CN101591349B - Nitrogen-bridged bis(phenolate) yttrium dibenzyl oxygen compound and preparation and application thereof - Google Patents

Nitrogen-bridged bis(phenolate) yttrium dibenzyl oxygen compound and preparation and application thereof Download PDF

Info

Publication number
CN101591349B
CN101591349B CN200910032425XA CN200910032425A CN101591349B CN 101591349 B CN101591349 B CN 101591349B CN 200910032425X A CN200910032425X A CN 200910032425XA CN 200910032425 A CN200910032425 A CN 200910032425A CN 101591349 B CN101591349 B CN 101591349B
Authority
CN
China
Prior art keywords
nitrogen
yttrium
bridged bis
oxygen compound
bis aryloxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200910032425XA
Other languages
Chinese (zh)
Other versions
CN101591349A (en
Inventor
孙宏枚
宋丰奎
闫春辉
姚英明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN200910032425XA priority Critical patent/CN101591349B/en
Publication of CN101591349A publication Critical patent/CN101591349A/en
Application granted granted Critical
Publication of CN101591349B publication Critical patent/CN101591349B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The invention discloses a nitrogen-bridged bis(phenolate) yttrium dibenzyl oxygen compound and preparation and application thereof. A bridged bis(phenolate) lanthanide complex is the nitrogen-bridged bis(phenolate) yttrium dibenzyl oxygen compound, of which the chemical formula is p-C6H4[CH2OYL(THF)]2, wherein Y refers to lanthanide yttrium; and L refers to a nitrogen-bridged bis(phenolate) complex; L=Me2NCH2CH2N{CH2-(2-O-C6H2-R-3,5)}2, wherein 3 position and 5 position of an aromatic ring are provided with alkyl group substituents R, and R is selected from C1-C4 saturated alkyl. The double active center type nitrogen-bridged bis(phenolate) yttrium dibenzyl oxygen compound is synthesized simply and conveniently, not only can be used as a single-component catalyst under a mild condition to catalyze ring opening polymerization of epsilon-Hexalactone and L-lactide controllably with high activity, but also can initiates copolymerization of the two monomers to generate ABA type block copolymer.

Description

Nitrogen-bridged bis aryloxy yttrium is to dibenzyl oxygen compound and preparation and application
Technical field
The present invention relates to a kind of rare earth metal complex, be specifically related to a kind of with nitrogen-bridged bis aryloxy be assistant ligand, by yttrium complex and catalytic applications thereof to double activity center's type of benzyloxy bridging.
Background technology
Aliphatic polyester is one type of Biodegradable Polymers, and it promptly can be degraded under physiological condition, and degraded product is nontoxic.Therefore, it is as the compatible material of biological tissue, has obtained application (referring to Hayashi, T.Prog.Polym.Sci., 1994,19,663) clinically.Polycaprolactone has high resolution, and lower melting point, and can be compatible with multiple polymers can be used as softening agent of polymkeric substance etc. (referring to Deanin, R.D., Zhang, Z.B.J.Vinyl Technol.1984,6,18).POLYACTIC ACID also is widely used in controlled drug delivery system (referring to Zhang, X.C. because of its characteristic; McAuley, K.B.; Gossen, M.F.A.J.Control.Release 1995,34,175), the orthopaedics immobilization material is (referring to Bergsm, J.E.; RoZem, F.R.; Bos, R.M.et al Joral.Maxillofac.Surg.1993,51,666) and tissue engineering bracket material (referring to: 1. Beumer, G.J.et al J.Biomed.Mater.Res.1994,28,545; 2. Mooney, D.J.; Park, S.; Kaufmane, P.M.et al J.Biomed.Mater.Res.1995,29,959) etc. the aspect.Their multipolymer, particularly segmented copolymer then can be cut out through molecule and satisfy more property and require (referring to 1. Drumright, R.E.; Gruber, P.R.; Henton, D.E.Adv.Mater.2000,12,1841; 2. Uhrich, K.E.; Cannizzaro, S.M.and Langer, R.S.; Shakesheff, K.M.Chem.Rev.1999,99,3181).In view of some wide application prospect of aliphatic polyester, relevant research has obtained people's extensive concern.
Ring-opening polymerization is the short-cut method of synthetic fat adoption ester, ring-opening copolymerization then be aliphatic polyester is carried out chemically modified most effectual way (referring to 1. Albertsson, A.C.; Varma, I.K.Biomacromolecules 2003,4, and 1466; 2. Odile, D.C.; Blanca, M.V.; Didier, B.Chem.Rev.2004,104,6147).People have developed the ring-opening polymerization that a lot of catalystsystem are used for cyclic ester, and used catalyzer can be alkoxy compound, alkylate, amino-complex and the hydroborates etc. of main group metal, transition metal and rare earth metal.
Recently, the bridged linkage bis aryloxy rare earth metal title complex has flexible and changeable structure because of it and can be used as single component catalyst and uses and to receive much concern.The relevant bridged linkage bis aryloxy rare earth metal title complex of bibliographical information is in the application of catalysis cyclic esters ring-opening polymerization, and the bridged linkage bis aryloxy part mainly is that the carbon bridged linkage bis aryloxy is (referring to 1. Yao, Y.M.; Xu, X.P.; Zhang, Y.; Shen, Q.Inorg.Chem.2005,44,5133; 2. Xu, X.P.; Yao, Y.M.; Hu, M.Y.; Zhang, Y.; Shen, Q.J.Polym.Sci.Part A:Polym.Chem.2006,44,4409), side arm contain the sub-prothetic group of supplying power nitrogen-bridged bis aryloxy (referring to 1. Cai, C.X.; Amgoune, A.; Lehmann, C.W.; Carpentier, J.F.Chem.Commun.2004,330; 2. Kerton, F.M.; Whitwood, A.C.; Willans, C.E.Dalton Trans.2004,2237; 3. Yao, Y.M.; Ma, M.T.; Xu, X.P.; Zhang, Y.; Shen, Q.; Wong, W.T.Organometallics 2005,24, and 4014; 4. Amgoune, A.; Thomas, C.M.; Ilinca, S.; Roisnel, T.; Carpentier, J.F.Angew.Chem.Int.Ed.2006,45,2782; 5. Amgoune, A.; Thomas, C.M.; Roisnel, T.; Carpentier, J.F.Chem.Eur.J.2006,12,169; 6. Zhou, H.; Guo, H.D.; Yao, Y.M.; Zhang, Y.; Shen, Q.Inorg.Chem.2007,46,958; 7. Dyer, H.E.; Huijser, S.; Schwarz, A.D.; Wang, C.; Duchateau, R.; Mountford, P.Dalton Trans.2008,32; 8. Carpentier, J.F.Macromolecules 2009,42,987) and sulphur bridge join the bis aryloxy part (referring to 1. Ma, H.Y.; Okuda, J.Macromolecules 2005,38, and 2665; 2. Ma, H.Y.; Spaniol, T.P.; Okuda, J.Angew.Chem.Int.Ed.2006,45,7818; Konkol, M.; Spaniol, T.P.; Kondracka, M.; Okuda, J.Dalton Trans.2007,4095) etc.Up to now, the nitrogen-bridged bis aryloxy rare earth metal title complex of also not seeing double activity center's type is as single component catalyst catalysis 6-caprolactone and controlled all (being total to) polymeric of L-rac-Lactide report.
Summary of the invention
The object of the invention provides the nitrogen-bridged bis aryloxy rare earth metal title complex of a kind of double activity center type.
For achieving the above object, the technical scheme that the present invention adopts is: a kind of nitrogen-bridged bis aryloxy yttrium is to the dibenzyl oxygen compound, and the chemical formula of said title complex is:
p-C 6H 4[CH 2OYL(THF)] 2
Wherein, Y representes the rare earth metal yttrium; L represents nitrogen-bridged bis aryloxy part, L=Me 2NCH 2CH 2N{CH 2-(2-O-C 6H 2-R-3,5) 2, wherein 3 of aromatic ring and 5 have alkyl substituent R, and R is selected from the saturated alkyl of C1~C4;
Above-mentioned nitrogen-bridged bis aryloxy yttrium is to containing two rare earth metals, two nitrogen-bridged bis aryloxies and one to benzyloxy in the dibenzyl oxygen compound.
The present invention provides simultaneously and has prepared the method for above-mentioned nitrogen-bridged bis aryloxy yttrium to the dibenzyl oxygen compound, may further comprise the steps:
(1) under the anhydrous and oxygen-free condition, be to get nitrogen-bridged bis aryloxy rare earth metal hexichol aminate LYNPh at 2: 1 according to the molar weight ratio 2(THF) with to two benzylalcohols, be solvent with the THF, under the room temperature reaction more than 12 hours;
(2) solvent removed in vacuo adds normal hexane in the residuum, separate out clear crystal after leaving standstill, and centrifugal back recrystallization obtains said nitrogen-bridged bis aryloxy yttrium to dibenzyl oxygen compound p-C 6H 4[CH 2OYL (THF)] 2Crystal;
Above-mentioned nitrogen-bridged bis aryloxy rare earth metal hexichol aminate LYNPh 2(THF) preparation method is referring to Yao, Y.M.; Ma, M.T.; Xu, X.P.; Zhang, Y.; Shen, Q.; Wong, W.T.Organometallics 2005,24, and 4014.
Another object of the present invention is to provide of the application of above-mentioned nitrogen-bridged bis aryloxy yttrium to the dibenzyl oxygen compound.
For achieving the above object, the technical scheme that the present invention adopts is:
Above-mentioned nitrogen-bridged bis aryloxy yttrium may further comprise the steps the method for the controlled ring-opening polymerization of dibenzyl oxygen compound catalysis 6-caprolactone:
(1) under the anhydrous and oxygen-free condition, adds the toluene solution of catalyzer in the time of the toluene solution of stirring 6-caprolactone;
(2) after polymerization is accomplished,, use the industrial spirit precipitation polymers with the alcohol termination reaction of the hydrochloric acid that contains 5% mass percent.
In the technique scheme, polymerization temperature is a room temperature, and polymerization time is adjusted according to the molecular weight of required polymkeric substance.
Above-mentioned nitrogen-bridged bis aryloxy yttrium may further comprise the steps the method for the controlled ring-opening polymerization of dibenzyl oxygen compound catalysis L-rac-Lactide:
(1) under the anhydrous and oxygen-free condition, adds the toluene solution of catalyzer in the time of the toluene solution of stirring L-rac-Lactide;
(2) after polymerization is accomplished,, use the industrial spirit precipitation polymers with the alcohol termination reaction of the hydrochloric acid that contains 5% mass percent.
In the technique scheme, polymerization temperature is 60~80 ℃, and polymerization time is adjusted according to the molecular weight of required polymkeric substance.
Above-mentioned nitrogen-bridged bis aryloxy yttrium may further comprise the steps the method for dibenzyl oxygen compound catalysis L-rac-Lactide and the controlled ring opening copolymer of 6-caprolactone:
(1) under the anhydrous and oxygen-free condition, under 60~80 ℃, add the toluene solution of catalyzer when stirring the toluene solution of L-rac-Lactide, carry out ring-opening polymerization;
(2) add 6-caprolactone, continue polymerization;
(3) after polymerization is accomplished, with the alcohol termination reaction of the hydrochloric acid that contains 5% mass percent, use the industrial spirit precipitation polymers, resulting polymers is an ABA block polymer, and wherein A is the 6-caprolactone single-unit, and B is a L-rac-Lactide single-unit.
Because the technique scheme utilization, the present invention compared with prior art has advantage:
1. nitrogen-bridged bis aryloxy yttrium catalyzer according to the invention can obtain HMW (M as single component catalyst high reactivity, controllably catalysis 6-caprolactone and the ring-opening polymerization of L-rac-Lactide under mild conditions n>10 4), the polycaprolactone (M that MWD is narrower w/ M n=1.18-1.28) and polylactide (M w/ M n=1.21-1.28).
2. the nitrogen-bridged bis aryloxy yttrium catalyzer that provides of the present invention can obtain HMW (M as the copolymerization of single component catalyst high reactivity ground catalysis L-rac-Lactide and 6-caprolactone under mild conditions n>10 4), the ABA block polymer (M that MWD is narrower w/ M n=1.28-1.38, A=6-caprolactone, B=L-rac-Lactide).
3. nitrogen-bridged bis aryloxy yttrium catalyzer according to the invention can be with the two kinds of monomeric homopolymerizations of mode catalysis and the copolymerization thereof of controllable polymerization; Controllable polymerization is better than general ring-opening polymerization, is embodied in that polymericular weight can be regulated and control (measured value of polymkeric substance number-average molecular weight and theoretical value are also more approaching) through the mol ratio of monomer and catalyzer, can add monomer to carry out the MWD of stage feeding polymerization, polymkeric substance narrower in batches.
Embodiment
Below in conjunction with embodiment the present invention is further described:
Embodiment one: p-C 6H 4[CH 2OYL (THF)] 2Synthesizing of (3,5 substituting group being a methyl on the aromatic ring of L)
At LYNPh 2(THF) in the THF solution of (3.42 grams, 5 mmoles), add two benzylalcohol p-C 6H 4(CH 2OH) 2(0.35 gram, 2.5 mmoles), it is colourless that the system color keeps basically, and reaction is spent the night under the room temperature.Take out most of solvent, add 20 ml n-hexane hold over night, separate out a large amount of clear crystals, centrifugal removal clear liquid, solid are used the mixed solvent recrystallization of normal hexane and THF again, separate out a large amount of clear crystal 2.56 grams (2.20 mmoles, 88%).
Embodiment two: p-C 6H 4[CH 2OYL (THF)] 2Synthesizing of (3,5 substituting group being the tertiary butyl on the aromatic ring of L)
At LYNPh 2(THF) in the THF solution of (4.26 grams, 5 mmoles), add two benzylalcohol p-C 6H 4(CH 2OH) 2(0.35 gram, 2.5 mmoles), it is colourless that the system color keeps basically, and reaction is spent the night under the room temperature.Take out most of solvent, add 20 ml n-hexane hold over night, separate out a large amount of clear crystals, centrifugal removal clear liquid, solid are used the mixed solvent recrystallization of normal hexane and THF again, separate out a large amount of clear crystal 3.42 grams (2.28 mmoles, 91%).
Embodiment three: p-C 6H 4[CH 2OYL (THF)] 2(3,5 substituting group is a methyl on the aromatic ring of L) controlled ring-opening polymerization of catalysis 6-caprolactone
In the polymerization bottle of dehydration and deoxidation band stirrer, add 0.60 milliliter of 6-caprolactone (5.42 mmole) with syringe, add 1.90 milliliters of toluene with syringe again, stir down 0.5 milliliter (6.02 * 10 of the toluene solution that adds catalyzer with syringe -3The mmole milliliter -1).Polymerization is 90 minutes under the room temperature, and with the alcohol termination reaction that contains 5% hydrochloric acid, polymkeric substance is used industrial alcohol precipitation, gets polycaprolactone 0.61 to constant weight after the vacuum-drying and restrains yield 99%.The theoretical value average molecular weight of polymkeric substance is 20.11 ten thousand [M n(calcd)=(M wOf ε-CL) * [ε-CL]/[I] * (polym er yield)=114 * 1800 * 99%], GPC actual measurement number-average molecular weight (M n) be 19.68 ten thousand, MWD (M w/ M n) be 1.28.
Embodiment four: p-C 6H 4[CH 2OYL (THF)] 2The controlled ring-opening polymerization of (3,5 substituting group is a methyl on the aromatic ring of L) catalysis L-rac-Lactide
In the polymerization bottle of dehydration and deoxidation band stirrer, take by weighing 0.53 gram (3.68 mmole) rac-Lactide, adds 3.18 milliliters of toluene, under 70 ℃ of oil baths fully after the dissolving, with 0.5 milliliter (6.13 * 10 of the toluene solution of syringe adding catalyzer -3The mmole milliliter -1).Keep 70 ℃ of polymerizations 4 hours, with the alcohol termination reaction that contains 5% hydrochloric acid, polymkeric substance is used industrial alcohol precipitation, gets polycaprolactone 0.52 to constant weight after the vacuum-drying and restrains yield 98%.The theoretical value average molecular weight of polymkeric substance is 16.95 ten thousand [M n(calcd)=(M wOf L-LA) * [ε-CL]/[I] * and (polymer yield)=144.13 * 1200 * 98%], GPC actual measurement number-average molecular weight (M n) be 11.70 ten thousand, MWD (M w/ M n) be 1.26.
Embodiment five: p-C 6H 4[CH 2OYL (THF)] 2The controlled copolymerization of (3,5 substituting group is a methyl on the aromatic ring of L) catalysis L-rac-Lactide and 6-caprolactone
In the polymerization bottle of dehydration and deoxidation band stirrer, take by weighing 0.55 gram (3.82 mmole) rac-Lactide, add 3.32 milliliters of toluene, after dissolving fully under 70 ℃ of oil baths, stir 0.5 milliliter of (the 0.038 mmole milliliter of toluene solution that adds catalyzer down with syringe -1).Keep 70 ℃ of polymerizations 1 hour, under this temperature, add 0.42 milliliter of 6-caprolactone (3.8 mmole) again, keep 70 ℃ of polymerizations 1 hour with syringe; With the alcohol termination reaction that contains 5% hydrochloric acid; Multipolymer is used industrial alcohol precipitation, gets multipolymer 0.96 to constant weight after the vacuum-drying and restrains yield 98%.The theoretical value average molecular weight of polymkeric substance is 5.06 ten thousand [M n(calcd)=(M wOf ε-CL+M wOf L-LA) * [M] GPC actual measurement number-average molecular weight (M/[I] * (polymer yield)=(114+144) * 200 * 98%], n) be 5.16 ten thousand, MWD (M w/ M n) be 1.28.Levy through the hydrogen stave, the mol ratio of L-rac-Lactide and ε-caprolactone is 200: 192.
Embodiment six: p-C 6H 4[CH 2OYL (THF)] 2(3,5 substituting group is the tertiary butyl on the aromatic ring of L) controlled ring-opening polymerization of catalysis 6-caprolactone
In the polymerization bottle of dehydration and deoxidation band stirrer, add 0.60 milliliter of 6-caprolactone (5.42 mmole) with syringe, add 1.90 milliliters of toluene with syringe again, stir down 0.4 milliliter (7.53 * 10 of the toluene solution that adds catalyzer with syringe -3The mmole milliliter -1).Polymerization is 90 minutes under the room temperature, and with the alcohol termination reaction that contains 5% hydrochloric acid, polymkeric substance is used industrial alcohol precipitation, gets polycaprolactone 0.61 to constant weight after the vacuum-drying and restrains yield 99%.The theoretical value average molecular weight of polymkeric substance is 20.11 ten thousand [M n(calcd)=(M wOf ε-CL) * [ε-CL]/[I] * (polymer yield)=114 * 1800 * 99%], GPC actual measurement number-average molecular weight (M n) be 20.08 ten thousand, MWD (M w/ M n) be 1.25.
Embodiment seven: p-C 6H 4[CH 2OYL (THF)] 2The controlled ring-opening polymerization of (3,5 substituting group is the tertiary butyl on the aromatic ring of L) catalysis L-rac-Lactide
In the polymerization bottle of dehydration and deoxidation band stirrer, take by weighing 0.56 gram (3.89 mmole) rac-Lactide, adds 3.38 milliliters of toluene, under 70 ℃ of oil baths fully after the dissolving, with 0.5 milliliter (6.48 * 10 of the toluene solution of syringe adding catalyzer -3Mmole. milliliter -1).Keep 70 ℃ of polymerizations 4 hours, with the alcohol termination reaction that contains 5% hydrochloric acid, polymkeric substance is used industrial alcohol precipitation, gets polycaprolactone 0.54 to constant weight after the vacuum-drying and restrains yield 97%.The theoretical value average molecular weight of polymkeric substance is 16.77 ten thousand [M n(calcd)=(M wOf L-LA) * [ε-CL]/[I] * and (polymer yield)=144.13 * 1200 * 97%], GPC actual measurement number-average molecular weight (M n) be 12.16 ten thousand, MWD (M w/ M n) be 1.25.
Embodiment eight: p-C 6H 4[CH 2OYL (THF)] 2The controlled copolymerization of (3,5 substituting group is the tertiary butyl on the aromatic ring of L) catalysis L-rac-Lactide and 6-caprolactone
In the polymerization bottle of dehydration and deoxidation band stirrer, take by weighing 0.52 gram (3.61 mmole) rac-Lactide, adds 3.22 milliliters of toluene, under 70 ℃ of oil baths fully after the dissolving, stir down with syringe add catalyzer 0.4 milliliter of toluene solution (0.045 mmole. milliliter -1).Keep 70 ℃ of polymerizations 1 hour, under this temperature, add 0.40 milliliter of 6-caprolactone (3.62 mmole) again, keep 70 ℃ of polymerizations 1 hour with syringe; With the alcohol termination reaction that contains 5% hydrochloric acid; Multipolymer is used industrial alcohol precipitation, gets multipolymer 0.91 to constant weight after the vacuum-drying and restrains yield 97%.The theoretical value average molecular weight of multipolymer is 5.01 ten thousand [M n(calcd)=(M wOf ε-CL+M wOf L-LA) * [M] GPC actual measurement number-average molecular weight (M/[I] * (polymer yield)=(114+144.13) * 200 * 97%], n) be 5.11 ten thousand, MWD (M w/ M n) be 1.27.Levy through the hydrogen stave, the mol ratio of L-rac-Lactide and ε-caprolactone is 200: 185.

Claims (8)

1. bridged linkage bis aryloxy rare earth metal title complex is characterized in that: said bridged linkage bis aryloxy rare earth metal title complex be nitrogen-bridged bis aryloxy yttrium to the dibenzyl oxygen compound, said nitrogen-bridged bis aryloxy yttrium to the chemical formula of dibenzyl oxygen compound is:
p-C 6H 4[CH 2OYL(THF)] 2
Wherein, Y representes the rare earth metal yttrium; L represents nitrogen-bridged bis aryloxy part, L=Me 2NCH 2CH 2N{CH 2-(2-O-C 6H 2-R-3,5) 2, wherein 3 of aromatic ring and 5 have alkyl substituent R, and R is selected from the saturated alkyl of C1~C4.
2. prepare the method for the said nitrogen-bridged bis aryloxy yttrium of claim 1, it is characterized in that: may further comprise the steps the dibenzyl oxygen compound:
(1) under the anhydrous and oxygen-free condition, be to get nitrogen-bridged bis aryloxy rare earth metal hexichol aminate LYNPh at 2: 1 according to the molar weight ratio 2(THF) with to two benzylalcohols, be solvent with the THF, under the room temperature reaction more than 12 hours;
(2) solvent removed in vacuo adds normal hexane in the residuum, separate out clear crystal after leaving standstill, and centrifugal back recrystallization obtains the crystal of said nitrogen-bridged bis aryloxy yttrium to the dibenzyl oxygen compound.
3. the said nitrogen-bridged bis aryloxy yttrium of claim 1 is to the application of dibenzyl oxygen compound as the controlled ring-opening polymerization catalyst of 6-caprolactone.
4. application rights requires 1 said nitrogen-bridged bis aryloxy yttrium to the controlled ring-opening polymerization method of dibenzyl oxygen compound catalysis 6-caprolactone, it is characterized in that: may further comprise the steps:
(1) under the anhydrous and oxygen-free condition, adds the toluene solution of catalyzer in the time of the toluene solution of stirring 6-caprolactone;
(2) after polymerization is accomplished,, use the industrial spirit precipitation polymers with the alcohol termination reaction of the hydrochloric acid that contains 5% mass percent.
5. the said nitrogen-bridged bis aryloxy yttrium of claim 1 is to the application of dibenzyl oxygen compound as the controlled ring-opening polymerization catalyst of L-rac-Lactide.
6. application rights requires 1 said nitrogen-bridged bis aryloxy yttrium to the controlled ring-opening polymerization method of dibenzyl oxygen compound catalysis L-rac-Lactide, it is characterized in that: may further comprise the steps:
(1) under the anhydrous and oxygen-free condition, under 60~80 ℃, adds the toluene solution of catalyzer when stirring the toluene solution of L-rac-Lactide;
(2) after polymerization is accomplished,, use the industrial spirit precipitation polymers with the alcohol termination reaction of the hydrochloric acid that contains 5% mass percent.
The said nitrogen-bridged bis aryloxy yttrium of claim 1 to the dibenzyl oxygen compound as L-rac-Lactide and the controlled ring opening copolymer Application of Catalyst of 6-caprolactone.
8. application rights requires the method for 1 said nitrogen-bridged bis aryloxy yttrium to dibenzyl oxygen compound catalysis L-rac-Lactide and the controlled ring opening copolymer of 6-caprolactone, it is characterized in that: may further comprise the steps:
(1) under the anhydrous and oxygen-free condition, under 60~80 ℃, add the toluene solution of catalyzer when stirring the toluene solution of L-rac-Lactide, carry out ring-opening polymerization;
(2) add 6-caprolactone, continue polymerization;
(3) after polymerization is accomplished, with the alcohol termination reaction of the hydrochloric acid that contains 5% mass percent, use the industrial spirit precipitation polymers, resulting polymers is an ABA block polymer, and wherein A is the 6-caprolactone single-unit, and B is a L-rac-Lactide single-unit.
CN200910032425XA 2009-06-15 2009-06-15 Nitrogen-bridged bis(phenolate) yttrium dibenzyl oxygen compound and preparation and application thereof Expired - Fee Related CN101591349B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910032425XA CN101591349B (en) 2009-06-15 2009-06-15 Nitrogen-bridged bis(phenolate) yttrium dibenzyl oxygen compound and preparation and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910032425XA CN101591349B (en) 2009-06-15 2009-06-15 Nitrogen-bridged bis(phenolate) yttrium dibenzyl oxygen compound and preparation and application thereof

Publications (2)

Publication Number Publication Date
CN101591349A CN101591349A (en) 2009-12-02
CN101591349B true CN101591349B (en) 2012-07-18

Family

ID=41406246

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910032425XA Expired - Fee Related CN101591349B (en) 2009-06-15 2009-06-15 Nitrogen-bridged bis(phenolate) yttrium dibenzyl oxygen compound and preparation and application thereof

Country Status (1)

Country Link
CN (1) CN101591349B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104177386B (en) * 2014-07-22 2016-06-29 苏州大学张家港工业技术研究院 A kind of nitrogen-bridged three aryloxy rare earth metal compounds and its preparation method and application
CN115612081B (en) * 2022-10-25 2023-05-12 苏州大学 Preparation method of cyclic poly (L-lactide)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101418006A (en) * 2008-12-15 2009-04-29 苏州大学 N-aryloxy functionalized ketimine rare earth metal amido and catalytic use thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101418006A (en) * 2008-12-15 2009-04-29 苏州大学 N-aryloxy functionalized ketimine rare earth metal amido and catalytic use thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Holming F. Yuen et al.Synthesis and Catalytic Properties of Phenylene-Bridged Binuclear Organolanthanide Complexes.《Organometallics》.2008,第27卷(第2期),155-158. *
Hui Zhou et al.Ytterbium(II) Complex Bearing a Diaminobis(phenolate) Ligand:Synthesis, Structure, and One-Electron-Transfer and ε-Caprolactone Polymerization Reactions.《Inorganic Chemistry》.2007,第46卷(第3期),958-963. *
Yingming Yao et al.Synthesis, Reactivity, and Characterization of Amine Bis(phenolate) Lanthanide Complexes and Their Application in the Polymerization of ε-Caprolactone.《Organometallics》.2005,第24卷(第16期),4014-4020. *

Also Published As

Publication number Publication date
CN101591349A (en) 2009-12-02

Similar Documents

Publication Publication Date Title
CN108467411B (en) Method for catalyzing controllable ring-opening polymerization of cyclic ester monomer by using phosphazene and urea binary system
Chen et al. A Highly efficient initiator for the ring-opening polymerization of lactides and ε-caprolactone: a kinetic study
CN101125914B (en) Method for preparing poly (lactic-co-glycolic acid)
CN106046038B (en) A kind of 8 N arylamine hydrogenated quinolines complexing alkyl aluminum compound and preparation method and application
CN102627758B (en) Dual-core amine imine zinc catalyst and preparation method and application thereof
CN101412727B (en) Imidazolidinyl bridged bis(aryloxide) rare-earth metal aminate and catalysis use thereof
CN101139436B (en) Amine imines zinc catalyst and preparation method and use thereof
CN102190674A (en) Amino aryloxy rare earth metal complex, preparation thereof and application thereof
CN102675617A (en) N,N-dialkyl aniline-arylamine zinc catalyst and preparation method and application thereof
CN107022068B (en) 6-caprolactone and L- lactide catalyst for copolymerization and copolymerization process
CN101591349B (en) Nitrogen-bridged bis(phenolate) yttrium dibenzyl oxygen compound and preparation and application thereof
CN105367763A (en) Method for preparing polyester by ring opening polymerization
CN107722250A (en) A kind of preparation method of binary catalyst system and application
CN102838628A (en) Beta-ketimine ligand aluminum compound, and preparation method and application thereof
CN109705159B (en) Preparation method and application of phosphorus-nitrogen-containing ligand alkyl aluminum compound
CN102190675A (en) 8-hydroxyquinoline yttrium imine complexes, and preparation method and application thereof
CN101817923B (en) Catalyst/initiator system
CN110563941A (en) Preparation method of medical biodegradable high polymer material polycaprolactone
CN101602782B (en) Ferrocenyl diketiminate rare earth metal amide and application thereof
CN101418006A (en) N-aryloxy functionalized ketimine rare earth metal amido and catalytic use thereof
CN101550126B (en) Epsilon-caprolactone derivative and polymer thereof
CN102199167B (en) Pyrrolidyl amino bidentate ligand aluminum complex and preparation method and application thereof
CN1613890A (en) Biological degradable PES graft polyphosphonitrile copolymer and its preparation
CN110156833A (en) N, N '-salicylide-diphenylphosphine benzaldehyde contracting diamines aluminium compound preparation method and application
CN116874754A (en) Polymerization method of substituted glycolide

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP02 Change in the address of a patent holder

Address after: Suzhou City, Jiangsu province 215137 Xiangcheng District Ji Road No. 8

Patentee after: Soochow University

Address before: 215123 Suzhou City, Suzhou Province Industrial Park, No. love road, No. 199

Patentee before: Soochow University

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120718

Termination date: 20150615

EXPY Termination of patent right or utility model