CN101565713B - Candida antarctica lipase B gene and its application in yeast display - Google Patents

Candida antarctica lipase B gene and its application in yeast display Download PDF

Info

Publication number
CN101565713B
CN101565713B CN2009100398605A CN200910039860A CN101565713B CN 101565713 B CN101565713 B CN 101565713B CN 2009100398605 A CN2009100398605 A CN 2009100398605A CN 200910039860 A CN200910039860 A CN 200910039860A CN 101565713 B CN101565713 B CN 101565713B
Authority
CN
China
Prior art keywords
calb
gene
candida antarctica
lipase
pichia pastoris
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009100398605A
Other languages
Chinese (zh)
Other versions
CN101565713A (en
Inventor
林影
韩双艳
苏国栋
郑穗平
黄登峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN2009100398605A priority Critical patent/CN101565713B/en
Publication of CN101565713A publication Critical patent/CN101565713A/en
Application granted granted Critical
Publication of CN101565713B publication Critical patent/CN101565713B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The invention relates to candida Antarctica lipase B gene and applications thereof in yeast display. Coded protein of improved candida Antarctica B and wild type candida Antarctica lipase protein havethe same function on the amino acid level; the heat resistance capacity of the enzyme is 50-80 DEG C, and the half-lift is 3-24 hours; a nucleotide sequence is hybridized with SEQ.ID.NO2 from 1st to 978th of nucleotide under the moderate precise condition; and a preservation number of colon bacillus DH5Alpha/Puc57-CALB (Escherichia coliDH5Alpha/pUC57-CALB) which carries the plasmids is CCTCC M 209081. The candida Antarctica lipase B gene is transferred into pichia pastoris host bacteria so as to realize the high-efficient display expression of the candida Antarctica lipase B in pichia pastoris; and the provided pichia pastoris bacteria can effectively display candida Antarctica lipase B, can be widely applied to the synthesis of ethyl caproate, has different melting points and does not contain triglyceride of various fatty acids, a plurality of structured lipids, and the like.

Description

南极假丝酵母脂肪酶B基因及其在酵母展示中的应用Candida antarctica lipase B gene and its application in yeast display

技术领域technical field

本发明涉及一种能在毕赤巴斯德酵母中高效表达南极假丝酵母脂肪酶B的改良基因序列和展示有高活力脂肪酶的酵母菌,以及从该重组酵母中得到的基因工程脂肪酶。The invention relates to an improved gene sequence capable of highly expressing Candida antarctica lipase B in Pichia pastoris, a yeast showing high-activity lipase, and a genetically engineered lipase obtained from the recombinant yeast .

背景技术Background technique

来源于南极假丝酵母(Candida antarctica)的南极假丝酵母脂肪酶B(CALB)是一类重要的脂肪酶,在酯化、水解、转酯、以及其它类型反应中都显示了较其它脂肪酶更为出色的催化性能。然而,游离脂肪酶对温度及有机溶剂的稳定性较差,反应产物分离困难,难以适应不同工业生产条件的需求。利用酵母表面展示技术,外源脂肪酶可借助于锚定在细胞壁的载体蛋白固定在酵母细胞表面,类似酶的固定化,保持了脂肪酶相对独立的空间构象和原有的生物活性,表现出耐温、耐有机溶媒以及热稳定性好等优良特性,如天然的米根霉脂肪酶(Rhizopus oryzae lipase,ROL)在有机溶剂中是不能催化对映体拆分的,而展示的ROL却可以催化对映体拆分。Candida antarctica lipase B (CALB) from Antarctica (Candida antarctica) is an important class of lipase. Better catalytic performance. However, the stability of free lipase to temperature and organic solvents is poor, the separation of reaction products is difficult, and it is difficult to adapt to the needs of different industrial production conditions. Using yeast surface display technology, exogenous lipase can be immobilized on the surface of yeast cells with the help of carrier proteins anchored on the cell wall, similar to the immobilization of enzymes, maintaining the relatively independent spatial conformation and original biological activity of lipase, showing Excellent characteristics such as temperature resistance, organic solvent resistance and good thermal stability, such as natural Rhizopus oryzae lipase (Rhizopus oryzae lipase, ROL) can not catalyze enantiomer resolution in organic solvents, but the displayed ROL can Catalytic enantiomeric resolution.

脂肪酶蛋白酵母表面展示技术可以在标准的发酵过程中实现酶在酵母细胞表面的固定(展示),不仅保留了固定化酶回收方便、可重复使用的优点,更省去了酶的分离纯化以及固定化等步骤,有望成为酶固定化的替代方法之一。The lipase protein yeast surface display technology can realize the immobilization (display) of enzymes on the surface of yeast cells during the standard fermentation process, which not only retains the advantages of convenient recovery and reusability of immobilized enzymes, but also saves the separation and purification of enzymes and Immobilization and other steps are expected to become one of the alternative methods for enzyme immobilization.

基于CALB的优良特性,人们对其进行了商业化的开发,但高成本依然限制了CALB广泛应用于实践生产。近来,日本的研究学者尝试将野生型CALB展示于酿酒细胞表面,但酶在酿酒酵母细胞表面展示后表现出催化效率偏低,成为制约其发展的瓶颈。Based on the excellent characteristics of CALB, people have carried out commercial development of it, but the high cost still limits the wide application of CALB in practical production. Recently, researchers in Japan tried to display wild-type CALB on the surface of Saccharomyces cerevisiae cells, but the catalytic efficiency of the enzyme displayed on the surface of Saccharomyces cerevisiae cells was low, which became a bottleneck restricting its development.

毕赤酵母具有受甲醇调控的AOX1基因强启动子,能够稳定展示糖基化和二硫键异构化等修饰的真核蛋白,较酿酒酵母而言,更具有表达量高,胞外表达本底蛋白少等优点。毕赤酵母展示与酿酒酵母展示相比,毕赤酵母更易实现高密度培养,因此一般可获得高于酿酒酵母的酶产量。目前报道毕赤酵母表面展示的脂肪酶较少,这与毕赤酵母表面展示系统开发较晚,载体系统不成熟,展示能力不稳定有关。具体到CALB的展示,发明人(Shuang-yan Han,et al.Highly efficient synthesis of ethyl hexanoate catalyzed byCALB-displaying Saccharomyces cerevisiae whole-cells in non-aqueous phase,Journal ofMolecular Catalysis B:Enzymatic,2009,59:168-172)已将未修饰的原始CALB基因在酿酒酵母表面展示,酶水解活力为17U/g干细胞,产量低,大大限制了其作为全细胞催化剂的应用和CALB脂肪酶酶制剂的开发。因而急需在增加酶的展示量、寻找更合适的展示宿主,以及改良展示酶的催化特性等方面的研究完善,为其应用奠定基础。Pichia pastoris has a strong promoter of AOX1 gene regulated by methanol, which can stably display modified eukaryotic proteins such as glycosylation and disulfide bond isomerization. Compared with Saccharomyces cerevisiae, it has a higher expression level and extracellular expression Advantages such as less bottom protein. Pichia display Compared with Saccharomyces cerevisiae display, Pichia pastoris is easier to achieve high-density culture, so generally higher enzyme production than Saccharomyces cerevisiae can be obtained. It is currently reported that there are few lipases displayed on the surface of Pichia pastoris, which is related to the late development of the surface display system of Pichia pastoris, immature vector system and unstable display ability. Specific to the display of CALB, the inventor (Shuang-yan Han, et al. Highly efficient synthesis of ethyl hexanoate catalyzed by CALB-displaying Saccharomyces cerevisiae whole-cells in non-aqueous phase, Journal of Molecular Catalysis B: 1095, 9:09matic -172) has displayed the unmodified original CALB gene on the surface of Saccharomyces cerevisiae, the enzymatic hydrolysis activity is 17U/g dry cells, and the yield is low, which greatly limits its application as a whole-cell catalyst and the development of CALB lipase enzyme preparation. Therefore, there is an urgent need to improve the research on increasing the amount of enzyme display, finding a more suitable display host, and improving the catalytic properties of the displayed enzyme, so as to lay the foundation for its application.

发明内容Contents of the invention

本发明的目的在于克服现有脂肪酶展示催化效率低,提供一种能在毕赤酵母表面高效展示的南极假丝酵母脂肪酶B(CALB)的基因序列。The purpose of the present invention is to overcome the low catalytic efficiency of existing lipase display, and provide a gene sequence of Candida antarctica lipase B (CALB) that can be efficiently displayed on the surface of Pichia pastoris.

本发明的第二个目的是提供上述基因序列克隆的载体。The second object of the present invention is to provide a vector for cloning the above gene sequence.

本发明的第三个目的是提供指导CALB展示表达在毕赤酵母细胞表面的重组质粒载体。The third object of the present invention is to provide a recombinant plasmid vector for directing the display and expression of CALB on the cell surface of Pichia pastoris.

本发明的第四个目的是提供具有上述基因序列的能展示高活力CALB的毕赤酵母工程菌。The fourth object of the present invention is to provide Pichia pastoris engineered bacteria capable of displaying high-activity CALB with the above-mentioned gene sequence.

本发明提供的南极假丝酵母脂肪酶核苷酸序列,利用基因工程的方法,实现该基因在毕赤酵母细胞表面的高效的展示,以提高脂肪酶在细胞表面的展示量和热稳定性,从而提供一种高效率,耐热脂肪酶,降低脂肪酶生产成本。The nucleotide sequence of Candida antarctica lipase provided by the present invention uses genetic engineering methods to realize the efficient display of the gene on the cell surface of Pichia pastoris, so as to increase the display amount and thermal stability of lipase on the cell surface, Thereby providing a high-efficiency, heat-resistant lipase and reducing the production cost of lipase.

本发明的目的是通过以下技术方案实现:The purpose of the present invention is to realize through the following technical solutions:

(1)毕赤酵母中高效表达的改良CALB基因:根据已报道的南极假丝酵母脂肪酶B的三维结构,结合生物信息学计算,设计多个氨基酸的突变和不同突变位点的组合,建立野生型CALB的突变库,通过热稳定性、酶活力筛选,发现对野生型的CALB(Genbank:Z30645,来源于南极假丝酵母LF058株)的氨基酸序列设计如下突变,Pro226Asn,Leu227Lys,Phe228Thr,Val229Ser,Leu285Gly,Ala286Met,Ala288Ile,改良后CALB具体的氨基酸序列为SEQ.ID.NO1,突变后的CALB耐热性显著提高,75℃保温16h时,活力降低50%,较野生型75℃半衰期为8h提高1倍。进一步利用毕赤巴斯德酵母菌的偏好密码子置换出野生型CALB基因中稀有密码子,序列具与SEQ.ID.NO2从核苷酸第1-978位具有85%的同源性。上述的改良CALB基因可以通过化学法(β-乙腈亚磷酸胺化学合成法),使用全自动合成仪合成,这种体外使用核酸自动合成仪合成的DNA分子,编码与野生型CALB蛋白在氨基酸水平上有7个位点不同,但具有相同功能和不同催化能力的核苷酸序列。(1) Improved CALB gene highly expressed in Pichia pastoris: According to the reported three-dimensional structure of Candida antarctica lipase B, combined with bioinformatics calculations, multiple amino acid mutations and combinations of different mutation sites were designed to establish The mutant library of wild-type CALB was screened by thermal stability and enzyme activity, and it was found that the amino acid sequence of wild-type CALB (Genbank: Z30645, derived from Candida antarctica LF058 strain) was designed with the following mutations, Pro226Asn, Leu227Lys, Phe228Thr, Val229Ser , Leu285Gly, Ala286Met, Ala288Ile, the specific amino acid sequence of the modified CALB is SEQ.ID.NO1, the heat resistance of the mutated CALB is significantly improved, and the activity is reduced by 50% when incubated at 75°C for 16h, and the half-life is 8h compared with the wild type at 75°C Increased by 1 times. Further, the rare codons in the wild-type CALB gene were replaced by the preferred codons of Pichia pastoris, and the sequence had 85% homology with SEQ.ID.NO2 from nucleotide 1-978. The above-mentioned improved CALB gene can be synthesized by a chemical method (beta-acetonitrile phosphorous acid amine chemical synthesis method) using an automatic synthesizer. This DNA molecule synthesized by using an automatic nucleic acid synthesizer in vitro encodes the same protein as the wild-type CALB protein at the amino acid level. There are 7 nucleotide sequences with different positions but the same function and different catalytic abilities.

本发明中人工合成改良脂肪酶基因工作可以通过专门的生物技术公司或机构(如深圳华大基因科技有限公司、上海生工生物工程公司,)采用核酸自动合成仪以及PCR拼接方法完成。In the present invention, the work of artificially synthesizing and improving the lipase gene can be completed by a specialized biotechnology company or institution (such as Shenzhen Huada Gene Technology Co., Ltd., Shanghai Sangong Bioengineering Co., Ltd.) using an automatic nucleic acid synthesizer and PCR splicing method.

(2)具有上述基因序列克隆的载体的构建(2) Construction of vectors with above-mentioned gene sequence cloning

利用Taq酶能够在PCR产物的3’末端加上一个非模板依赖的A,而T载体是一种带有3’T突出端的载体,将获得的改良脂肪酶基因PCR产物与T载体在连接酶作用下实现体外连接,转化大肠杆菌感受态,涂平板培养过夜,进行蓝白斑筛选,挑选的阳性克隆提质粒经测序验证。克隆脂肪酶基因用的T载体可以是市售通用的任意T载体,如pUC57、pGEM-T、PMD18-T、PMD19-T等。本发明选用了pUC-57,获得了携带改良CALB基因的质粒载体pUC57-CALB。A non-template-dependent A can be added to the 3' end of the PCR product using Taq enzyme, and the T vector is a vector with a 3'T overhang. Under the effect of in vitro ligation, transform Escherichia coli competent, smear and culture overnight, carry out blue-white screening, and select positive clones to extract plasmids and verify them by sequencing. The T vector used for cloning the lipase gene can be any commercially available T vector, such as pUC57, pGEM-T, PMD18-T, PMD19-T, etc. The present invention selects pUC-57, and obtains the plasmid vector pUC57-CALB carrying the improved CALB gene.

本发明所述基因的重组载体CCTCC M 209081,其中RML是指脂肪酶基因序列;携带该质粒的菌株大肠杆菌DH5a/pUC57-CALB(Escherichia coli DH5a/pUC57-CALB)于2009年4月22日在中国典型培养物保藏中心保藏,保藏号为:CCTCC NO:M 209081。保藏地址为湖北省武汉市武汉大学(430072)。The recombinant carrier CCTCC M 209081 of gene of the present invention, wherein RML refers to lipase gene sequence; The bacterial strain Escherichia coli DH5a/pUC57-CALB (Escherichia coli DH5a/pUC57-CALB) carrying this plasmid was on April 22, 2009 in Preserved by China Center for Type Culture Collection, the preservation number is: CCTCC NO: M 209081. The preservation address is Wuhan University (430072), Wuhan City, Hubei Province.

(3)脂肪酶展示表达到酵母细胞外的重组质粒载体的构建(3) Construction of lipase display recombinant plasmid vector expressed outside yeast cells

为实现改良CALB在毕赤巴斯德酵母中的展示表达,采用pKFS(申请号200810028631.9,此展示载体在pPIC9K(Invitrogen公司真核表达载体)的基础上利用限制性内切酶EcoRI和NotI将原载体上的信号肽部分基因切除,在此基础上用来源于酿酒酵母的絮凝素基因FS替换。该质粒主要包含5’AOX1、3’AOX、FS(絮凝素基因)、HIS4,以及Amp+、Kna+等元件,同时包含可用来克隆脂肪酶基因的多克隆位点,包括限制性内切酶酶切位点MluI、ApaI、SacII、EcoRI、AvrII、NotI)为克隆表达载体。去除了RML上游编码自身信号肽的24个氨基酸对应的序列,以利用pKFS的絮凝素基因FS展示外源蛋白。根据GenBank中已报道的南极假丝酵母脂肪酶B序列(GenBank:Z30645.1),克隆CALB基因时去除了CALB上游编码自身信号肽的18个氨基酸以及前导肽7个氨基酸对应的核苷酸序列,以利用pKFS的絮凝素基因FS展示外源蛋白。根据上述思路设计引物P1为5’TAGAATTCGCCACTCCTTTGGTGAAGCGTC(框内部分为EcoRI酶切位点),引物P25’TATGCGGCCGCTCAGGGGGTGACGATG(框内部分为NotI酶切位点)In order to realize the display expression of improved CALB in Pichia pastoris, adopt pKFS (application number 200810028631.9, this display vector utilizes restriction endonuclease EcoRI and NotI on the basis of pPIC9K (Invitrogen company's eukaryotic expression vector) The part of the signal peptide gene on the vector was excised, and on this basis, it was replaced with the floculin gene FS from S. Elements such as Kna + , and multiple cloning sites that can be used to clone lipase genes, including restriction endonuclease sites MluI, ApaI, SacII, EcoRI, AvrII, NotI) are cloned expression vectors. The sequence corresponding to 24 amino acids encoding its own signal peptide upstream of RML was removed to display foreign proteins using the flocculin gene FS of pKFS. According to the Candida antarctica lipase B sequence reported in GenBank (GenBank: Z30645.1), when cloning the CALB gene, the 18 amino acids encoding its own signal peptide upstream of CALB and the nucleotide sequence corresponding to the 7 amino acids of the leader peptide were removed , to display foreign proteins using the flocculin gene FS of pKFS. According to the above ideas, design primer P1 as 5'TAGAATTCGCCACTCCTTTGGTGAAGCGTC (inside the frame is divided into EcoRI restriction site), primer P2 5'TATGCGGCCGCTCAGGGGGTGACGATG (inside the frame is divided into NotI restriction site)

以质粒pUC57-CALB为模板,P1和P2为引物进行PCR扩增。将PCR产物和pKFS质粒都用EcoRI和NotI双酶切,体外连接构建重组质粒pKFS-CALB。The plasmid pUC57-CALB was used as a template, and P1 and P2 were used as primers for PCR amplification. Both the PCR product and the pKFS plasmid were digested with EcoRI and NotI, and ligated in vitro to construct the recombinant plasmid pKFS-CALB.

(4)提供具有上述基因序列的高表达南极假丝酵母脂肪酶B的毕赤酵母工程菌(4) Provide Pichia engineered bacteria with high expression of Candida antarctica lipase B having the above gene sequence

以LiCl法将SalI线性化的重组质粒pKFS-CALB转化毕赤巴斯德酵母宿主菌GS115或KM71,转化物涂布于MD平板,培养2-3d。将MD平板上的转化子分别接种于含不同浓度的G418抗性YPD平板上,培养3-5d。将高浓度G418-YPD平板上出现的转化子挑取其对应的单克隆,按Invitrogen操作指南提取酵母基因组DNA作为模板,进行酵母基因组PCR鉴定,获得重组转化子。The SalI linearized recombinant plasmid pKFS-CALB was transformed into Pichia pastoris host strain GS115 or KM71 by the LiCl method, and the transformed product was spread on an MD plate and cultured for 2-3 days. The transformants on the MD plate were respectively inoculated on the G418-resistant YPD plate containing different concentrations, and cultured for 3-5 days. Pick the corresponding single clone of the transformants appearing on the high-concentration G418-YPD plate, extract the yeast genomic DNA as a template according to the Invitrogen operating instructions, and carry out yeast genome PCR identification to obtain recombinant transformants.

重组转化子先接种于200mL的YPD培养基中,培养至OD600到8-12作为种子液。培养种子液8-10瓶,然后以5-10%的接种量(体积比)转接至含20-35LBSM培养基的50L发酵罐中培养,甘油耗完后再补加5-8L 50%(体积比,1∶1)的甘油,至二次甘油消耗完,OD600达280-320左右,饥饿0.5-1h后,补料甲醇,甲醇流加速度为30g/L·h-60g/L·h,溶氧控制在5-10%,氨水自动流加,发酵120-140h后结束,展示在毕赤酵母表面CALB水解对硝基苯酚丁酸酯的高达130U/g酵母干细胞。Recombinant transformants were first inoculated in 200mL of YPD medium, cultured to OD 600 to 8-12 as seed solution. Cultivate 8-10 bottles of seed liquid, then transfer to culture in the 50L fermenter containing 20-35LBSM medium with 5-10% inoculum size (volume ratio), and then add 5-8L 50% ( Glycerol with a volume ratio of 1:1) until the secondary glycerol is consumed, and the OD 600 reaches about 280-320. After starvation for 0.5-1h, methanol is fed, and the flow rate of methanol is 30g/L·h-60g/L·h , Dissolved oxygen is controlled at 5-10%, ammonia water is added automatically, and the fermentation ends after 120-140h, showing that CALB hydrolyzes p-nitrophenol butyrate on the surface of Pichia pastoris up to 130U/g yeast stem cells.

含有表达载体pKFS-CALB转化的毕赤巴斯德酵母可用于短链芳香酯、生物柴油以及糖苷类的催化合成。Pichia pastoris transformed with the expression vector pKFS-CALB can be used for catalytic synthesis of short-chain aromatic esters, biodiesel and glycosides.

相对于现有技术,本发明具有如下优点和有益效果:Compared with the prior art, the present invention has the following advantages and beneficial effects:

本发明采用酵母表面展示系统表达酶,在保持酶高活力、高催化性能的同时,相比游离酶或固定化酶省略了纯化分离的繁琐步骤,更具有固定化酶的优点,可以反复使用,操作稳定性强。脂肪酶应用于生产实践时,除对高酶活有要求外,对酶的耐热性也是重点强调的内容,本发明利用生物信息学,结合定向进化手段,获得突变的CALB活力可耐75℃高温,最适作用温度为55℃,较野生型的最适温度提高了10℃。同时考虑到酵母表达非同种、非同属的外源基因时,也表现出来了产量不高,表达能力降低的问题,针对毕赤酵母表达系统合成适合其表达的RML基因,有效了解决了上述问题,实现了酶的高表达,表达活力高达130U/g酵母干细胞,为现有报道的最高水平。The present invention adopts the yeast surface display system to express the enzyme, while maintaining the high activity and high catalytic performance of the enzyme, compared with the free enzyme or immobilized enzyme, omitting the cumbersome steps of purification and separation, it has the advantages of immobilized enzyme and can be used repeatedly. Strong operational stability. When lipase is used in production practice, in addition to the requirement for high enzyme activity, the heat resistance of the enzyme is also the content that is emphasized. The present invention uses bioinformatics and combined with directed evolution means to obtain the mutated CALB activity that can withstand 75°C High temperature, the optimum temperature is 55°C, which is 10°C higher than that of the wild type. At the same time, taking into account the problems of low yield and low expression ability when expressing foreign genes of different species and genus in yeast, the RML gene suitable for its expression was synthesized according to the Pichia pastoris expression system, which effectively solved the above-mentioned problems. The problem is that the high expression of the enzyme has been achieved, and the expression activity is as high as 130U/g yeast stem cells, which is the highest level reported.

具体实施方式Detailed ways

下面结合幅图与实施例对本发明做进一步的说明,但本发明要求保护的范围并不局限于实施例表述的范围。The present invention will be further described below in conjunction with the figures and examples, but the scope of protection claimed by the present invention is not limited to the scope of the examples.

实施例1:改良米黑根毛霉脂肪酶基因的合成Embodiment 1: the synthesis of improved Rhizomucor miehei lipase gene

现有的南极假丝酵母脂肪酶B(Genbank:Z30645,来源于南极假丝酵母LF058株),其基因如SEQ.ID.NO3所示,而南极假丝酵母对密码子的偏好性与毕赤酵母存在一定差距。The existing Candida antarctica lipase B (Genbank: Z30645, derived from Candida antarctica LF058 strain), its gene is shown in SEQ.ID.NO3, and the codon preference of Candida antarctica is similar to that of Pichia pastoris Yeast has a certain gap.

本发明首先借助生物信息学预测,对野生型南极假丝酵母脂肪酶B实现不同位点、不同氨基酸的饱和突变,之后通过定向进化和高通量筛选,筛到1株酶活力和耐热性均显著提高的菌株,通过测序,发现相对野生型的CALB的氨基酸序列有如下突变,Pro226Asn,Leu227Lys,Phe228Thr,Val229Ser,Leu285Gly,Ala286Met,Ala288Ile,改良后的CAL具体的氨基酸序列为SEQ.ID.NO1,在此基础上,采用毕赤巴斯德酵母偏好的密码子替换CALB在毕赤酵母中使用频率低的密码子,设计出在毕赤巴斯德酵母中使用频率高的基因序列,形成以下具体的基因序列,如SEQ.ID.NO2,从而提高CALB在毕赤酵母中的表达量。本发明提供的基因序列可以通过专门的生物技术公司或机构使用全自动合成仪合成。The present invention first realizes the saturation mutation of different sites and different amino acids on the wild-type Candida antarctica lipase B with the help of bioinformatics prediction, and then screens out a strain of enzyme activity and heat resistance through directed evolution and high-throughput screening All significantly improved strains, through sequencing, found that the amino acid sequence of wild-type CALB has the following mutations, Pro226Asn, Leu227Lys, Phe228Thr, Val229Ser, Leu285Gly, Ala286Met, Ala288Ile, the specific amino acid sequence of the improved CAL is SEQ.ID.NO1 On this basis, the codons preferred by Pichia pastoris were used to replace the codons with low frequency of use in Pichia pastoris by CALB, and the gene sequence with high frequency of use in Pichia pastoris was designed to form the following A specific gene sequence, such as SEQ.ID.NO2, can increase the expression of CALB in Pichia pastoris. The gene sequence provided by the present invention can be synthesized by a specialized biotechnology company or institution using an automatic synthesizer.

实施例2:pUC-CALB质粒的构建Embodiment 2: Construction of pUC-CALB plasmid

上步获得的全合成基因可与pUC57进行TA克隆实现体外链接,可按照说明书进行操作。10μL体积反应体系如下:T载体1μL(50ng),加入全合成基因产物3μL,含ATP的10×Buffer 1μL,T4DNA连接酶1μL,用ddH2O补足至10μL。稍加离心,16℃水浴连接过夜。连接产物转化E.coli DH5α,然后涂布到含0.5mM IPTG,40μg/ml X-Gal指示平板上,过夜培养,挑选白斑提取质粒酶切鉴定后,将重组质粒PMD 18-T-RML送上海生工生物工程有限公司测序,测序表明克隆的基因与我们所述的全合成基因一致。The fully synthetic gene obtained in the previous step can be TA cloned with pUC57 to achieve in vitro linkage, and the operation can be performed according to the instructions. The 10 μL volume reaction system is as follows: 1 μL (50 ng) of T vector, 3 μL of fully synthetic gene product, 1 μL of 10× Buffer containing ATP, 1 μL of T4 DNA ligase, made up to 10 μL with ddH 2 O. After a little centrifugation, connect to a 16°C water bath overnight. The ligation product was transformed into E.coli DH5α, and then spread onto an indicator plate containing 0.5mM IPTG, 40μg/ml X-Gal, cultured overnight, and the recombinant plasmid PMD 18-T-RML was sent to Shanghai Sequencing by Sangon Bioengineering Co., Ltd. The sequencing showed that the cloned gene was consistent with the fully synthetic gene we described.

实施例3:重组质粒pKFS-CALB的构建Embodiment 3: Construction of recombinant plasmid pKFS-CALB

以质粒pUC57-CALB为模板,P1和P2为引物进行PCR扩增。体系为模板1μL;10×TaqDNA聚合酶buffer 5μL(含Mg2+);2.5mmol/L dNTP 4μL;20μM mol/L的引物各1μL;Taq DNA聚合酶0.75μL,加无菌水至总体积为50μL。反应条件为:94℃预变性5min;94℃变性45s,45℃退火45s,72℃延伸2min,共30个循环;第30个循环72℃延伸10min,PCR产物进行0.8%琼脂糖凝胶电泳检测并切胶回收纯化。The plasmid pUC57-CALB was used as a template, and P1 and P2 were used as primers for PCR amplification. The system is 1 μL of template; 5 μL of 10×Taq DNA polymerase buffer (containing Mg 2+ ); 4 μL of 2.5 mmol/L dNTP; 1 μL of each 20 μM mol/L primer; 0.75 μL of Taq DNA polymerase, add sterile water to a total volume 50 μL. The reaction conditions are: pre-denaturation at 94°C for 5 min; denaturation at 94°C for 45 s, annealing at 45°C for 45 s, and extension at 72°C for 2 min, a total of 30 cycles; the 30th cycle was extended at 72°C for 10 min, and the PCR product was detected by 0.8% agarose gel electrophoresis And cut the gel to recover and purify.

将全合成基因的PCR产物和pKFS质粒都用EcoRI和NotI双酶切,进行体外连接。20μL体积反应体系如下:pKFS质粒2μL(50ng),PCR产物15μL(50ng),10×Buffer2μL,T4DNA连接酶1μL。16℃水浴连接过夜后,去连接产物10μL用CaCl2转化法转入E.coli Top10F,在Amp+LB(50mg/mL)平板上涂板,提取阳性转化子质粒进行EcoRI和Not I双酶切鉴定。鉴定正确后,同样委托上海生工生物工程有限公司进行测序。Both the PCR product of the synthetic gene and the pKFS plasmid were digested with EcoRI and NotI, and connected in vitro. The 20 μL volume reaction system is as follows: pKFS plasmid 2 μL (50 ng), PCR product 15 μL (50 ng), 10×Buffer 2 μL, T4 DNA ligase 1 μL. After overnight ligation in a water bath at 16°C, 10 μL of the ligation product was transformed into E.coli Top10F by CaCl 2 transformation method, plated on the Amp + LB (50mg/mL) plate, and the positive transformant plasmid was extracted for EcoRI and Not I double enzyme digestion Identification. After the identification was correct, Shanghai Sangon Bioengineering Co., Ltd. was also entrusted to perform sequencing.

实施例4:表达高活力脂肪酶的毕赤酵母工程菌的培养Embodiment 4: the cultivation of the Pichia pastoris engineered bacterium expressing high activity lipase

以LiCl法将SalI线性化的重组质粒pKFS-CALB转化宿主菌GS115,转化物涂布于MD平板,30℃培养2d。将MD平板上的转化子分别接种于含G4180.5mg/mL,1.0mg/mL,1.5mg/mL,2.0mg/mL,3.0mg/mL的YPD平板上,30℃培养3d。将高浓度G418-YPD平板(3.0mg/mL)上出现的转化子挑取单克隆。按Invitrogen操作指南提取酵母基因组DNA作为模板,利用目的基因序列的PCR引物进行酵母基因组PCR鉴定,总反应体积为20μL,Taq酶量为2U,取2μLPCR产物进行0.8%琼脂糖凝胶电泳鉴定。The recombinant plasmid pKFS-CALB linearized by SalI was transformed into the host strain GS115 by the LiCl method, and the transformant was spread on the MD plate and cultured at 30°C for 2 days. Transformants on the MD plate were inoculated on YPD plates containing G4180.5mg/mL, 1.0mg/mL, 1.5mg/mL, 2.0mg/mL, and 3.0mg/mL, respectively, and cultured at 30°C for 3 days. Single clones were picked from the transformants appearing on the high-concentration G418-YPD plate (3.0 mg/mL). Extract yeast genomic DNA as a template according to the Invitrogen operation guide, use the PCR primers of the target gene sequence for yeast genome PCR identification, the total reaction volume is 20 μL, and the amount of Taq enzyme is 2U. Take 2 μL of PCR products for 0.8% agarose gel electrophoresis identification.

鉴定正确的重组转化子GS115/pKFS-CALB先接种于200mL的YPD培养基中,培养至OD600到10作为种子液。培养种子液8瓶,然后以5%的接种量(体积比)转接至含30LBSM培养基的50L发酵罐中培养,甘油耗完后再补加6L 50%(质量体积比)的甘油,至二次甘油消耗完,OD600达300,饥饿半小时后,补料甲醇,甲醇流加速度为30g/L·h-60g/L·h,溶氧控制在5-10%,氨水自动流加,发酵120h后结束。The correctly identified recombinant transformant GS115/pKFS-CALB was first inoculated in 200 mL of YPD medium and cultured to OD 600 to 10 as the seed solution. Cultivate 8 bottles of seed liquid, then transfer to culture in the 50L fermentor containing 30LBSM medium with 5% inoculum size (volume ratio), and then add the glycerol of 6L 50% (mass volume ratio) after glycerol is exhausted, to After the secondary glycerin is consumed, the OD 600 reaches 300. After half an hour of starvation, feed methanol. The flow rate of methanol is 30g/L·h-60g/L·h. Dissolved oxygen is controlled at 5-10%, and ammonia water is automatically fed. Finish after 120h of fermentation.

发酵液在7000rpm、4℃离心10分钟,弃上清,用去离子水洗涤菌体三次,重悬菌体经真空冷冻干燥24h,得菌体冻干粉。利用对硝基苯酚丁酸酯(PNPB)做底物进行NaOH法滴定测定脂肪酶水解活力,结果显示该脂肪酶活力高达130U/g酵母干细胞,比现有技术(T.Tanino,T.Ohno,T.Aoki,H.Fukuda,A.Kondo, Development of yeast cells displayingCandida antarctica lipase B and their application to ester syntThe fermentation broth was centrifuged at 7000rpm and 4°C for 10 minutes, the supernatant was discarded, the cells were washed three times with deionized water, and the cells were resuspended and freeze-dried in vacuum for 24 hours to obtain freeze-dried cells. Utilize p-nitrophenol butyrate (PNPB) to do substrate and carry out NaOH method titration and measure lipase hydrolysis activity, the result shows that this lipase activity is up to 130U/g yeast stem cell, compared with prior art (T.Tanino, T.Ohno, T.Aoki, H.Fukuda, A.Kondo, Development of yeast cells displaying Candida antarctica lipase B and their application to ester synt

1个酶活力单位定义为每分钟水解底物对硝基苯酚丁酸酯生成1μmol对硝基苯酚所需的酶量。One unit of enzyme activity is defined as the amount of enzyme needed to hydrolyze the substrate p-nitrophenol butyrate to produce 1 μmol of p-nitrophenol per minute.

实施例5:葡萄糖月桂酸酯的合成Embodiment 5: the synthesis of glucose laurate

采用葡萄糖和月桂酸为原料,使用有机溶剂叔戊醇和二甲基亚砜,在毕赤酵母细胞表面展示的南极假丝酵母脂肪酶作用下发生酯化反应,得到糖酯产品。Glucose and lauric acid are used as raw materials, organic solvents tert-amyl alcohol and dimethyl sulfoxide are used, an esterification reaction occurs under the action of Candida antarctica lipase displayed on the surface of Pichia pastoris cells, and sugar ester products are obtained.

有机溶剂叔戊醇和二甲基亚砜(4ml的叔戊醇,1ml的二甲基亚砜)预先用分子筛充分除水。取底物0.595g葡萄糖,1.2g月桂酸(酰基供体和酰基受体摩尔比为2∶1)于25ml具塞三角瓶中,在55度下预热20min,然后加入0.3g(约39U)毕赤酵母工程菌菌体冻干粉(实施例4制备的),反应温度55℃,然后于200rpm下振荡反应72h。反应完成后离心取上清,然后上高效液相色谱定量分析(液相色谱:waters2695;检测器蒸发光散色检测器2424;柱子:C18柱),最终葡萄糖酯的产率为70%。The organic solvents tert-amyl alcohol and dimethyl sulfoxide (4ml of tert-amyl alcohol, 1ml of dimethyl sulfoxide) were pre-used with Molecular sieves fully remove water. Take substrate 0.595g glucose, 1.2g lauric acid (the molar ratio of acyl donor and acyl acceptor is 2:1) in a 25ml Erlenmeyer flask with a stopper, preheat at 55°C for 20min, then add 0.3g (about 39U) Pichia pastoris engineered bacterium lyophilized powder (prepared in Example 4), the reaction temperature was 55° C., and the reaction was shaken at 200 rpm for 72 hours. After the reaction was completed, the supernatant was centrifuged, and then quantitatively analyzed by high performance liquid chromatography (liquid chromatography: waters2695; detector evaporative light dispersion detector 2424; column: C18 column), and the final yield of glucose ester was 70%.

实施例6:果糖月桂酸酯的合成Embodiment 6: the synthesis of fructose laurate

采用果糖和月桂酸为原料,使用有机溶剂叔戊醇和二甲基亚砜,在毕赤酵母细胞表面展示的南极假丝酵母脂肪酶作用下发生酯化反应,得到糖酯产品。Fructose and lauric acid are used as raw materials, organic solvents tert-amyl alcohol and dimethyl sulfoxide are used, esterification occurs under the action of Candida antarctica lipase displayed on the surface of Pichia pastoris cells, and sugar ester products are obtained.

有机溶剂叔戊醇和二甲基亚砜(4ml的叔戊醇,1ml的二甲基亚砜)预先用

Figure G2009100398605D00062
分子筛充分除水。取底物:0.54g果糖,1.2g月桂酸(酰基供体和酰基受体摩尔比为2∶1)于25ml具塞三角瓶中,在55℃下预热20min,然后加入0.2g(约26U)毕赤酵母工程菌菌体冻干粉,反应温度55℃,然后于200rpm下振荡反应72h。反应完成后离心取上清,然后上高效液相色谱定量分析(液相色谱:waters2695;检测器蒸发光散色检测器2424;柱子:C18柱),最终果糖的产率为80%。The organic solvents tert-amyl alcohol and dimethyl sulfoxide (4ml of tert-amyl alcohol, 1ml of dimethyl sulfoxide) were pre-used with
Figure G2009100398605D00062
Molecular sieves fully remove water. Take substrate: 0.54g fructose, 1.2g lauric acid (the molar ratio of acyl donor and acyl acceptor is 2:1) in a 25ml Erlenmeyer flask with a stopper, preheat at 55°C for 20min, then add 0.2g (about 26U ) Pichia pastoris engineering bacterium lyophilized powder, the reaction temperature is 55° C., and then shaken and reacted at 200 rpm for 72 hours. After the reaction was completed, the supernatant was taken by centrifugation, and then quantitatively analyzed by high performance liquid chromatography (liquid chromatography: waters2695; detector evaporative light dispersion detector 2424; column: C18 column), and the final yield of fructose was 80%.

实施例7:油酸甲酯的合成Embodiment 7: the synthesis of methyl oleate

采用大豆油和甲醇为原料,使用有机溶剂异辛烷(2ml),在毕赤酵母细胞表面展示的南极假丝酵母脂肪酶作用下发生转酯反应,得到脂肪酸甲酯产品。Using soybean oil and methanol as raw materials, using an organic solvent isooctane (2ml), transesterification occurs under the action of Candida antarctica lipase displayed on the cell surface of Pichia pastoris to obtain a fatty acid methyl ester product.

异辛烷(2ml)预先用

Figure G2009100398605D00071
分子筛充分除水。向25ml具塞锥形瓶中加入0.965g大豆油和0.0525g甲醇(摩尔比为1),放于40℃的恒温空气摇床(200rpm)中预热20min,然后加入0.2g(约26U,实施例4制备)实施例4的毕赤酵母工程菌菌体冻干粉开始反应。反应温度55℃,然后于200rpm下振荡反应,在反应24h和48h后分别加入0.0525g甲醇(最终醇油摩尔比为3∶1),反应72h,反应完成后离心取上清,然后上气相色谱分析(气相色谱:安捷伦7890C;检测器:氢离子检测器;柱子:DB-FFAP毛细管柱),最终脂肪酸甲酯产率为65%。Isooctane (2ml) pre-prepared with
Figure G2009100398605D00071
Molecular sieves fully remove water. Add 0.965g soybean oil and 0.0525g methanol (molar ratio is 1) to a 25ml Erlenmeyer flask with a stopper, preheat it in a constant temperature air shaker (200rpm) at 40°C for 20min, then add 0.2g (about 26U, implement Example 4 Preparation) The Pichia pastoris engineering bacterium thalline lyophilized powder of embodiment 4 starts to react. The reaction temperature is 55°C, then shake the reaction at 200rpm, add 0.0525g methanol (final alcohol-oil molar ratio is 3:1) respectively after 24h and 48h of reaction, react for 72h, centrifuge after the completion of the reaction to get the supernatant, and then go to the gas chromatography Analysis (gas chromatography: Agilent 7890C; detector: hydrogen ion detector; column: DB-FFAP capillary column), the final yield of fatty acid methyl ester was 65%.

实施例8:非水相酯化反应制备己酸乙酯Embodiment 8: Preparation of ethyl hexanoate by non-aqueous phase esterification

试剂都预先用

Figure G2009100398605D00072
分子筛充分除水。在25ml具塞三角瓶中加入4.604ml的正庚烷,375μl的正己酸(终浓度0.6M)和实施例4的毕赤酵母工程菌菌体冻干粉(0.1g,约13U)放于40度的恒温摇床中预热10min,然后加入219μl无水乙醇(反应体系中,正己酸与乙醇的摩尔比为1∶1.25),在40度摇床中反应,摇床转速为200rpm。当反应时间为0.5h和5h时,分别加入0.6g和0.3g分子筛,反应6h,己酸的转化率能达到95%。在上述条件下反应后,离心回收菌体,经溶剂正庚烷洗涤,去除产物和残余的微量底物,再加入到含有新鲜底物的反应体系中催化酯化反应,经过10批次的连续使用,毕赤酵母展示CALB仍然在每批次中使己酸的转化率保持在95%以上。Reagents are pre-used
Figure G2009100398605D00072
Molecular sieves fully remove water. Add 4.604ml of n-heptane in a 25ml conical flask with a stopper, 375 μl of n-hexanoic acid (final concentration 0.6M) and the Pichia engineering bacterium lyophilized powder (0.1g, about 13U) of embodiment 4 are placed in 40 Preheat in a constant temperature shaker at 40°C for 10 minutes, then add 219 μl of absolute ethanol (the molar ratio of n-hexanoic acid to ethanol in the reaction system is 1:1.25), and react in a shaker at 40°C with a shaker speed of 200 rpm. When the reaction time is 0.5h and 5h, add 0.6g and 0.3g molecular sieve respectively, and react for 6h, the conversion rate of hexanoic acid can reach 95%. After reacting under the above conditions, the bacteria were recovered by centrifugation, washed with the solvent n-heptane to remove the product and residual trace substrates, and then added to the reaction system containing fresh substrates to catalyze the esterification reaction. After 10 batches of continuous Using, Pichia demonstrated that CALB still maintained caproic acid conversion above 95% in each batch.

由实施例5、6、7、8可见,应用实施例4制备的毕赤酵母工程菌菌体冻干粉均能有效催化糖脂、油酸甲酯以及己酸乙酯的合成,由于该菌体冻干粉作为催化剂,与游离酶和固定化酶相比,省去了分离纯化的繁琐步骤,易于制备,生产周期短,操作稳定性强,有利于降低生产成本,并实现规模化应用。From Examples 5, 6, 7, and 8, it can be seen that the lyophilized powder of Pichia pastoris engineering bacteria thallus prepared in Example 4 can effectively catalyze the synthesis of glycolipids, methyl oleate and ethyl caproate. Compared with free enzymes and immobilized enzymes, the lyophilized powder of the body as a catalyst saves the tedious steps of separation and purification, is easy to prepare, has a short production cycle, and has strong operational stability, which is conducive to reducing production costs and realizing large-scale applications.

序列列表sequence list

SEQ.ID.NO1:(改良后的南极假丝酵母的氨基酸序列,划线部分标出的是与Genank中提供(Z30645)的不一致之处)SEQ.ID.NO1: (the amino acid sequence of the improved Candida antarctica, the underlined part is the inconsistency with Genank (Z30645))

MATPLVKRLP SGSDFAFSQP KSVLDAGLTC QGASPSSVSK PILLVPGTGT TGPQSFDSNWMATPLVKRLP SGSDFAFSQP KSVLDAGLTC QGASPSSVSK PILLVPGTGT TGPQSFDSNW

IPLSAQLGYT PCWISPPPFM LNDTQVNTEY MVNAITTLYA GSGNNKLPVL TWSQGGLVAQIPLSAQLGYT PCWISPPPFM LNDTQVNTEY MVNAITTLYA GSGNNKLPVL TWSQGGLVAQ

WGLTFFPSIR SKVDRLMAFA PDYKGTVLAG PLDALAVSAP SVWQQTTGSA LTTALRNAGGWGLTFFPSIR SKVDRLMAFA PDYKGTVLAG PLDALAVSAP SVWQQTTGSA LTTALRNAGG

LTQIVPTTNL YSATDEIVQP QVSNSPLDSS YLFNGKNVQA QAVCGNKTSI DHAGSLTSQFLTQIVPTTNL YSATDEIVQP QVSNSPLDSS YLFNGKNVQA QAVCG NKTS I DHAGSLTSQF

SYVVGRSALR STTGQARSAD YGITDCNPLP ANDLTPEQKV AAAALGMPIA AAIVAGPKQNSYVVGRSALR STTGQARSAD YGITDCNPLP ANDLTPEQKV AAAAL GMPI A AAIVAGPKQN

CEPDLMPYAR PFAVGKRTCS GIVTP*CEPDLMPYAR PFAVGKRTCS GIVTP*

SEQ.IDNO2:(改良后的南极假丝酵母DNA序列,包括了AA突变和密码子偏好)ATGGCTACTCCATTGGTTAAGAGATTGCCATCTGGTTCTGATCCAGCTTTTTCTCAACCAAAGTCTGTTTTGGATGCTGGTTTGACTTGTCAAGGTGCTTCTCCATCTTCTGTTTCTAAGCCAATTTTGTTGGTTCCAGGTACTGGTACTACTGGTCCACAATCTTTTGATTCTAACTGGATTCCATTGTCTGCTCAATTGGGTTACACTCCATGTTGGATTTCTCCACCACCATTTATGTTGAACGATACTCAAGTTAACACTGAATACATGGTTAACGCTATACTACTTTGTACGCTGGTTCTGGTAACAACAAGTTGCCAGTTTTGACTTGGTCTCAAGGTGGTTTGGTTGCTCAATGGGGTTTGACTTTTTTTCCATCTATTAGATCTAAGGTTGATAGATTGATGGCTTTTGCTCCAGATTACAAGGGTACTGTTTTGGCTGGTCCATTGGATGCTTTGGCTGTTTCTGCTCCATCTGTTTGGCAACAAACTACTGGTTCTGCTTTGACTACTGCTTTGAGAAACGCTGGTGGTTTGACTCAAATTGTTCCAACTACTAACTTGTACTCTGCTACTGATGAAATTGTTCAACCACAAGTTTCTAACTCTCCATTGGATTCTTCTTACTTGTTTAACGGTAAGAACGTTCAAGCTCAAGCTGTTTGTGGTAACAAGACTAGTATTGATCATGCTGGTTCTTTGACTTCTCAATTTTCTTACGTTGTTGGTAGATCTGCTTTGAGATCTACTACTGGTCAAGCTAGATCTGCTGATTACGGTATTACTGATTGTAACCCATTGCCAGCTAACGATTTGACTCCAGAACAAAAGGTTGCTGCTGCTGCTTTGGGTATGCCAATTGCTGCTGCTATTGTTGCTGGTCCAAAGCAAAACTGTGAACCAGATTTGATGCCATACGCTAGACCATTTGCTGTTGGTAAGAGAACTTGTTCTGGTATTGTTACTCCATAA//SEQ.IDNO2:(改良后的南极假丝酵母DNA序列,包括了AA突变和密码子偏好)ATGGCTACTCCATTGGTTAAGAGATTGCCATCTGGTTCTGATCCAGCTTTTTCTCAACCAAAGTCTGTTTTGGATGCTGGTTTGACTTGTCAAGGTGCTTCTCCATCTTCTGTTTCTAAGCCAATTTTGTTGGTTCCAGGTACTGGTACTACTGGTCCACAATCTTTTGATTCTAACTGGATTCCATTGTCTGCTCAATTGGGTTACACTCCATGTTGGATTTCTCCACCACCATTTATGTTGAACGATACTCAAGTTAACACTGAATACATGGTTAACGCTATACTACTTTGTACGCTGGTTCTGGTAACAACAAGTTGCCAGTTTTGACTTGGTCTCAAGGTGGTTTGGTTGCTCAATGGGGTTTGACTTTTTTTCCATCTATTAGATCTAAGGTTGATAGATTGATGGCTTTTGCTCCAGATTACAAGGGTACTGTTTTGGCTGGTCCATTGGATGCTTTGGCTGTTTCTGCTCCATCTGTTTGGCAACAAACTACTGGTTCTGCTTTGACTACTGCTTTGAGAAACGCTGGTGGTTTGACTCAAATTGTTCCAACTACTAACTTGTACTCTGCTACTGATGAAATTGTTCAACCACAAGTTTCTAACTCTCCATTGGATTCTTCTTACTTGTTTAACGGTAAGAACGTTCAAGCTCAAGCTGTTTGTGGTAACAAGACTAGTATTGATCATGCTGGTTCTTTGACTTCTCAATTTTCTTACGTTGTTGGTAGATCTGCTTTGAGATCTACTACTGGTCAAGCTAGATCTGCTGATTACGGTATTACTGATTGTAACCCATTGCCAGCTAACGATTTGACTCCAGAACAAAAGGTTGCTGCTGCTGCTTTGGGTATGCCAATTGCTGCTGCTATTGTTGCTGGTCCAAAGCAAAACTGTGAACCAGATTTGATGCCATACGCTAGACCATTTGCTGTTGGTAAGAGAACTTGTTCT GGTATTGTTACTCCATAA//

SEQ.ID.NO3:野生型的南极假丝酵母的DNA序列:SEQ.ID.NO3: DNA sequence of wild-type Candida antarctica:

ATGGCCACTCCTTTGGTGAAGCGTCTGCCTTCCGGTTCGGACCCTGCCTTTTCGCAGCCCAAGTCGGTGCTCGATGCGGGTCTGACCTGCCAGGGTGCTTCGCCATCCTCGGTCTCCAAACCCATCCTTCTCGTCCCCGGAACCGGCACCACAGGTCCACAGTCGTTCGACTCGAACTGGATCCCCCTCTCTGCGCAGCTGGGTTACACACCCTGCTGGATCTCACCCCCGCCGTTCATGCTCAACGACACCCAGGTCAACACGGAGTACATGGTCAACGCCATCACCACGCTCTACGCTGGTTCGGGCAACAACAAGCTTCCCGTGCTCACCTGGTCCCAGGGTGGTCTGGTTGCACAGTGGGGTCTGACCTTCTTCCCCAGTATCAGGTCCAAGGTCGATCGACTTATGGCCTTTGCGCCCGACTACAAGGGCACCGTCCTCGCCGGCCCTCTCGATGCACTCGCGGTTAGTGCACCCTCCGTATGGCAGCAAACCACCGGTTCGGCACTCACTACCGCACTCCGAAACGCAGGTGGTCTGACCCAGATCGTGCCCACCACCAACCTCTACTCGGCGACCGACGAGATCGTTCAGCCTCAGGTGTCCAACTCGCCACTCGACTCATCCTACCTCTTCAACGGAAAGAACGTCCAGGCACAGGCTGTGTGTGGGCCGCTGTTCGTCATCGACCATGCAGGCTCGCTCACCTCGCAGTTCTCCTACGTCGTCGGTCGATCCGCCCTGCGCTCCACCACGGGCCAGGCTCGTAGTGCAGACTATGGCATTACGGACTGCAACCCTCTTCCCGCCAATGATCTGACTCCCGAGCAAAAGGTCGCCGCGGCTGCGCTCCTGGCGCCGGCGGCTGCAGCCATCGTGGCGGGTCCAAAGCAGAACTGCGAGCCCGACCTCATGCCCTACGCCCGCCCCTTTGCAGTAGGCAAAAGGACCTGCTCCGGCATCGTCACCCCCTGAATGGCCACTCCTTTGGTGAAGCGTCTGCCTTCCGGTTCGGACCCTGCCTTTTCGCAGCCCAAGTCGGTGCTCGATGCGGGTCTGACCTGCCAGGGTGCTTCGCCATCCTCGGTCTCCAAACCCATCCTTCTCGTCCCCGGAACCGGCACCACAGGTCCACAGTCGTTCGACTCGAACTGGATCCCCCTCTCTGCGCAGCTGGGTTACACACCCTGCTGGATCTCACCCCCGCCGTTCATGCTCAACGACACCCAGGTCAACACGGAGTACATGGTCAACGCCATCACCACGCTCTACGCTGGTTCGGGCAACAACAAGCTTCCCGTGCTCACCTGGTCCCAGGGTGGTCTGGTTGCACAGTGGGGTCTGACCTTCTTCCCCAGTATCAGGTCCAAGGTCGATCGACTTATGGCCTTTGCGCCCGACTACAAGGGCACCGTCCTCGCCGGCCCTCTCGATGCACTCGCGGTTAGTGCACCCTCCGTATGGCAGCAAACCACCGGTTCGGCACTCACTACCGCACTCCGAAACGCAGGTGGTCTGACCCAGATCGTGCCCACCACCAACCTCTACTCGGCGACCGACGAGATCGTTCAGCCTCAGGTGTCCAACTCGCCACTCGACTCATCCTACCTCTTCAACGGAAAGAACGTCCAGGCACAGGCTGTGTGTGGGCCGCTGTTCGTCATCGACCATGCAGGCTCGCTCACCTCGCAGTTCTCCTACGTCGTCGGTCGATCCGCCCTGCGCTCCACCACGGGCCAGGCTCGTAGTGCAGACTATGGCATTACGGACTGCAACCCTCTTCCCGCCAATGATCTGACTCCCGAGCAAAAGGTCGCCGCGGCTGCGCTCCTGGCGCCGGCGGCTGCAGCCATCGTGGCGGGTCCAAAGCAGAACTGCGAGCCCGACCTCATGCCCTACGCCCGCCCCTTTGCAGTAGGCAAAAGGACCTGCTCCGGCATCGTCACCCCCTGA

Claims (7)

1.一种南极假丝酵母脂肪酶B基因,其编码的酶蛋白氨基酸序列为SEQ.ID.NO1,该酶蛋白与野生型南极假丝酵母脂肪酶B蛋白在氨基酸水平上有7个位点不同,但具有相同功能和不同催化能力;该酶蛋白在75℃保温16h时,活力保持50%。1. A Candida antarctica lipase B gene, the amino acid sequence of the enzyme protein encoded by it is SEQ.ID.NO1, and the enzyme protein has 7 sites at the amino acid level with the wild-type Candida antarctica lipase B protein They are different, but have the same function and different catalytic ability; when the enzyme protein is incubated at 75°C for 16 hours, its activity remains 50%. 2.根据权利要求1所述的一种南极假丝酵母脂肪酶B基因,其特征在于,按照毕赤酵母偏好密码子设计核苷酸序列,得到在毕赤酵母中表达量提高的南极假丝酵母脂肪酶B基因,序列为SEQ.ID.NO2。2. a kind of candida antarctica lipase B gene according to claim 1, is characterized in that, according to pichia pastoris preferred codon design nucleotide sequence, obtains the candida antarctica that expression level improves in pichia pastoris Yeast lipase B gene, the sequence is SEQ.ID.NO2. 3.一种含有权利要求1所述南极假丝酵母脂肪酶B基因的重组载体pUC57-CALB,其中CALB是指权利要求1所述的脂肪酶B基因序列。3. A recombinant vector pUC57-CALB containing the Candida antarctica lipase B gene according to claim 1, wherein CALB refers to the lipase B gene sequence according to claim 1. 4.一种携带权利要求3所述的重组载体pUC57-CALB的大肠杆菌DH5α/pUC57-CALB(Escherichiαcoli DH5α/pUC57-CALB),其保藏号为:CCTCC NO:M 209081。4. an Escherichia coli DH5α/pUC57-CALB (Escherichia coli DH5α/pUC57-CALB) carrying the recombinant vector pUC57-CALB according to claim 3, its preservation number is: CCTCC NO: M 209081. 5.一种含有权利要求1所述基因的重组质粒pKFS-CALB,其中CALB是指权利要求1所述的脂肪酶B基因,以重组载体pUC57-CALB为模板,设计引物,PCR扩增CALB后利用分子克隆技术构建重组质粒pKFS-CALB。5. A recombinant plasmid pKFS-CALB containing the gene of claim 1, wherein CALB refers to the lipase B gene described in claim 1, with the recombinant vector pUC57-CALB as a template, design primers, after PCR amplification of CALB The recombinant plasmid pKFS-CALB was constructed by molecular cloning technology. 6.一种由权利要求5所述的重组质粒pKFS-CALB所转化的毕赤酵母菌,其特征在于,将表达载体pKFS-CALB转化入毕赤酵母菌。6. A Pichia bacterium transformed by the recombinant plasmid pKFS-CALB according to claim 5, characterized in that, the expression vector pKFS-CALB is transformed into Pichia bacterium. 7.权利要求6所述的质粒pKFS-CALB所转化的毕赤酵母菌在短链芳香酯、生物柴油以及糖脂类的催化合成中的应用。7. The application of Pichia pastoris transformed by the plasmid pKFS-CALB according to claim 6 in the catalytic synthesis of short-chain aromatic esters, biodiesel and glycolipids.
CN2009100398605A 2009-06-01 2009-06-01 Candida antarctica lipase B gene and its application in yeast display Active CN101565713B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100398605A CN101565713B (en) 2009-06-01 2009-06-01 Candida antarctica lipase B gene and its application in yeast display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100398605A CN101565713B (en) 2009-06-01 2009-06-01 Candida antarctica lipase B gene and its application in yeast display

Publications (2)

Publication Number Publication Date
CN101565713A CN101565713A (en) 2009-10-28
CN101565713B true CN101565713B (en) 2011-07-06

Family

ID=41282079

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100398605A Active CN101565713B (en) 2009-06-01 2009-06-01 Candida antarctica lipase B gene and its application in yeast display

Country Status (1)

Country Link
CN (1) CN101565713B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8759044B2 (en) 2011-03-23 2014-06-24 Butamax Advanced Biofuels Llc In situ expression of lipase for enzymatic production of alcohol esters during fermentation
US8765425B2 (en) 2011-03-23 2014-07-01 Butamax Advanced Biofuels Llc In situ expression of lipase for enzymatic production of alcohol esters during fermentation

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102212571B (en) * 2011-04-28 2013-08-14 浙江大学 Method for catalytically synthesizing L-ascorbyl EPA ester with yeast display lipase
CN102212578B (en) * 2011-04-28 2014-01-29 浙江大学 Yeast demonstrates lipase-catalyzed synthesis of frucose palmitate
CN102212580B (en) * 2011-04-28 2013-08-14 浙江大学 Method for catalytic synthesis of glucose laurate by utilizing yeast display lipase
CN102260336B (en) * 2011-07-29 2013-09-25 华南理工大学 Pichia pastoris wall protein Gcw5, surface display system constructed by same and construction method of surface display system
CN102276707B (en) * 2011-07-29 2013-09-25 华南理工大学 Pichia pastoris wall protein Gcw19 as well as surface display system and construction method thereof
CN102276703B (en) * 2011-07-29 2013-09-25 华南理工大学 Pichia pastoris wall protein Gcw51, and surface display system and construction method thereof
CN102260330B (en) * 2011-07-29 2013-10-30 华南理工大学 Pichia pastoris wall protein Gcw42, surface display system constructed by same and construction method of surface display system
CN102260332B (en) * 2011-07-29 2013-10-30 华南理工大学 Pichia pastoris wall protein Gcw49, surface display system constructed by same and construction method of surface display system
CN102276704B (en) * 2011-07-29 2013-07-24 华南理工大学 Pichia pastoris wall protein Gcw28, and surface display system and construction method thereof
CN102276702B (en) * 2011-07-29 2013-09-25 华南理工大学 Pichia pastoris wall protein Gcw30 and surface display system and construction method thereof
CN102260335B (en) * 2011-07-29 2013-09-25 华南理工大学 Pichia pastoris wall protein Gcw3, and surface display system and construction method thereof
CN104480028B (en) * 2014-12-16 2018-02-23 青岛蔚蓝生物集团有限公司 A kind of aspergillus niger mutant strain of stable, high-yielding lipase
CN111304105B (en) * 2020-02-27 2022-05-03 南京工业大学 Genetically engineered bacterium for producing lipase by using methanol and xylose cosubstrate and application thereof
CN114107407A (en) * 2020-09-01 2022-03-01 华南理工大学 Method for utilizing yellow water of white spirit based on enzymatic treatment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1681942A (en) * 2002-09-13 2005-10-12 韩国生命工学研究院 Method for screening lipase with improved enzymatic activity using yeast surface display vector and the lipase
CN101285078A (en) * 2008-06-10 2008-10-15 华南理工大学 A method for the synthesis of ethyl hexanoate catalyzed by a yeast display lipase

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1681942A (en) * 2002-09-13 2005-10-12 韩国生命工学研究院 Method for screening lipase with improved enzymatic activity using yeast surface display vector and the lipase
CN101285078A (en) * 2008-06-10 2008-10-15 华南理工大学 A method for the synthesis of ethyl hexanoate catalyzed by a yeast display lipase

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
潘志友 等.南极假丝酵母脂肪酶B的酿酒酵母表面展示及其催化乙酸乙酯的合成.《生物工程学报》.2008,第24卷(第4期),673-678. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8759044B2 (en) 2011-03-23 2014-06-24 Butamax Advanced Biofuels Llc In situ expression of lipase for enzymatic production of alcohol esters during fermentation
US8765425B2 (en) 2011-03-23 2014-07-01 Butamax Advanced Biofuels Llc In situ expression of lipase for enzymatic production of alcohol esters during fermentation

Also Published As

Publication number Publication date
CN101565713A (en) 2009-10-28

Similar Documents

Publication Publication Date Title
CN101565713B (en) Candida antarctica lipase B gene and its application in yeast display
CN101481695B (en) Improved Rhizomucor miehei lipase gene and use thereof in yeast display
CN106929521B (en) Aldehyde ketone reductase gene recombination co-expression vector, engineering bacterium and application thereof
CN108118035B (en) Cyclohexanone monooxygenase and application thereof
CN106834200A (en) A kind of method for improving adipic acid yield in Escherichia coli
Yuan et al. Improved ethanol production in Jerusalem artichoke tubers by overexpression of inulinase gene in Kluyveromyces marxianus
CN104046586B (en) One strain gene engineering bacterium and the application in producing (2R, 3R)-2,3-butanediol thereof
CN103087998B (en) Enzyme for synthesizing cetyl-coenzyme A through cordyceps sinensis, gene and application thereof
CN103865959A (en) Biological synthesis method of xylosic acid
CN101469318B (en) Synthesis of (R)-styrene glycol by coupling acceleration of (R)-carbonyl reduction enzyme and formic dehydrogenase
CN111484942A (en) Method for producing adipic acid by using saccharomyces cerevisiae
CN115747240B (en) A recombinant Escherichia coli engineering strain for producing equol and its application
CN102618479A (en) Clostridium capable of tolerating high-concentration butanol and construction method and application of clostridium
CN116286750A (en) Beta-glucosidase, coding gene, recombinant vector, engineering bacterium and application
CN104830744A (en) Method for preparing (R)-phenylglycol from SD-AS sequence coupled (R)-carbonyl reductase and glucose dehydrogenase
CN115433721A (en) Carbonyl reductase mutant and application thereof
CN115896050A (en) 7α-Hydroxysteroid dehydrogenase terminal modification combinatorial point mutation and efficient synthesis of ursodeoxycholic acid intermediate
CN106520587A (en) Recombinant strain producing alkaline polygalacturonate lyase and application thereof
CN106085993B (en) A kind of amidase derived from Burkholderia vine, gene, strain and application thereof
CN118685438B (en) A method for synthesizing D-xylitol based on NAD (H) cofactor circulation system and its special engineering bacteria
CN114891822B (en) Method for constructing recombinant bacteria of Mucor circinelloides with high gamma-linolenic acid production, recombinant bacteria constructed by the method, and applications thereof
CN102978177B (en) Cordyceps sinensis delta-5-desaturase used in anabolism of eicosapentaenoic acid, and gene and application thereof
CN113025642B (en) Construct for recombinant expression of saccharifying enzyme and application thereof
CN105985987B (en) biological method for preparing fatty alcohol
CN101250546A (en) Lipase gene and engineering bacteria and lipase strain

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant