CN101598952A - 电流产生器 - Google Patents

电流产生器 Download PDF

Info

Publication number
CN101598952A
CN101598952A CNA200810108790XA CN200810108790A CN101598952A CN 101598952 A CN101598952 A CN 101598952A CN A200810108790X A CNA200810108790X A CN A200810108790XA CN 200810108790 A CN200810108790 A CN 200810108790A CN 101598952 A CN101598952 A CN 101598952A
Authority
CN
China
Prior art keywords
transistor
operational amplifier
current generator
voltage
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA200810108790XA
Other languages
English (en)
Other versions
CN101598952B (zh
Inventor
谢致远
尹又本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novatek Microelectronics Corp
Original Assignee
Novatek Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novatek Microelectronics Corp filed Critical Novatek Microelectronics Corp
Priority to CN200810108790XA priority Critical patent/CN101598952B/zh
Publication of CN101598952A publication Critical patent/CN101598952A/zh
Application granted granted Critical
Publication of CN101598952B publication Critical patent/CN101598952B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Amplifiers (AREA)

Abstract

一种电流产生器。本发明的电流产生器包括截波稳定型运算放大器、晶体管、阻抗。当截波稳定型运算放大器接收参考电压,其内部电路会消除输入端的低频噪声及直流偏移电压,提高电流的匹配。截波稳定型运算放大器根据回授单元的回授,控制晶体管操作于线性区或饱和区。藉此,本发明能够产生稳定的电流并且具有高效率及高电流匹配性。

Description

电流产生器
技术领域
本发明涉及一种电流产生器,特别是涉及一种具有高效率及高电流匹配性的电流产生器。
背景技术
由于现今的科技产品经常需要稳定的电流,例如流控振荡电路便需要稳定的电流来产生特定频率的振荡信号。当振荡电路的频率稳定的时候,这些科技产品就能够正常的动作并提供所欲达到的某些功能。但是,若是振荡电路无法提供稳定的频率时,这些科技产品就不能够被正常的使用。因此如何提供一个稳定的电流,以使得这些科技产品能够正常的动作,是一个很重要的课题。
图1A为已知电流镜电路图。电流镜技术是提供稳定电流常用的一种方法。对已知电流镜电路而言,每一通道的电流都是镜射其参考电流IREF1。当晶体管Tr2、Tr3...的漏极-源极(Drain-Source)电压降愈低,相对可以提高其整体效率。但是在已知电流镜电路中,为了降低各通道电流i1、i2、...的误差以提高各通道电流的匹配性,使得电流镜的晶体管Tr2、Tr3...不能设计操作于线性区并且只能使用长通道元件,此种操作方式使得晶体管漏极-源极间产生较大的电压降,进而降低其整体效率。
图1B为加入运算放大器回授的已知电流镜电路图。为了提高其整体效率,一般会在镜射晶体管Tr2、Tr3...的栅极耦接运算放大器101,以加入运算放大器101回授机制,让运算放大器101控制晶体管Tr2、Tr3...操作在线性区(Linear Region),并使用小电阻R来降低额外的电压降,如此就可降低其漏极-源极电压降,使整体效率得以提升。因各通道的运算放大器101不同的偏移电压(Offset Voltage)将会造成各通道电流i1、i2、...的误差(Error),导致电流的匹配性降低。
发明内容
本发明利用截波稳定(Chopper Stabilization)的技术来消除运算放大器输入偏移电压对各通道电流匹配性的影响,进而提升各通道电流的匹配性(Current matching),同时利用放大器的回授机制可以使晶体管操作于饱和区,藉此提升各通道电流的稳定性;或者,可以视应用需求而使晶体管工作于线性区,藉此让整体架构得到高效率(High Efficiency)的效果。
本发明提出一种电流产生器,包括截波稳定型运算放大器(ChopperStabilization Operational Amplifier)、晶体管及阻抗。该截波稳定型运算放大器具有第一输入端、第二输入端与输出端。晶体管的栅极耦接至该截波稳定型运算放大器的输出端,晶体管的第一源漏极耦接至该截波稳定型运算放大器的第一输入端,而晶体管的第二源漏极作为该电流产生器的电流输出端。阻抗的第一端耦接至该晶体管的第一源漏极,而阻抗的第二端耦接至一第一电压。
在本发明的一实施例中,上述的截波稳定型运算放大器包括第一切换器、放大器及第二切换器。第一切换器具有第一端、第二端、第三端与第四端,第一切换器选择将其第一端与第二端分别电性连接至其第三端与第四端,或者选择将其第一端与第二端分别电性连接至其第四端与第三端,其中该第一切换器的第一端与第二端分别作为截波稳定型运算放大器的第一输入端与第二输入端。放大器的第一输入端与第二输入端分别耦接至该第一切换器的第三端与第四端。第二切换器具有第一端、第二端、第三端与第四端,第二切换器选择将其第一端与第二端分别电性连接至其第三端与第四端,或者选择将其第一端与第二端分别电性连接至其第四端与第三端,其中第二切换器的第一端与第二端分别耦接至放大器的第一输出端与第二输出端,而第二切换器的第三端作为截波稳定型运算放大器的输出端。
本发明使用截波稳定型运算放大器回授机制于电流产生器,利用其截波稳定的技术来消除运算放大器输入偏移电压对各通道电流匹配性的影响,进而使各通道电流具有高匹配性。并且,利用放大器的回授机制可以让晶体管操作于饱和区,藉此提升各通道所产生的电流的稳定性;或者,可以视应用需求而使晶体管操作于线性区,藉此便能把晶体管漏极-源极电压降控制在最低的范围,让整体架构得到高效率的效果。
为使本发明的上述特征和优点能更明显易懂,下文特举较佳实施例,并结合附图详细说明如下。
附图说明
图1A为已知电流镜电路图。
图1B为加入运算放大器回授的已知电流镜电路图。
图2为根据本发明一实施例的电流产生器电路图。
图2A为根据本发明实施例,说明图2中截波稳定型运算放大器一实施方式的系统方块图。
图2B为根据本发明实施例,说明图2中截波稳定型运算放大器另一实施方式的系统方块图。
图2C为根据本发明实施例,说明图2中截波稳定型运算放大器又一实施方式的系统方块图。
图3为根据本发明另一实施例的电流产生器电路图。
图4为根据本发明又一实施例的电流产生器电路图。
图5为根据本发明又一实施例的电流产生器电路图。
图6为根据本发明又一实施例说明一种电流镜的电路图。
图7为根据本发明一实施例的应用的电流平衡电路图。
图8为根据本发明又一实施例的应用的多通道电流镜电路图。
图9为根据本发明一实施例,说明图8的电流波形图。
附图符号说明
IREF1、IREF2:参考电流
VREF1、VREF2:参考电压
Tr1-Tr11:晶体管
i1、i2、I、I1、I2:电流
Af、Af1、Af2:回授信号
VCC、VDD:电压
200、300、400、500、600、700、800:电流产生器
201、201_1、201_2:截波稳定型运算放大器
202:阻抗
203、701:负载
204、206、210:切换器
205:放大器
207、209:调制器
208、211:运算放大器
L11-L1n、L21-L2n:发光二极管串列
R、R1、R2:电阻
901:直流电平
具体实施方式
图2为根据本发明一实施例的电流产生器200电路图。请参照图2,电流产生器200包括截波稳定型运算放大器201、阻抗202及晶体管Tr5。本实施例所述的截波稳定型运算放大器201是以其理想特性而论,其具有输入阻抗无限大(亦即输入端无电流流入)、输出阻抗趋近于零、开回路增益无限大、共模排斥比无限大及频宽无限大。除此之外,截波稳定型运算放大器201亦可消除低频噪声及偏移电压。
截波稳定型运算放大器201的第一输入端(本实施例以反相输入端为例)耦接晶体管Tr5的第一源漏极(本实施例以源极为例),其第二输入端(本实施例以非反相输入端为例)耦接参考电压VREF2,其输出端耦接晶体管Tr5的栅极。阻抗202第一端耦接晶体管Tr5的第一源漏极(本实施例以源极为例),其第二端耦接第一电压(本实施例以接地电压为例)。晶体管Tr5的第二源漏极(本实施例以漏极为例)则作为电流产生器200的输出端。负载203耦接于第二电压(本实施例以电压VDD为例)与电流产生器200的输出端之间。
本实施例的晶体管Tr5为N型金属氧化物半导体晶体管,但本发明的其他实施方式应不以此为限。本实施例通过截波稳定型运算放大器201的反相输入端接收回授信号Af,进而使得晶体管Tr5工作于线性区,以降低晶体管Tr5源-漏极间的压降;同时,截波稳定型运算放大器201根据参考电压VREF2使晶体管Tr5产生相对应的电流I(电流I等于参考电压VREF2除以阻抗202的阻抗值)。阻抗202的实施方式包括电阻、电容、电感、晶体管其中之一或其可能的组合及其他。因截波稳定型运算放大器201可自行消除输入端的噪声及偏移电压的影响,使得对应参考电压VREF2所产生的电流I会更为稳定及准确;同时,因晶体管Tr5操作于线性区,所以源-漏极间的压降低,故电流产生器200具有高效率。
图2A为根据本发明实施例,说明图2中截波稳定型运算放大器201一实施方式的系统方块图。参照图2及图2A,在本实施方式中,截波稳定型运算放大器201包括切换器204、切换器206及放大器205。切换器204的第三端及第四端各自耦接放大器205的第一输入端(本实施方式以正输入端为例)及第二输入端(本实施方式以负输入端为例)。放大器205的第一输出端(本实施方式以正输出端为例)及第二输出端(本实施方式以负输出端为例)各自耦接切换器206的第一端及第二端。
切换器204及206具有二种连接状态。第一种连接状态为,切换器204的第一端电性连接其第三端,及其第二端电性连接其第四端;而切换器206的第一端电性连接其第三端,及其第二端电性连接其第四端。第二种连接状态为,切换器204的第一端电性连接其第四端,及其第二端电性连接其第三端;而切换器206的第一端电性连接其第四端,及其第二端电性连接其第三端。
当连接状态为上述的第一种连接状态时,切换器204从第一端(亦即截波稳定型运算放大器201的第一输入端)接收的回授信号Af会从第三端输出至放大器205的正输入端,其第二端(亦即截波稳定型运算放大器201的第二输入端)接收的参考电压VREF2则从第四端输出至放大器205的负输入端。同步地,切换器206会经由其第一端与第三端(亦即截波稳定型运算放大器201的输出端)将放大器205的正输出端电性连接至晶体管Tr5的栅极。
当连接状态为上述的第二种连接状态时,切换器204从第一端接收的回授信号Af会从第四端输出至放大器205的负输入端,其第二端接收的参考电压VREF2则从第三端输出至放大器205的正输入端。同步地,切换器206会经由其第二端与第三端将放大器205的负输出端电性连接至晶体管Tr5的栅极。
切换器204及206会周期性且同步地在第一种连接关系及第二种连接状态间作切换。截波稳定型运算放大器201则因切换器204及206的切换操作造成经过电路放大后的偏移电压及低频噪声在不同连接状态下会互相反相,让偏移电压及低频噪声因而自行抵消,因此产生的电流I可以更准确及稳定。
图2B为根据本发明实施例,说明图2中截波稳定型运算放大器201另一实施方式的系统方块图。参照图2及图2B,在本实施方式中,截波稳定型运算放大器201(例如:董人宏,「全差动截波稳定型运算放大器设计与实现」,暨南国际大学硕士论文,June 2004)包括调制器(Modulator)207、调制器209及运算放大器208。调制器207耦接运算放大器208。运算放大器208耦接调制器209。当调制器207接收输入信号(本实施方式以参考电压VREF2为例)时,将输入信号经过第一次调制,使原来的信号移频至截波频率的奇次谐波上,且和运算放大器208的低频噪声及偏移电压相加。在经过运算放大器208放大后,其输出信号再经过调制器209的第二次调制,将信号移频回原来的基频,而只经过一次的调制的低频噪声及偏移电压会被移频至截波频率的奇次谐波上。藉此,截波稳定型运算放大器201可以消除运算放大器的低频噪声及偏移电压的影响,使得所产生的电流I更加的准确及稳定。
图2C为根据本发明实施例,说明图2中截波稳定型运算放大器201又一实施方式的系统方块图。参照图2及图2C,在本实施方式中,截波稳定型运算放大器201包括切换器210及运算放大器211。切换器210的第三端及第四端各自耦接运算放大器211的第一输入端(本实施方式以非反相输入端为例)及第二输入端(本实施方式以反相输入端为例)。切换器210的第一种连接状态,将回授信号Af经由其第一端(亦即截波稳定型运算放大器201的第一输入端)与第三端输出至运算放大器211的非反相输入端,并且将参考电压VREF2经由其第二端(亦即截波稳定型运算放大器201的第二输入端)与第四端输出至运算放大器211的反相输入端。经过运算放大器211放大后,输出放大后的电压至晶体管Tr5的栅极。切换器210的第二种连接状态,将回授信号Af经由其第一端与第四端输出至运算放大器211的反相输入端,并且将参考电压VREF2经由其第二端与第三端输出至运算放大器211的非反相输入端。经过运算放大器211放大后,输出放大后的电压至晶体管Tr5的栅极。因切换器210会在第一种连接状态及第二种连接状态作周期性的切换,造成低频噪声及偏移电压在不同情况下的输出会互相反相,使得低频噪声及偏移电压的影响会因而降低,让产生的电流I的准确度及稳定性更加的提高。
图3为根据本发明另一实施例的电流产生器300电路图。请参照图3,电流产生器300包括截波稳定型运算放大器201、阻抗202及晶体管Tr5。截波稳定型运算放大器201的第一输入端(本实施例以非反相输入端为例)耦接晶体管Tr5的第一源漏极(本实施例以漏极为例),其第二输入端(本实施例以反相输入端为例)耦接参考电压VREF2,其输出端耦接晶体管Tr5的栅极。阻抗202第一端耦接晶体管Tr5的第一源漏极(本实施例以漏极为例),其第二端耦接第一电压(本实施例以电压VDD为例)。晶体管Tr5的第二源漏极(本实施例以源极为例)则作为输出端,耦接负载203。负载203另一端耦接第二电压(本实施例以接电压为例)以形成电源回路。
本实施例中的晶体管Tr5为N型金属氧化物半导体晶体管。本实施例通过截波稳定型运算放大器201非反相端接收的回授信号Af,控制晶体管Tr5工作于线性区,同样具有降低晶体管Tr5的压降的功效;同时,截波稳定型运算放大器201根据参考电压VREF2使晶体管Tr5产生对应的电流I(电流I等于电压VDD先减去参考电压VREF2再除以阻抗202的阻抗值)。因截波稳定型运算放大器201的特性如上所述,因此所产生对应参考电压VREF2的电流I与上述实施例同样的稳定及准确,且同样利用截波稳定型运算放大器201的回授机制,故同样具有高效率。
图4为根据本发明又一实施例的电流产生器400电路图。请参照图4,电流产生器400包括截波稳定型运算放大器201、阻抗202及晶体管Tr6。比较图3及图4,本实施例是以P型金属氧化物半导体晶体管实现晶体管Tr6,截波稳定型运算放大器201的第一输入端为反相输入端,其第二输入端为非反相输入端;晶体管Tr6第一源漏极为源极,第二源漏极为漏极。但其截波稳定型运算放大器201的特性及晶体管Tr6产生的电流I的方式皆为相同,故晶体管Tr6同样操作于线性区。藉此,本实施例同样具有高效率,且电流I与上述实施例同样的稳定及准确。
图5为根据本发明再一实施例的电流产生器500电路图。请参照图5,电流产生器500包括截波稳定型运算放大器201、阻抗202及晶体管Tr6。比较图2及图5,本实施例是以P型金属氧化物半导体晶体管实现晶体管Tr6,截波稳定型运算放大器201的第一输入端为非反相输入端,其第二输入端是反相输入端;晶体管Tr6第一源漏极为漏极,第二源漏极为源极。但其截波稳定型运算放大器201的特性及晶体管Tr6产生的电流I的方式皆为相同,故晶体管Tr6同样工作于线性区。藉此,本实施例同样具有高效率,且电流I与上述实施例同样的稳定及准确。
上述实施例的晶体管Tr5及晶体管Tr6皆操作于线性区,而在其他实施例中,晶体管Tr5及晶体管Tr6为操作于饱和区。藉此,本实施例的电流产生器可提高其产生的电流I的稳定度(亦即减少其电流I的涟波)。
本领域的技术人员可以将上述诸实施例所述的电流产生器使用在各种应用中。例如,上述电流产生器可以应用在电流镜(current mirror)电路中。图6为根据本发明更一实施例说明一种电流镜的电路图。本实施例将以电流产生器600实现电流镜。电流产生器600包括截波稳定型运算放大器201、阻抗(在此为晶体管Tr7)、晶体管Tr5、晶体管Tr8与晶体管Tr9
请参照图6,截波稳定型运算放大器201的第一输入端(本实施例以反相输入端为例)耦接晶体管Tr5的第一源漏极(本实施例以源极为例),其第二输入端(本实施例以非反相输入端为例)耦接第三晶体管Tr8的第一源漏极(本实施例以源极为例),其输出端耦接晶体管Tr5的栅极。第二晶体管Tr7的漏极耦接晶体管Tr5的源极,其源极耦接第一电压(本实施例以接地电压为例)。晶体管Tr5的第二源漏极(本实施例以漏极为例)则作为输出端。负载203耦接于晶体管Tr5的漏极与第二电压(本实施例以电压VDD为例)之间。晶体管Tr8的第一源漏极(本实施例以源极为例)耦接至截波稳定型运算放大器201的第二输入端。晶体管Tr8的栅极耦接其第二源漏极(本实施例以漏极为例),其中晶体管Tr8的漏极更接收参考电流IREF2。第四晶体管Tr9的第一源漏极(本实施例以源极为例)接地,其第二源漏极(本实施例以漏极为例)耦接晶体管Tr8的源极。第四晶体管Tr9的栅极耦接晶体管Tr7的栅极及晶体管Tr8的栅极。
本实施例的晶体管皆为N型金属氧化物半导体晶体管。根据晶体管的特性,参考电流IREF2会流经在晶体管Tr8及Tr9并产生压降。截波稳定型运算放大器201非反相端所接收的电压为晶体管Tr9产生的漏极-源极电压降,由虚接地原理可推论得知其反相端与非反相端的电压会相同。故晶体管Tr9与Tr7有相同的漏极-源极电压降,又因为晶体管Tr9与Tr7的栅极接在同一点,有相同的栅极-源极电压降,若设计晶体管Tr9的特性与晶体管Tr7相同,则流经晶体管Tr7的电流必等于参考电流IREF2。且晶体管Tr5根据截波稳定型运算放大器201的回授机制而操作于线性区,以降低源-漏极间的压降。藉此,本实施具有高效率,且电流I等于参考电流IREF2
上述图6实施例的晶体管Tr5是操作于线性区,而在其他实施例中,晶体管Tr5是操作于饱和区。藉此,本实施例的电流产生器可提高其镜射电流I的稳定度(亦即减少其电流I的涟波)。
上述诸实施例所述的电流产生器亦可以应用在电流平衡电路(currentbalance circuit)中。图7为根据本发明一实施例的应用的电流平衡电路图。本实施例将以电流产生器700实现电流平衡电路。电流产生器700包括多个截波稳定型运算放大器(例如201_1、201_2、...等)、多个阻抗(例如电阻R1、R2、...等)及多个晶体管(例如Tr5、Tr10、...等)。请参照图7,本实施例可以视为图2电流产生器200的多通道应用。亦即,各个通道都可以应用图2所揭露的电流产生器200。
于本实施例中,负载701可以是背光模组。背光模组701包含多组发光二极管串列,例如发光二极管串L11-L1n、发光二极管串L21-L2n、...等。根据图2实施例的说明可以知道,每个通道的电路特性都相同(例如晶体管Tr5、Tr10的外观比相同,电阻R1、R2的阻值相同)与同样接收参考电压VREF2的条件下,回授信号Af1、Af2等均相同,故各个通道所提供的电流I1、I2等也会相同。其中,因使用截波稳定型运算放大器回授机制而消除了各通道运算放大器的偏移电压,进而使各通道电流I1、I2、...等具有高匹配性。因此,每一通的电流都会相等,且晶体管Tr5、Tr10、...等因为回授机制工作于线性区,故此电路具有高效率及高电流匹配性。藉由本实施例,背光模组的亮度会非常的均匀,且亮度调整只需更改参考电压VREF2即可达成。
上述诸实施例所述的电流产生器亦可以应用在多通道电流镜中。图8为根据本发明更一实施例的应用的多通道电流镜电路图。本实施例将以电流产生器800实现多通道电流镜。电流产生器800包括多个截波稳定型运算放大器(例如201_1、201_2、...等)、多个晶体管(例如Tr5、Tr8、Tr9等)、以及多个阻抗(例如晶体管Tr7、Tr11等)。请参照图8,本实施例可以视为图6电流产生器600的多通道应用。于本实施例中,截波稳定型运算放大器201_1与201_2特性相等,晶体管Tr5与Tr10特性相同,及晶体管Tr7与Tr11特性相等,故第一个通道与第二个通道的特性相同。
于本实施例中,负载701亦以背光模组为例。背光模组701包含多组发光二极管串列,例如发光二极管串L11-L1n、发光二极管串L21-L2n、...等。根据图6实施例的说明可以知道,每个通道的电流I1、I2会等于参考电流IREF2
图9为根据本发明一实施例,说明图8的电流波形图。请参照图8与图9,截波稳定型运算放大器201_1与201_2的切换周期分别造成电流I1与电流I2在其直流位准上产生交流波动噪声(AC ripple noise),这些交流波动的周期正比于切换器的周期,而各运算放大器的不同偏移电压导致波动的振幅大小不同。但是可以确保电流I1与电流I2具有相同的平均电流值,可视为图9中的直流电平901。在某些应用中,此直流电平的匹配性才是系统设计的重点。
综上所述,在本发明的电流产生器,利用截波稳定型运算放大器的截波稳定技术可消除低频噪声及偏移电压的良好特性,来消除运算放大器输入偏移电压对各通道电流匹配性的影响,进而使各通道电流具有高匹配性,并且利用截波稳定型运算放大器的回授机制让晶体管操作于线性区,藉此能减少晶体管漏极-源极间的压降,让整体架构得到高效率的效果。
虽然本发明已以较佳实施例揭示如上,然其并非用以限定本发明,本领域的技术人员在不脱离本发明的精神和范围的前提下可作若干的更动与润饰,因此本发明的保护范围以本发明的权利要求为准。

Claims (11)

1.一种电流产生器,包括:
一截波稳定型运算放大器,具有第一输入端、第二输入端与输出端,其中,该截波稳定型运算放大器可消除低频噪声及偏移电压;
一晶体管,其栅极耦接至该截波稳定型运算放大器的输出端,该晶体管的第一源漏极耦接至该截波稳定型运算放大器的第一输入端,而该晶体管的第二源漏极作为该电流产生器的电流输出端;以及
一阻抗,其第一端耦接至该晶体管的第一源漏极,而该阻抗的第二端耦接至一第一电压。
2.如权利要求1所述的电流产生器,其中一负载耦接于该电流产生器的电流输出端与一第二电压之间,而该第一电压与该第二电压分别是系统电压与接地电压。
3.如权利要求1所述的电流产生器,其中一负载耦接于该电流产生器的电流输出端与一第二电压之间,而该第一电压与该第二电压分别是接地电压与系统电压。
4.如权利要求1所述的电流产生器,其中该晶体管是P型金属氧化物半导体晶体管。
5.如权利要求1所述的电流产生器,其中该晶体管是N型金属氧化物半导体晶体管。
6.如权利要求1所述的电流产生器,其中该截波稳定型运算放大器包括:
一第一切换器,具有第一端、第二端、第三端与第四端,用以选择将其第一端与第二端分别电性连接至其第三端与第四端,或者选择将其第一端与第二端分别电性连接至其第四端与第三端,其中该第一切换器的第一端与第二端分别作为该截波稳定型运算放大器的第一输入端与第二输入端;
一放大器,其第一输入端与第二输入端分别耦接至该第一切换器的第三端与第四端;以及
一第二切换器,具有第一端、第二端、第三端与第四端,用以选择将其第一端与第二端分别电性连接至其第三端与第四端,或者选择将其第一端与第二端分别电性连接至其第四端与第三端,其中该第二切换器的第一端与第二端分别耦接至该放大器的第一输出端与第二输出端,而该第二切换器的第三端作为该截波稳定型运算放大器的输出端。
7.如权利要求1所述的电流产生器,其中该阻抗包括一电阻。
8.如权利要求1所述的电流产生器,其中该阻抗为一第二晶体管,而该电流产生器还包括:
一第三晶体管,其第一源漏极耦接至该截波稳定型运算放大器的第二输入端,该第三晶体管的栅极耦接至第二源漏极,而该第三晶体管的第二源漏极接收一参考电流;以及
一第四晶体管,其第一源漏极耦接至该第一电压,其第二源漏极耦接至该第三晶体管的第一源漏极,而该第四晶体管的栅极耦接至该第二晶体管的栅极以及该第三晶体管的栅极。
9.如权利要求1所述的电流产生器,其中该第二晶体管、该第三晶体管与该第四晶体管均为N型金属氧化物半导体晶体管。
10.如权利要求1所述的电流产生器,其中该晶体管是操作于饱和区。
11.如权利要求1所述的电流产生器,其中该晶体管是操作于线性区。
CN200810108790XA 2008-06-02 2008-06-02 电流产生器 Expired - Fee Related CN101598952B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200810108790XA CN101598952B (zh) 2008-06-02 2008-06-02 电流产生器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200810108790XA CN101598952B (zh) 2008-06-02 2008-06-02 电流产生器

Publications (2)

Publication Number Publication Date
CN101598952A true CN101598952A (zh) 2009-12-09
CN101598952B CN101598952B (zh) 2011-12-07

Family

ID=41420421

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810108790XA Expired - Fee Related CN101598952B (zh) 2008-06-02 2008-06-02 电流产生器

Country Status (1)

Country Link
CN (1) CN101598952B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103974487A (zh) * 2013-01-24 2014-08-06 普诚科技股份有限公司 发光二极管驱动装置
CN106847186A (zh) * 2015-12-01 2017-06-13 乐金显示有限公司 电流积分器以及有机发光显示器
CN109410884A (zh) * 2018-12-27 2019-03-01 惠科股份有限公司 过流保护模组及显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1244983C (zh) * 2003-01-20 2006-03-08 矽统科技股份有限公司 应用于可变增益放大器的直流偏移量消除电路
JP2007214613A (ja) * 2006-02-07 2007-08-23 Seiko Instruments Inc 増幅回路

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103974487A (zh) * 2013-01-24 2014-08-06 普诚科技股份有限公司 发光二极管驱动装置
CN106847186A (zh) * 2015-12-01 2017-06-13 乐金显示有限公司 电流积分器以及有机发光显示器
CN106847186B (zh) * 2015-12-01 2020-05-05 乐金显示有限公司 电流积分器以及有机发光显示器
CN109410884A (zh) * 2018-12-27 2019-03-01 惠科股份有限公司 过流保护模组及显示装置
CN109410884B (zh) * 2018-12-27 2021-05-25 惠科股份有限公司 过流保护模组及显示装置
US11393369B2 (en) 2018-12-27 2022-07-19 HKC Corporation Limited Overcurrent protection module and display device

Also Published As

Publication number Publication date
CN101598952B (zh) 2011-12-07

Similar Documents

Publication Publication Date Title
KR100451890B1 (ko) 스위칭레귤레이터
CN105517250B (zh) 一种led恒流驱动系统及其恒流控制电路
CN103917012B (zh) 一种具有欠压锁定和过温保护模块的白光led驱动系统
CN103294096B (zh) 生成亚基准输出电压的线性电压调节器
TW200625801A (en) Power supply driver circuit
CN2884287Y (zh) 一种电流源或电压源的启动电路
CN102364854A (zh) 准固定导通时间控制电路和降压式开关调节电路
US7728654B2 (en) Current generator
CN102654828A (zh) 加快模拟加法器响应速度的方法、模拟加法器及变压器
CN113839556B (zh) Dc-dc变换器及其控制电路
CN104426523A (zh) 具有减小的抖动的波形转换电路
CN101598952B (zh) 电流产生器
CN115149928A (zh) 工艺温度计电压不敏感高精度振荡器电路
CN101917807A (zh) 一种发光二极管驱动系统
CN103944522A (zh) 功率放大器
CN103683937A (zh) 电压转换电路
CN108900069A (zh) 一种基于占空比的自适应二次斜坡补偿电路
CN101976949B (zh) 基于差分结构的快速抗干扰电流采样电路
CN207460000U (zh) 一种pwm/pfm的双模式控制电路
CN107422773B (zh) 数字低压差稳压器
CN214623446U (zh) 一种可变零点补偿的ldo的电路
CN109254188B (zh) 一种适用于开关电源的高速电流检测电路
Koizumi et al. Analysis of class D inverter with irregular driving patterns
CN203800890U (zh) 功率放大器
CN214097598U (zh) 一种适用于开关电源的高速电流检测电路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111207

Termination date: 20150602

EXPY Termination of patent right or utility model