CN101589275A - 用于蒸汽产生和气体预热的传热装置 - Google Patents

用于蒸汽产生和气体预热的传热装置 Download PDF

Info

Publication number
CN101589275A
CN101589275A CNA2007800460766A CN200780046076A CN101589275A CN 101589275 A CN101589275 A CN 101589275A CN A2007800460766 A CNA2007800460766 A CN A2007800460766A CN 200780046076 A CN200780046076 A CN 200780046076A CN 101589275 A CN101589275 A CN 101589275A
Authority
CN
China
Prior art keywords
heat transfer
transfer unit
htu
exhaust
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007800460766A
Other languages
English (en)
Inventor
刘云权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texaco Development Corp
Original Assignee
Texaco Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texaco Development Corp filed Critical Texaco Development Corp
Publication of CN101589275A publication Critical patent/CN101589275A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/48Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents followed by reaction of water vapour with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/323Catalytic reaction of gaseous or liquid organic compounds other than hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • F28D21/001Recuperative heat exchangers the heat being recuperated from exhaust gases for thermal power plants or industrial processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • C01B2203/0288Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step containing two CO-shift steps
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0455Purification by non-catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/066Integration with other chemical processes with fuel cells
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/085Methods of heating the process for making hydrogen or synthesis gas by electric heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0866Methods of heating the process for making hydrogen or synthesis gas by combination of different heating methods
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0877Methods of cooling by direct injection of fluid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0883Methods of cooling by indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1011Packed bed of catalytic structures, e.g. particles, packing elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1023Catalysts in the form of a monolith or honeycomb
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1076Copper or zinc-based catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1094Promotors or activators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1223Methanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1217Alcohols
    • C01B2203/1229Ethanol
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1247Higher hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1288Evaporation of one or more of the different feed components
    • C01B2203/1294Evaporation by heat exchange with hot process stream
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/146At least two purification steps in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Abstract

本发明公开了一种传热装置,其整合有锅炉和气体预热器以进行蒸汽产生和气体预热。在一个实施例中,本发明的传热装置可以在燃料处理应用中使用。在这个实施例中,传热装置可以位于例如阳极尾气氧化器的燃烧室的下游。

Description

用于蒸汽产生和气体预热的传热装置
技术领域
本发明通常涉及用于蒸汽产生和气体预热的传热装置。本发明尤其涉及一种传热装置,其中,锅炉和气体预热器整合到一个装置中以产生过热蒸汽和高温气体(空气或燃料)。在一个说明性实施例中,本发明应用于燃料处理应用,具体地,可以位于燃烧室或阳极尾气氧化器的下游。
背景技术
燃料电池通过化学氧化还原反应提供电能并且就清洁度和效率来说明显优于其它形式的能量产生。典型地,燃料电池使用氢气作为燃料,使用氧气作为氧化剂。能量产生与反应物的消耗率成比例。
限制燃料电池更广泛使用的明显缺陷在于缺少分布广泛的氢气基础设施。氢气具有比较低的体积能量密度,与目前在大多数发电系统中使用的烃类燃料相比更难储存和输送。克服该难题的一个方法是使用重整装置将烃类转化为富氢气体流,其可以用作燃料电池的原料。
烃基燃料,例如天然气、LPG、汽油和柴油需要转化处理以用作大多数燃料电池的燃料源。当前技术使用多步骤工艺,将初始转化工艺与几个净化工艺相结合。初始工艺最常见为蒸汽重整(SR)、自热重整(ATR)、催化部分氧化(CPOX)或非催化部分氧化(POX)。净化工艺通常由脱硫、高温水气变换、低温水气变换、选择性的CO氧化或选择性的CO甲烷化的组合构成。可选的工艺包括氢气选择性膜反应器和过滤器。
在燃料处理装置,例如SR或ATR反应器中,需要过热蒸汽和预热空气和/或燃料。燃料处理效率直接受到蒸汽过热程度以及热空气或燃料预热程度的影响。
通常,来自燃烧室或阳极尾气氧化器(ATO)的热燃烧排气(也称作烟道气)用作蒸汽产生和空气/燃料预热的热源。除了燃料重整装置之外,燃料处理系统典型地包括锅炉和空气/燃料预热器,所述预热器由内部具有用于热交换和蒸汽产生的几个螺旋盘管的壳体构成。热燃烧排气通常只流过壳体一次,同时水和冷气体(空气或燃料)流过内盘管。在这种结构中,虽然可以产生蒸汽,但蒸汽未充分过热到希望的温度(例如,600℃)。另外,由于在盘管内部容易形成栓流,蒸汽产量不稳定。另外,用于气体预热的传热效率非常有限,因此,空气和/或燃料不能充分预热到对于ATR应用来说足够的高温。
低蒸汽产量和传热效率归因于锅炉和空气/燃料预热器的设计。首先,燃烧排气只流过壳体一次,这不能确保热排气和冷蒸汽之间足够的接触时间。其次,典型的锅炉使用1/4英寸螺旋盘管,两相流在盘管内的流动非常接近于水平方向,因此,在如此小直径盘管中更易形成栓流。再次,在大部分时间里,热蒸汽和冷蒸汽同时流动,这限制了将冷蒸汽加热到高于ATO排气的出口温度的温度。
需要兼顾有效热传递和稳定蒸汽产量的锅炉和气体预热器设计。本发明提供了一种用于蒸汽产生和气体预热的传热装置。选择性地,本发明的传热装置在燃料处理应用中可以位于燃烧室或ATO下游。
发明内容
本发明公开了一种热交换器,其中,锅炉和气体预热器整合到一个装置中以产生过热蒸汽和高温气体(空气或燃料)。在一个实施例中,本发明的传热装置在燃料处理应用中可以位于燃烧室例如阳极尾气氧化器(ATO)的下游。
本发明的传热装置设计的特征之一在于,来自燃烧室或ATO的热排气三次(向上或向下)流过本发明的柱状壳体,而不是传统的流过一次。该特征增加了热排气接触冷蒸汽的接触时间,从而提高了热传递。
本发明的传热装置设计的第二个特征在于,锅炉设计兼顾流动沸腾和池沸腾。本发明的钟形环状空间内的水可以几乎与流动沸腾一样向上流动,但由于顶部存在较大开放空间用于将液滴击落而不易结块,从而形成不连续的两相流动,使蒸汽与水分开。另外,本发明的锅炉还类似于池沸腾,这是因为由于连续不断的水供给以及水位在稳定条件下通常恒定,使得有一部分水保持在钟形储存器中。因此,在流动沸腾型热交换器中经常遇到的不利结块减到最小程度,并且获得了更稳定的蒸汽产量。
本发明传热装置的设计的另一特征在于,它对蒸汽产量具有更好的调气比(turn-down ratio),因为沸腾传热表面面积可以随水位而变,而水位相应地随水流量而变。
本发明传热装置的设计的附加特征在于,它整合有轧制翅片热交换器,以便尤其是在热源已经冷却的位置增强气气热交换。
另外,本发明的热传递设计在于,由于热排气和冷蒸汽之间的反向流动路径,蒸汽或气体可以加热到更高的温度。
总之,本发明的热交换器的设计提供了用于燃料处理应用的有效热传递和稳定蒸汽产量。
附图说明
参考附图对本发明进行描述,其中:
图1显示了用于燃料处理器的简单工艺流程图。
图2显示了紧凑的燃料处理器的实施例。
图3显示了传热装置的实施例。
图4显示了与混合燃烧室结合使用的传热装置的实施例。
具体实施方式
本发明公开了一种传热装置,其中,锅炉和气体预热器整合到一个装置中以产生过热蒸汽和高温气体(空气或燃料)。在本发明的一个实施例中,本发明的传热装置与燃料处理装置结合使用;然而,可以想到,本发明的传热装置还可以用于其它应用并且不局限于燃料处理应用。
燃料处理系统需要过热蒸汽和预热空气和/或燃料。燃料处理器通常是用于将烃类燃料转换为富氢气体的设备。在本发明的一个实施例中,这里描述的紧凑的燃料处理器从供燃料电池使用的烃类燃料中生产富氢气体流;然而,本发明的范围不局限于这种用途。
用于燃料处理器的烃类燃料在环境条件下可以是液体或气体,只要它可以汽化即可。当在此使用时,术语″烃类″包括具有碳-氢键的有机化合物,其能够通过部分氧化或蒸汽重整反应产生氢气。在化合物的分子结构中不排除存在碳和氢以外的原子。因此,用于燃料处理器的适用燃料包括但不限于例如天然气、甲烷、乙烷、丙烷、丁烷、石脑油、汽油和柴油的烃类燃料,以及例如甲醇、乙醇、丙醇的酒精等。
燃料处理器进料包括烃类燃料、氧气和水。氧气可以是空气、富氧空气或大体上纯氧。水可以液体或蒸汽形式引入。进料成分的组成百分比由希望的工作条件决定,如下所述。
燃料处理器排出流包括氢气和二氧化碳,还可以包括一部分水、未转化的烃类、一氧化碳、杂质(例如,硫化氢和氨)以及惰性组分(例如,氮气和氩气,尤其是如果空气是进料流的一部分的话)。
参见图1,图1显示了燃料处理器的简单工艺流程图,举例说明了将烃类燃料转化为富氢气体所包括的工艺步骤。本领域的技术人员应当认识到,在反应物通过这里公开的反应器流动的过程中需要一定量的渐进顺序。
处理步骤A是自热重整过程,其中,两个化学反应,即部分氧化(下面的反应式I)和选择性的蒸汽重整(下面的反应式II)联合作用以将进料流F转化为含有氢气和一氧化碳的合成气体。反应式I和II是示例性的反应式,其中,甲烷被认为是烃类:
CH4+1/2O2→2H2+CO(I)
CH4+H2O→3H2+CO(II)
部分氧化反应非常迅速地发生以使添加的氧气完全转化并产生热量。蒸汽重整反应较慢地发生并且消耗热量。进料流中氧气的浓度越高,越有助于部分氧化,而水蒸气浓度越高,越有助于蒸汽重整。因此,氧气与烃类之比以及水与烃类之比成为特征参数。这些比值影响工作温度和氢气产量。
根据进料条件和催化剂,自热重整步骤的工作温度可以为大约550℃到大约900℃。本发明可以在有或没有水蒸气重整催化剂的情况下使用部分氧化催化剂的催化剂床。催化剂可以是任何形式,包括球粒、球形、挤出物、整料等。部分氧化催化剂为本领域技术人员所熟知,通常由位于整料、挤出物、球粒或其它载体的氧化铝活化涂层上的贵金属例如铂、钯、铑和/或钌组成。还使用例如镍或钴的非贵金属。例如氧化钛、氧化锆、二氧化硅和氧化镁的其它活化涂层已经在文献中引用。许多添加材料,例如镧、铈和钾已经在文献中引用为″助催化剂″,用于提高部分氧化催化剂的性能。
蒸汽重整催化剂应当为本领域技术人员所熟知并且可以包括具有一定量钴或贵金属的镍,所述贵金属例如为铂、钯、铑、钌和/或铱。例如,催化剂可以承载在单独或组合使用的氧化镁、氧化铝、二氧化硅、氧化锆或铝酸镁上。可选地,蒸汽重整催化剂可以包括镍,优选地承载在单独或组合使用的氧化镁、氧化铝、二氧化硅、氧化锆或铝酸镁上,由例如钾的碱性金属催化。
处理步骤B是冷却步骤,用于将来自处理步骤A的合成气体流冷却到大约200℃到大约600℃,优选地为大约300℃到大约500℃,更优选地为大约375℃到大约425℃,以使用于下一步骤的合成气体排出的温度最佳化。冷却可以根据设计规范和回收/循环气体流热含量的需要利用热沉、导热管或热交换器实现。步骤B的一个说明性实施例是使用热交换器,其利用进料流F作为在热交换器中循环的冷却剂。热交换器可以具有本领域技术人员所熟知的任何适用结构,包括壳管式、板式、螺旋式等。可选地或另外,冷却步骤B可以通过喷射额外的进料成分,例如燃料、空气或水来完成。水是优选的,因为它在汽化为蒸汽时能够吸收大量的热。添加成分的数量取决于所希望的冷却度并且易于由本领域的技术人员确定。
处理步骤C是提纯步骤。烃类流的主要杂质之一是硫,其通过自热重整步骤A转化为硫化氢。在处理步骤C中使用的处理芯部优选地包括氧化锌和/或能够吸收和转化硫化氢的其它材料,并且可以包括载体(例如,整料、挤出物、球粒等)。通过根据下列反应式III将硫化氢转化为水实现脱硫:
H2S+ZnO→H2O+ZnS(III)
例如氯化物的其它杂质也可以被去除。反应优选地在大约300℃到大约500℃,更优选地大约375℃到大约425℃的温度下进行。氧化锌在大约25℃到大约700℃的很宽温度范围内是有效的硫化氢吸收剂,并且通过适当选择工作温度提供用于优化处理步骤顺序的高度灵活性。
排出流随后送至混合步骤D,其中,水有选择地添加到气体流中。水的添加降低了反应流在其汽化时的温度并且提供用于处理步骤E的水气变换反应(如下所述)的更多的水。水蒸气和其它排出流成分通过流过惰性材料制成的处理芯部进行混合,所述惰性材料例如为有效混合和/或有助于水汽化的瓷珠或其它类似材料。可选地,所有补给水可以随进料一起引入,混合步骤可以复位以在下面公开的CO氧化步骤G提供氧化气体的更好混合。
处理步骤E是水气变换反应,其根据反应式IV将一氧化碳转化为二氧化碳:
H2O+CO→H2+CO2(IV)
这是重要的步骤,因为除了对人体具有高毒性之外,一氧化碳对燃料电池也是有害的。一氧化物的浓度应当优选地降低到燃料电池容许的水平,典型地低于50ppm。通常,水气变换反应可以根据所用催化剂在150℃到600℃的温度下发生。在这种情况下,气体流中的大部分一氧化碳在这个步骤中转化。
低温变换催化剂在大约150℃到大约300℃的范围内起作用,并且包括例如氧化铜,或承载于例如氧化锆的其它过渡金属氧化物上的铜,或承载于例如二氧化硅、氧化铝、氧化锆等的过渡金属氧化物或耐火载体上的锌,或者位于例如二氧化硅、氧化铝、氧化锆的适用载体上的例如铂、铼、钯、铑或金的贵金属,等等。
高温变换催化剂优选地在大约300℃到大约600℃的温度范围内起作用,并且可以包括例如氧化铁或氧化铬的过渡金属氧化物,并且有选择地包括例如铜或铁失活剂(suicide)的助催化剂。还包括的是,高温变换催化剂是固载贵金属,例如固载铂、钯和/或其它铂系元素。
用于执行该步骤的处理芯部可以包括例如上述高温或低温变换催化剂,或者高温和低温变换催化剂组合的填料床。所述处理应当根据所用催化剂的类型在适于水气变换反应的任何温度,优选地在150℃到大约400℃的温度下进行。选择性地,例如冷却盘管的冷却元件可以布置在变换反应器的处理芯部中,以降低催化剂填料床内的反应温度。较低的温度有助于一氧化碳转化为二氧化碳。同样,提纯处理步骤C可以通过利用高低温变换步骤之间的脱硫模块提供用于高低温变换的分开步骤在高低温变换反应之间进行。
处理步骤F′是在一个实施例中通过热交换器进行的冷却步骤。热交换器可以具有任何适用结构,包括壳管式、板式、螺旋式等。可选地,可以使用导热管或其它形式的热沉。热交换器的目的在于降低气体流的温度以产生温度优选地为大约90℃到大约150℃的排出流。
氧气添加到步骤F′的工艺中。氧气由下述处理步骤G的反应消耗。氧气可以是空气、富氧空气或大体上纯氧。热交换器可以根据设计提供空气与富氢气体的混合。可选地,处理步骤D的实施例可用于进行混合。
处理步骤G是氧化步骤,其中,排出流中的几乎全部剩余一氧化碳转化为二氧化碳。可以在具有用于一氧化碳氧化的催化剂的情况下进行上述工艺,并且催化剂可以为任何适当形式,例如球粒、球形、整料等。用于一氧化碳的氧化催化剂已知并且典型地包括贵金属(例如铂、钯)和/或过渡金属(例如铁、铬、锰)和/或贵金属或过渡金属的化合物,尤其是氧化物。优选的氧化催化剂是位于氧化铝活化涂层上的铂。活化涂层可以施加到整料、挤出物、球粒或其它载体上。可以添加例如铈或镧的添加材料以提高性能。文献中引用了许多其它反应式,其中,一些有实际经验的人主张铑或氧化铝催化剂具有优异性能。钌、钯、金和其它材料在文献中引用为对这种应用有效。
在处理步骤G中存在两个反应:一氧化碳的希望氧化(反应式V)和氢气的不希望氧化(反应式VI)如下:
CO+1/2O2→CO2(V)
H2+1/2O2→H2O(VI)
低温有助于一氧化碳的择优氧化。因为两个反应产生热量,有利地是,有选择地包括布置在工艺中的冷却元件,例如冷却盘管。所述工艺的工作温度优选地保持在大约90℃到大约150℃的范围内。处理步骤G优选地将一氧化碳水平降低到小于50ppm,其是在燃料电池中使用的适用水平,但是本领域的技术人员应当认识到,本发明可适合于产生具有较高或较低水平的一氧化碳的富氢产物。
流出燃料处理器的排出流是含有二氧化碳和其它组分的富氢气体,所述其它组分可以是例如水、惰性组分(例如,氮气、氩气)、残余烃等。产品气体可作为用于燃料电池或用于需要富氢进料流的其它应用的进料。选择性地,产品气体可进行进一步处理,例如去除二氧化碳、水或其它组分。
燃料处理器100包含用于执行如图1所示一般工艺的一系列处理单元。期望的是,处理单元可以具有对本领域技术人员来说显而易见的多种构造。此外,这里描述的燃料处理器可适合与燃料电池一起使用,使得这里描述的燃料处理器的富氢产品气体作为进料流直接供应给燃料电池。
参见图2,图2显示了紧凑的燃料处理器的实施例。如图2所示的燃料处理器200与图1示意性显示和上文描述的工艺类似。烃类燃料进料流F引入燃料处理器,富氢产品气体P排出。燃料处理器200包括若干个处理单元,每个处理单元执行单独操作功能并且通常构造为如图2所示。在这个说明性实施例中,烃类燃料F经由第一隔室流入螺旋式热交换器201,其利用燃料电池尾气T(在ATO 214处流入燃料处理器200)对进料F进行预加热。因为在燃料处理器中发生的多个放热反应,本领域技术人员应当认识到,在这个过程中还可能存在几种其它热联合可能。预热进料随后通过同心扩散器(用于反应器入口处近乎理想的流动分布和低压降)流入脱硫反应器202。反应器202包含脱硫催化剂并且以如图1所示处理步骤C中描述的方式工作。(注意,该步骤不与图1所示处理步骤的顺序一致。这是文献的根本实例,本领域技术人员可以优化工艺构造,以便处理各种烃类燃料进料和/或产生更纯的产物。)来自反应器202的脱硫燃料随后通过同心扩散器收集并与空气A混合,混合物流向热交换器203。在这个说明性实施例中,热交换器203是螺旋式热交换器,其利用燃料电池尾气T(在ATO 214处流入燃料处理器200)加热混合的燃料/空气流。
预热的燃料/空气混合物随后流入第二隔室,其中,预热温度通过位于两个隔室之间的电线圈加热器204保持或增加。预热的燃料-空气混合物流入螺旋式热交换器205,其利用自热重整装置(ATR)206排出流将气流预先加热到自热重整反应温度。经预热的水(在热交换器212处流入燃料处理器200)在流入热交换器205之前与预热的燃料空气流混合。预热的燃料-空气-水混合物通过同心扩散器流出热交换器205,随后供应给ATR 206,这对应于图1中的处理步骤A。扩散器允许在ATR 206入口处实现均匀的流动分布。来自ATR 206的热氢气产物通过同心扩散器收集并返回热交换器205用于热回收。在这个实施例中,热交换器205安装到ATR 206正上方,以便将流动通道减到最短,从而减少能量损耗,提高总能量效率。流动调整叶片可以插在弯曲处,以便实现通过ATR 206的低压降和均匀流动。
来自热交换器205的冷却氢气产物随后通过同心扩散器流向脱硫反应器207,这对应于图1中的处理步骤C。脱硫产物随后提供给催化变换反应器208,这对应于图1中的处理步骤E。设置冷却盘管209以控制放热转换反应温度,其加快一氧化碳转化,从而导致效率提高。在这个实施例中,冷却盘管209还对ATR 206进料预先加热,进一步提高热回收和燃料电池效率。转换反应产物随后通过同心扩散器进行收集并且在螺旋式热交换器210中冷却,所述螺旋式热交换器同样使供水W预先加热。
空气A随后引入冷却的转换反应产物,其随后流向同心扩散器,给优选的CO氧化反应器211供料。反应器211将一氧化碳氧化为二氧化碳,这对应于图1中的处理步骤G。流动调整叶片可以插在弯曲处,以便实现通过反应器211的短流动通道和均匀的低压降。排出的净化氢气流随后在同心扩散器中收集并送至热交换器212,其将热能回收到供水W中。冷却氢气流随后在分离器213中冲刷以去除过量水W。来自分离器213的氢气流P适用于氢气用户,例如,燃料电池。
在图2所示实施例中,来自燃料电池的混合阳极和阴极排出气体流入燃料处理器200以在燃料电池中对未转化的氢气进行热回收。燃料电池与燃料处理器的集成显著提高了由燃料电池进行发电的总效率。燃料电池尾气T通过同心扩散器流向ATO 214。氢气,和(可能地)甲烷及其它轻质烃类的滑流(slip stream)根据下列反应式进行催化氧化:
CH4+2O2→CO2+2H2O(VII)
H2+1/2O2→H2O(VIII)
反应VII和VIII在ATO 214发生,所述ATO可以是由位于珠粒上的催化剂丸,或者优选地整体式催化剂组成的固定床反应器。热反应器排出流通过同心扩散器收集并且流向热交换器203以对来自反应器202的合成燃料/空气混合物进行热回收。来自燃料电池尾气流T的热量在所述尾气流迅速通过分离器215之前在热交换器201中进一步回收。分离出的水加入处理器排出水流W中,排出气体随后排放到环境中。
参见图3,图3显示了本发明的传热装置300的实施例。本发明的传热装置300将锅炉和气体预热器整合到一个装置中。
热排气将三次流过传热装置300。第一次,热排气从装置入口301进入传热装置300。水从进水口314进入传热装置300。热排气随后撞击锅炉储存器302以给水提供一部分热量。热排气随后偏转到位于钟形蒸发器304的外表面和壳体305之间的第一环形空间303并向上流动。在第一环形空间303中,热排气将热量交换给小盘管306。在小盘管306内,来自钟形蒸发器304的蒸汽过热。
第二次,在本发明的传热装置300的顶部,热排气回转并向下流动到位于钟形蒸发器304的内表面和轧制翅片热交换器308的外壁之间的第二环形空间307中。这是热排气第二次流过。在这次流过过程中,热排气进一步给大盘管309提供热量。在大盘管309内,已经预热的气体(空气或燃料)从热排气获得更多热量。
第三次,热排气在本发明的传热装置300的底部再次回转并通过轧制翅片热交换器308向上流动。在轧制翅片热交换器308内部,热排气将热量释放给通过中心管线310向下流动的气体(空气或燃料)。轧制翅片热交换器308用于在热源气体已经冷却的位置处增强气气热传递。这是热排气第三次也是最后一次流过。此刻冷却的热排气从排气口311流出传热装置300。
对来自传热装置300的锅炉部件的蒸汽产量而言,在第一次流过期间,当热排气撞击锅炉储存器302时,水将蒸发,并且将产生气泡。产生的气泡将上浮,离开液面并结合在一起以在钟形空间区域312处形成蒸汽。钟形空间区域312设计成大到足以允许夹带的水落下以阻止两相流。在分离之后,只有蒸汽进入小盘管306并向下流动。在小盘管306内部,如上所述,蒸汽通过向上流动的热排气过热到希望的温度。产生的过热蒸汽在蒸汽出口313流出传热装置300。
本发明的传热装置的锅炉部件兼顾流动沸腾和池沸腾。例如,如上所述,钟形蒸发器304内的水可以几乎与流动沸腾一样向上流动,但由于顶部存在大开放空间用于将液滴击落而不易结块,从而使蒸汽与液体分离。另一方面,锅炉还像池沸腾,这是因为,由于水从进水口314连续不断的进给以及在稳定条件下通常保持最低水位,使得始终有一部分水保持在锅炉储存器302中。另外,锅炉对蒸汽产量有更好的调气比(turn-down ratio),这是因为沸腾传热面积可以随水位而变,而水位相应地随水流量而变。
就气体预热而言,冷气体(空气或燃料)从中心管线310供应到传热装置300中并向下流动。在这个过程中,冷气体通过轧制翅片热交换器308从热排气获得热量。随后,冷气体在大盘管309内向上流动,并通过向下流动的热排气进一步加热。此刻被加热的冷气体从出气口315流出传热装置300。
传热装置300的设计通过增加热排气和冷蒸汽之间的接触时间来提高传热效率。该设计还由于较小的盘管直径使在流动沸腾型热交换器中经常遇到的不希望结块减到最小程度,因此利用该设计,可以实现更为稳定的蒸汽产量。另外,锅炉对蒸汽产量有更好的调气比,这是因为沸腾传热表面面积可以随水流量而变。最后,利用传热装置300的设计,由于热烟道气和冷蒸汽之间的反向流动路径设计,蒸汽或气体可以加热到较高温度。
在优选实施例中,热蒸汽源来自ATO排气。在优选实施例中,壳体305的直径为6英寸,小盘管306的直径为1/4英寸,大盘管309的直径为1/2英寸。
下面是预测工作结果的一些实例,它们以用于具有上述几何结构的本发明优选实施例的换热计算为基础。例如,当ATO排气入口温度为750℃时,可以预料,过热蒸汽温度可以是650℃,过热气体(空气或燃料)温度为580℃,ATO排气出口温度为260℃。类似地,当ATO排气入口温度为550℃时,可以预料,过热蒸汽温度将为400℃,过热气体(空气或燃料)温度为370℃,ATO排气出口温度为180℃。
参见图4,图4显示了与混合燃烧室450结合使用的本发明的传热装置400的实施例。混合燃烧室450包括允许一次空气进入混合燃烧室450的第一阀401;允许燃料(典型地,天然气;除了其它燃料外还可以使用丙烷)进入混合燃烧室450的第二阀402;允许二次空气进入混合燃烧室450的第三阀403;和允许燃料(典型地,天然气和/或重整产物)进入混合燃烧室450的第四阀404。燃料、一次空气和二次空气的混合点恰好位于混合燃烧室450的燃烧区之前。
如图4所示,混合燃烧室450还包括具有火花塞405的火焰燃烧器410,所述火花塞用于启动混合燃烧室450;高温偏转板406;重整产物分配器407;催化燃烧器408;热交换器409;二次空气预热器413;和管线内混合器411。在优选实施例中,重整产物分配器407可以是喷雾器型重整产物分配器,催化燃烧器408的催化剂床可以是整体式催化剂床,热交换器409可以是轧制翅片型热交换器。
如图4所示,本发明的传热装置400位于混合燃烧室450的下游。传热装置400包括与上文参照图3所述传热装置300相同的部件并且以与之相同的方式工作。来自催化燃烧器408的热燃烧室排气从装置入口451流入传热装置400并三次(向上或向下)流过传热装置400。这三次流过(而不是仅流过一次)大大增加了热烟道气与冷蒸汽接触的停留时间,从而提高了热传递。
燃烧排气在流过传热装置400之后可以传送至二次空气预热器410。该排气还可以传送至自热重整(ATR)反应器,用于在ATR反应器启动期间对重整装置床和转换床进行直接预热。另外,天然气可以通过与来自整体式轧制翅片热交换器的热空气进行直接混合来预热。
在一个说明性实施例中,混合燃烧室是混合阳极尾气氧化器(ATO)。
尽管已经通过优选或说明性实施例对本发明进行了描述,但对本领域技术人员显而易见的是,在不脱离本发明的构思和范围的情况下,可以对此处描述的工艺进行变形。所有这些相似的替换或改变对本领域的技术人员显而易见,并且落入由下列权利要求所限定的本发明的范围和构思内。

Claims (17)

1.一种传热装置,包括:
壳体;
锅炉;
气体预热器;
第一环形空间;
第二环形空间;
多个入口;和
多个出口。
2.如权利要求1所述的传热装置,其中,所述锅炉包括锅炉储存器;钟形蒸发器;钟形中空空间区域;和多个小盘管。
3.如权利要求1所述的传热装置,其中,所述气体预热器包括多个大盘管;中心管线;和轧制翅片热交换器。
4.如权利要求1所述的传热装置,其中,所述多个入口包括装置入口;和进水口。
5.如权利要求1所述的传热装置,其中,所述多个出口包括排气口;蒸汽出口;和气体出口。
6.如权利要求1所述的传热装置,其中,所述传热装置位于燃烧室下游。
7.如权利要求6所述的传热装置,其中,来自所述排气口的排气传送至重整反应器,用于在所述重整反应器的启动期间对重整装置床和转换床进行预热。
8.如权利要求6所述的传热装置,其中,来自所述排气口的排气传送至与所述燃烧室相关的二次空气预热器。
9.如权利要求6所述的传热装置,其中,所述燃烧室为阳极尾气氧化器。
10.一种用于操作传热装置的方法,包括:
提供整合到所述传热装置中的锅炉和气体预热器;
允许热排气通过装置入口进入所述传热装置;
使热排气第一次流过所述传热装置;
使热排气第二次流过所述传热装置;
使热排气第三次流过所述传热装置;和
允许热排气通过排气口流出所述传热装置。
11.如权利要求10所述的用于操作传热装置的方法,其中,所述第一次流过包括:使热排气接触锅炉储存器;使热排气偏转到第一环形空间中;和使热排气向上流动并接触多个小盘管。
12.如权利要求10所述的用于操作传热装置的方法,其中,所述第二次流过包括:使热排气向下流动到第二环形空间中;和使热排气接触多个大盘管。
13.如权利要求10所述的用于操作传热装置的方法,其中,所述第三次流过包括:使热排气向上流过轧制翅片热交换器。
14.如权利要求10所述的用于操作传热装置的方法,还包括提供来自燃烧室的热排气。
15.如权利要求14所述的用于操作传热装置的方法,还包括使来自所述排气口的热排气流到与所述燃烧室相关的二次空气预热器。
16.如权利要求14所述的用于操作传热装置的方法,还包括使来自所述排气口的热排气流到重整反应器,以便在所述重整反应器启动期间对重整装置床和转换床直接进行预热。
17.如权利要求14所述的用于操作传热装置的方法,其中所述燃烧室为阳极尾气氧化器。
CNA2007800460766A 2006-12-14 2007-12-13 用于蒸汽产生和气体预热的传热装置 Pending CN101589275A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/610,992 2006-12-14
US11/610,992 US7832364B2 (en) 2006-12-14 2006-12-14 Heat transfer unit for steam generation and gas preheating

Publications (1)

Publication Number Publication Date
CN101589275A true CN101589275A (zh) 2009-11-25

Family

ID=39525631

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007800460766A Pending CN101589275A (zh) 2006-12-14 2007-12-13 用于蒸汽产生和气体预热的传热装置

Country Status (7)

Country Link
US (1) US7832364B2 (zh)
EP (1) EP2122286A2 (zh)
JP (1) JP2010513834A (zh)
CN (1) CN101589275A (zh)
AU (1) AU2007333973A1 (zh)
CA (1) CA2672206A1 (zh)
WO (1) WO2008076833A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103648971A (zh) * 2011-06-23 2014-03-19 代表Mt创新中心的斯塔米卡邦有限公司 适用于制备氢的合成气中间体的制备方法
US9595726B2 (en) 2014-01-07 2017-03-14 Advanced Cooling Technologies, Inc. Fuel reforming system and process
CN108286731A (zh) * 2017-01-09 2018-07-17 摩登烈焰有限责任公司 基于蒸汽的人造壁炉
US10557391B1 (en) 2017-05-18 2020-02-11 Advanced Cooling Technologies, Inc. Incineration system and process

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100701569B1 (ko) * 2006-07-10 2007-03-29 주식회사 경동나비엔 응축방지를 위한 저장식 보일러의 열교환기 구조
US7832364B2 (en) * 2006-12-14 2010-11-16 Texaco Inc. Heat transfer unit for steam generation and gas preheating
US20080141584A1 (en) * 2006-12-14 2008-06-19 Texaco Inc. Methods for Using a Catalyst Preburner in Fuel Processing Applications
US8327810B2 (en) * 2007-03-16 2012-12-11 Armstrong Hot Water Inc. High efficiency water heater
EP2313284B1 (en) * 2008-07-29 2019-10-16 Ventech, LLC Supplemental heating system including integral heat exchanger
KR100992340B1 (ko) * 2009-01-12 2010-11-04 두산중공업 주식회사 연료극 가스 가열 겸용 연료전지용 증기 발생기
US8375900B2 (en) * 2009-04-15 2013-02-19 John Berkyto External combustion engine and method of converting internal combustion engine thereto
US8767536B2 (en) * 2009-11-06 2014-07-01 Intel Corporation Multi-radio communication between wireless devices
CA2709722A1 (en) * 2010-07-15 2012-01-15 Alakh Prasad Integrated biogas cleaning a system to remove water, siloxanes, sulfur, oxygen, chlorides, and volatile organic compounds
IT1403894B1 (it) * 2010-12-29 2013-11-08 Eni Spa Scambiatore di calore per il raffreddamento di gas caldi e sistema di scambio termico
JP6318942B2 (ja) * 2014-07-22 2018-05-09 株式会社デンソー 燃料電池装置
US20180086634A1 (en) * 2015-05-14 2018-03-29 Shell Oil Company Process for preparing a syngas and syngas cooling device
US10753644B2 (en) * 2017-08-04 2020-08-25 A. O. Smith Corporation Water heater
EP3740715B1 (en) * 2018-01-19 2023-12-20 DRI-Steem Corporation Condensing, ultra-low nox gas-fired humidifier
US11371695B2 (en) * 2019-10-25 2022-06-28 Miura Co., Ltd. Boiler
CN110749017A (zh) * 2019-12-09 2020-02-04 佛山市顺德区雅洛特电器有限公司 顶置式上加水加湿器

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2981250A (en) * 1958-02-07 1961-04-25 Richard M Stewart Submerged combustion heating apparatus
US4149673A (en) * 1976-03-27 1979-04-17 Raytheon Company Self-pumping water boiler system
US4316434A (en) * 1980-02-13 1982-02-23 Bailey Burners, Inc. Method and apparatus for improving heat transfer
US4357910A (en) * 1980-11-28 1982-11-09 Blockley Eugene T Multi-pass helical coil thermal fluid heater
US4479484A (en) * 1980-12-22 1984-10-30 Arkansas Patents, Inc. Pulsing combustion
US4393815A (en) * 1981-04-16 1983-07-19 Pedersen Niels R Heating plant
US4993402A (en) * 1989-12-18 1991-02-19 Carrier Corporation Fuel efficient rapid response water heating module
US5022379A (en) * 1990-05-14 1991-06-11 Wilson Jr James C Coaxial dual primary heat exchanger
US5311843A (en) * 1993-05-12 1994-05-17 Weben-Jarco, Inc. Water heating apparatus
US6213757B1 (en) * 1995-06-07 2001-04-10 Quantum Group Inc. Advanced emissive matrix combustion
US6397788B2 (en) * 1996-06-03 2002-06-04 Ferdinand K. Besik Compact ultra high efficiency gas fired steam generator
US6623603B1 (en) * 1998-10-20 2003-09-23 Mesosystems Technology, Inc. Method and apparatus for water purification
US6492924B2 (en) * 1999-09-07 2002-12-10 Linear Technology Corporation Circuits, systems, and methods for signal processors that buffer a signal dependent current
US20020068740A1 (en) * 1999-12-07 2002-06-06 Mylari Banavara L. Combination of aldose reductase inhibitors and antihypertensive agents for the treatment of diabetic complications
WO2002045836A1 (en) 2000-12-05 2002-06-13 Texaco Development Corporation Conversion of hydrocarbon fuel to hydrogen rich gas for feeding a fuel cell
US6824577B2 (en) 2000-12-12 2004-11-30 Texaco Inc. Nested compact fuel processor for producing hydrogen rich gas
EP1350071B1 (en) 2000-12-13 2013-04-03 Texaco Development Corporation Single chamber compact fuel processor
US6427638B1 (en) * 2001-03-09 2002-08-06 Chris Kolbusz Water heater apparatus
US7160340B2 (en) 2001-04-26 2007-01-09 Texaco Inc. Single chamber compact fuel processor
CA2456763A1 (en) 2001-08-10 2003-02-27 Texaco Development Corporation Fuel processors utilizing heat pipe cooling
US6984372B2 (en) * 2002-09-06 2006-01-10 Unitel Technologies, Inc. Dynamic sulfur tolerant process and system with inline acid gas-selective removal for generating hydrogen for fuel cells
US7235217B2 (en) 2003-04-04 2007-06-26 Texaco Inc. Method and apparatus for rapid heating of fuel reforming reactants
US7829227B2 (en) 2003-04-04 2010-11-09 Texaco Inc. Integrated fuel processor apparatus and enclosure and methods of using same
US7081144B2 (en) 2003-04-04 2006-07-25 Texaco Inc. Autothermal reforming in a fuel processor utilizing non-pyrophoric shift catalyst
US20040197625A1 (en) 2003-04-04 2004-10-07 Texaco Inc. Method and apparatus for separating water from a fuel cell exhaust stream
US7101175B2 (en) 2003-04-04 2006-09-05 Texaco Inc. Anode tailgas oxidizer
US8354081B2 (en) 2003-04-04 2013-01-15 Texaco, Inc. Portable fuel processor apparatus and enclosure and method of installing same
US7318970B2 (en) 2003-04-04 2008-01-15 Texaco Inc. Architectural hierarchy of control for a fuel processor
US7354463B2 (en) 2004-12-17 2008-04-08 Texaco Inc. Apparatus and methods for producing hydrogen
US7216040B2 (en) 2005-04-11 2007-05-08 Air Products And Chemicals, Inc. Intelligent network of hydrogen supply modules
US7504048B2 (en) 2005-06-14 2009-03-17 Air Products And Chemicals, Inc. Axial convective reformer
US7337752B2 (en) * 2005-10-03 2008-03-04 Rheem Manufacturing Company Instantaneous fuel-fired water heater with low temperature plastic vent structure
US7578669B2 (en) * 2006-12-14 2009-08-25 Texaco Inc. Hybrid combustor for fuel processing applications
US7832364B2 (en) * 2006-12-14 2010-11-16 Texaco Inc. Heat transfer unit for steam generation and gas preheating
US20080141584A1 (en) 2006-12-14 2008-06-19 Texaco Inc. Methods for Using a Catalyst Preburner in Fuel Processing Applications

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103648971A (zh) * 2011-06-23 2014-03-19 代表Mt创新中心的斯塔米卡邦有限公司 适用于制备氢的合成气中间体的制备方法
US9595726B2 (en) 2014-01-07 2017-03-14 Advanced Cooling Technologies, Inc. Fuel reforming system and process
CN108286731A (zh) * 2017-01-09 2018-07-17 摩登烈焰有限责任公司 基于蒸汽的人造壁炉
CN108286731B (zh) * 2017-01-09 2020-08-14 摩登烈焰有限责任公司 基于蒸汽的人造壁炉
CN108286731B9 (zh) * 2017-01-09 2022-03-01 摩登烈焰有限责任公司 基于蒸汽的人造壁炉
US10557391B1 (en) 2017-05-18 2020-02-11 Advanced Cooling Technologies, Inc. Incineration system and process

Also Published As

Publication number Publication date
US7832364B2 (en) 2010-11-16
WO2008076833A3 (en) 2008-11-06
WO2008076833A2 (en) 2008-06-26
JP2010513834A (ja) 2010-04-30
US20080141951A1 (en) 2008-06-19
CA2672206A1 (en) 2008-06-26
EP2122286A2 (en) 2009-11-25
AU2007333973A1 (en) 2008-06-26

Similar Documents

Publication Publication Date Title
CN101589275A (zh) 用于蒸汽产生和气体预热的传热装置
CN101589271B (zh) 用于燃料处理应用的混合燃烧室
US6824577B2 (en) Nested compact fuel processor for producing hydrogen rich gas
AU729890B2 (en) Method and apparatus for converting hydrocarbon fuel into hydrogen gas and carbon dioxide
US6835354B2 (en) Integrated reactor
JP4335535B2 (ja) 単一チャンバーのコンパクトな燃料処理装置
US20070186475A1 (en) Fuel processor for producing a hydrogen rich gas
AU2002231020A1 (en) Dual stack compact fuel processor for producing a hydrogen rich gas
AU5587100A (en) Apparatus and method for providing a pure hydrogen stream for use with fuel cells
US20030188475A1 (en) Dynamic fuel processor with controlled declining temperatures
JP2010513189A (ja) 燃料処理用途において触媒プレバーナーを使用するための方法
AU2008200186B2 (en) Dual stack compact fuel processor for producing a hydrogen rich gas
AU2013206509A1 (en) Heat transfer unit for steam generation and gas preheating

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1134127

Country of ref document: HK

AD01 Patent right deemed abandoned

Effective date of abandoning: 20091125

C20 Patent right or utility model deemed to be abandoned or is abandoned
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1134127

Country of ref document: HK