是在所述转化室中发生,并且为了得到较高效率,有必要使进入室(1)中的气体与等离子体射流充分混合。为了能更好地观察各组件(I、II、III和IV),图1提供温室气体分子转化单元的展开图。非转移弧式直流等离子体炬(I)具有充当阴极的中央钨电极(电子发射体),以及充当电子收集器的黄铜体(5)(阳极)。炬管须为水冷的。当例如氩气、氮气和空气等气体在某一电位差和高电流下流过两个电极之间时,形成等离子体。电弧最初是由产生第一电荷载流子的高频电子点火器(IV)产生。由高电压电源(IV)产生的高势能维持REED涡流或等离子体射流,通过两个电极之间的气流使其稳定化,所述气流经电离以在炬管(I)出口处形成前述等离子体射流。这些炬管可以在适宜环境中达到约10,000K的温度,从而能分子转化任何物质。
直流式管状转化室(II)包含具有侧向进气管的周围管(surrounding tube)(3)以及中央火焰管(flame tube)(7)。周围管(3)是由钢制成,并且其形成转化室(II)的实体。火焰管(7)为一个圆筒,其包含在背部的自由开口(8),以及在周围管(3)内部支撑其自身的浅突起(9)。炬管(I)须拧入火焰管(7)的前面。火焰管是一种高耐热性钢管(7),它需要完全被周围管包围。火焰管(7)恰好放入由管(3)包围的罩壳中央。火焰管(7)具有一系列沿管体排列的孔,这些孔功能相同并且彼此直径不同。当穿过所述转化室时,气体形成层流;但当气体透过不同孔(10)时,其在进入火焰室(7)后立即变为湍流。有目的地激发湍流以确保得到气体与REED涡流或等离子体射流的优良混合物。
等离子体转化室(II)耦合至静电过滤器(III)。分子转化将产生例如氧气和氮气等一些气体以及例如碳和硫等固体颗粒。由此,与市面上有售的静电过滤器类似,所述静电过滤器将固体颗粒(由CO2和SOx分解产生的碳和硫)从气流中去除。静电过滤器是最适宜的气体出口,这是因为其对气流具有最小阻力,并且能够有效截留微粉化材料。截留在过滤器(III)中的固体颗粒将被移到放于此过滤器(III)底部的容器(11)中。在出口(2)处,排出的气体应不含温室气体和固体颗粒。
所述单元的构造形式使得能够将其安装于发生源附近。此外,所述单元提供一种制造其元件的简易方法。这些特征使其能用于大规模工业应用,从而允许减少例如二氧化碳(引起全球变暖的主要温室气体之一)等污染气体。

Claims (8)

1.一种引起全球变暖效应的温室气体的分子转化方法以及使用固体颗粒捕集器的转化单元,其特征在于:通过热等离子体转化气态混合物来进行温室气体的分子转化过程;以及截留由所述转化单元产生的固体颗粒。
2.根据权利要求1所述的引起全球变暖效应的温室气体的分子转化方法以及使用固体颗粒捕集器的转化单元,其由等离子体转化室(I和II)以及收集固体颗粒的静电过滤器(III)组成。
3.根据权利要求2所述的引起全球变暖效应的温室气体的分子转化方法以及使用固体颗粒捕集器的转化单元,其由等离子体转化室(II)组成,所述等离子体转化室(II)具有在直流式管状转化室(7)内的非转移弧式等离子体炬(I)。
4.根据权利要求3所述的引起全球变暖效应的温室气体的分子转化方法以及使用固体颗粒捕集器的转化单元,其特征在于以下布置:通过功率为10KW到20KW并且具有高频电子点火器的高电流电源(IV)馈入所述非转移弧式等离子体炬。
5.根据权利要求4所述的引起全球变暖效应的温室气体的分子转化方法以及使用固体颗粒捕集器的转化单元,其特征在于以下布置:所述直流式管状转化室(7)由在圆柱侧面具有气体入口(1)的周围管(3)以及在所述转化室(7)的中央部分与所述周围管(3)同轴的火焰管(7)组成。
6.根据权利要求5所述的引起全球变暖效应的温室气体的分子转化方法以及使用固体颗粒捕集器的转化单元,其特征在于以下布置:所述火焰管(7)为具有穿过后部基底的自由开口(8)和环状浅突起(9)的圆筒,所述环状浅突起(9)的直径大于连接到所述周围管的管的直径。所述火焰管(7)的圆筒壁具有多个不同直径的孔。
7.根据权利要求1所述的引起全球变暖效应的温室气体的分子转化方法以及使用固体颗粒捕集器的转化单元,其特征在于以下布置:所述固体颗粒的捕集是通过静电过滤器以及放在所述过滤器(III)底部以便收集固体颗粒的容器(11)进行。
8.根据权利要求1所述的引起全球变暖效应的温室气体的分子转化方法以及使用固体颗粒捕集器的转化单元,其特征在于以下布置:所述转化的温室气体为从工厂烟囱和内燃机排放物收集的二氧化碳气体CO2以及其它温室气体。
CN2007800513091A 2007-02-15 2007-05-15 引起全球变暖效应的温室气体的分子转化方法以及使用固体颗粒捕集器的转化单元 Expired - Fee Related CN101605587B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
BRPI0700517-2 2007-02-15
BRPI0700517A BRPI0700517B1 (pt) 2007-02-15 2007-02-15 processo degradador molecular de gases indutores do efeito estufa e equipamento de degradação molecular de gases indutores do efeito estufa com retenção do material particulado degradado
BRPI07005172 2007-02-15
PCT/BR2007/000116 WO2008098324A1 (en) 2007-02-15 2007-05-15 Molecular conversion processing of greenhouse gases of glogal warming effect and conversion units employng a solid particle trap

Publications (2)

Publication Number Publication Date
CN101605587A true CN101605587A (zh) 2009-12-16
CN101605587B CN101605587B (zh) 2013-02-27

Family

ID=39689568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800513091A Expired - Fee Related CN101605587B (zh) 2007-02-15 2007-05-15 引起全球变暖效应的温室气体的分子转化方法以及使用固体颗粒捕集器的转化单元

Country Status (6)

Country Link
US (1) US7964169B2 (zh)
EP (1) EP2164595B1 (zh)
CN (1) CN101605587B (zh)
AU (1) AU2007346883B2 (zh)
BR (1) BRPI0700517B1 (zh)
WO (1) WO2008098324A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103561847A (zh) * 2011-04-18 2014-02-05 雷恩宇宙有限责任公司 用于去除来自汽车、家用和工业废气的二氧化碳的方法和设备
CN104023818A (zh) * 2011-10-05 2014-09-03 C·A·赫尔南德兹·奥尔韦拉 用于捕获污染性排放物的系统
CN110346409A (zh) * 2019-08-01 2019-10-18 太原市海通自动化技术有限公司 一种利用高温等离子体进行煤发热量分析的方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2862619A1 (en) * 2013-10-21 2015-04-22 IMIS Spolka z ograniczona A method of disociation of exhaust gases, in particular of gases containing carbon dioxide (CO2) and a reactor chamber
FR3085370B1 (fr) * 2018-08-28 2020-09-04 Europlasma Procede de production d'un gaz de synthese par traitement d'un flux gazeux contenant du co2 et un ou plusieurs hydrocarbures
US11490501B1 (en) * 2022-04-18 2022-11-01 Janak H. Handa Dense plasma focus apparatus

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4189371A (en) * 1976-08-20 1980-02-19 Exxon Research & Engineering Co. Multiple-stage hydrogen-donor coal liquefaction process
US4190636A (en) * 1978-09-26 1980-02-26 Chemetron Corporation Production of carbon monoxide in a plasma arc reactor
DE3165315D1 (en) 1980-02-19 1984-09-13 Exxon Research Engineering Co Acid gas scrubbing process using hindered amine solution with hindered amine recovery from side-product cyclic urea
US4945721A (en) * 1988-04-14 1990-08-07 Environmental Research International, Inc. Electromagnetic converter for reduction of exhaust emissions
JPH0751215B2 (ja) * 1990-05-18 1995-06-05 株式会社荏原製作所 一酸化炭素又は二酸化炭素分解除去方法及び除去装置
BR9500855A (pt) 1995-02-21 1997-04-29 Antonio Marcelo Pachec Scarano Eliminador de Oý
US6038853A (en) * 1996-08-19 2000-03-21 The Regents Of The University Of California Plasma-assisted catalytic storage reduction system
US5827012A (en) * 1997-01-06 1998-10-27 Circeo, Jr.; Louis J. Thermal plasma conversion of local soils into construction materials
US6153158A (en) * 1998-07-31 2000-11-28 Mse Technology Applications, Inc Method and apparatus for treating gaseous effluents from waste treatment systems
JP2003326155A (ja) 2002-05-09 2003-11-18 Kaken:Kk 大気中の二酸化炭素の削減方法とその装置
BR0205677A (pt) 2002-11-12 2004-08-03 Bruno Panazzolo Ruschel Processo e respectivo dispositivo adsorvedor de anidrido carbÈnico
DE10300141A1 (de) 2003-01-07 2004-07-15 Blue Membranes Gmbh Verfahren und Vorrichtung zur Sauerstoffanreicherung von Luft bei gleichzeitiger Abreicherung von Kohlendioxid
BR0301592A (pt) 2003-05-20 2005-05-10 Jose Da Silva Cruz Sistema de purificação do gás metano (ch4) e captação de co2 extraìdos de lixões e estações de tratamento de esgoto
JP2005021853A (ja) 2003-07-02 2005-01-27 Tomoyuki Nakada 内燃機関等の排ガス処理装置
BR0305789B1 (pt) 2003-11-17 2013-10-01 sistema absorvedor de diàxido de carbono
US20050180907A1 (en) * 2004-01-28 2005-08-18 Holcomb Robert R. Method of converting green house gases from fossil fuels into non-toxic base elements
PT1781406T (pt) * 2004-08-26 2018-02-07 E S T Ecological Systems Ltd Método e sistema para tratar resíduos químicos
BRPI0604646A (pt) 2006-11-06 2008-06-24 Carbonobrasil Tecnologia E Ser aparelho captador de gás carbÈnico

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103561847A (zh) * 2011-04-18 2014-02-05 雷恩宇宙有限责任公司 用于去除来自汽车、家用和工业废气的二氧化碳的方法和设备
CN104023818A (zh) * 2011-10-05 2014-09-03 C·A·赫尔南德兹·奥尔韦拉 用于捕获污染性排放物的系统
CN110346409A (zh) * 2019-08-01 2019-10-18 太原市海通自动化技术有限公司 一种利用高温等离子体进行煤发热量分析的方法及装置

Also Published As

Publication number Publication date
BRPI0700517A (pt) 2008-09-30
CN101605587B (zh) 2013-02-27
EP2164595B1 (en) 2016-08-10
EP2164595A4 (en) 2011-03-23
AU2007346883B2 (en) 2012-01-12
EP2164595A1 (en) 2010-03-24
US7964169B2 (en) 2011-06-21
WO2008098324A1 (en) 2008-08-21
US20100296989A1 (en) 2010-11-25
AU2007346883A1 (en) 2008-08-21
BRPI0700517B1 (pt) 2016-02-16

Similar Documents

Publication Publication Date Title
Kohno et al. Destruction of volatile organic compounds used in a semiconductor industry by a capillary tube discharge reactor
Kim Nonthermal plasma processing for air‐pollution control: a historical review, current issues, and future prospects
CN101605587B (zh) 引起全球变暖效应的温室气体的分子转化方法以及使用固体颗粒捕集器的转化单元
CN100446849C (zh) 一种高压直流/脉冲放电同步净化气液的方法及装置
TW201138935A (en) Apparatuses and methods for reducing pollutants in gas streams
Zhang et al. Rotating gliding arc assisted water splitting in atmospheric nitrogen
US6878349B2 (en) Pollution control device
Radoiu et al. Emission control of SO2 and NOx by irradiation methods
CN108325351A (zh) 一种电磁感应耦合双介质低温等离子气体净化装置
US9393519B2 (en) Waste disposal
Ikaunieks et al. Non-thermal plasma for VOC treatment in flue gases
Bai et al. Flue gas desulfurization by dielectric barrier discharge
CN115665961A (zh) 一种多功能原位微波等离子体发生装置及其应用
CN201906560U (zh) 气体排污处理装置
Tian et al. Experimental study on single-mode microwave-induced tungsten wire discharge for NO conversion in NO/N 2 atmosphere
CN212119507U (zh) 一种飞灰的等离子体气相处理装置
CN204121951U (zh) 一种等离子废气处理装置
CN115121095B (zh) 一种MRTO磁控中温等离子VOCs消解装置、系统及工艺
RU2004101745A (ru) Способ очистки газовых выбросов и устройство для его осуществления
Akdemir et al. Effect of Induction Heating Aided Dielectric Barrier Discharge on the Elimination of SO2, NO X, and CO Gases
RU2297874C2 (ru) Установка для плазмокаталитической стерилизации и очистки воздуха
Naqi et al. Flue Gas Treatment Using Low-Temperature Plasma
Mizuno et al. Special issue on environmental applications of thermal and non-thermal plasmas
CN2319112Y (zh) 低温等离子体工业废气处理装置
Yamamoto et al. Catalysis-assisted plasma technology for carbon tetrachloride destruction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130227