CN101556273B - 利用电阻抗传感技术分析细胞迁移的方法及其专用装置 - Google Patents

利用电阻抗传感技术分析细胞迁移的方法及其专用装置 Download PDF

Info

Publication number
CN101556273B
CN101556273B CN2008101035267A CN200810103526A CN101556273B CN 101556273 B CN101556273 B CN 101556273B CN 2008101035267 A CN2008101035267 A CN 2008101035267A CN 200810103526 A CN200810103526 A CN 200810103526A CN 101556273 B CN101556273 B CN 101556273B
Authority
CN
China
Prior art keywords
electrode
cell
migration
cell migration
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008101035267A
Other languages
English (en)
Other versions
CN101556273A (zh
Inventor
王磊
朱璟
邓橙
程京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
CapitalBio Corp
Original Assignee
Tsinghua University
CapitalBio Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, CapitalBio Corp filed Critical Tsinghua University
Priority to CN2008101035267A priority Critical patent/CN101556273B/zh
Priority to US12/288,971 priority patent/US8779779B2/en
Priority to EP08169204A priority patent/EP2108955B1/en
Priority to AT08169204T priority patent/ATE550652T1/de
Publication of CN101556273A publication Critical patent/CN101556273A/zh
Application granted granted Critical
Publication of CN101556273B publication Critical patent/CN101556273B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • G01N33/5029Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects on cell motility
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/4833Physical analysis of biological material of solid biological material, e.g. tissue samples, cell cultures
    • G01N33/4836Physical analysis of biological material of solid biological material, e.g. tissue samples, cell cultures using multielectrode arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N33/5438Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0636Integrated biosensor, microarrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/069Absorbents; Gels to retain a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings

Abstract

本发明公开了利用电阻抗传感技术分析细胞迁移的方法及其专用装置。该方法包括如下步骤:1)处理设有至少一对电极的绝缘基底,使所述电极上形成自组装单分子层,该单分子层能够阻止细胞在电极表面的贴附,所述电极上施加电信号后该分子层能够被解离;2)培养待检测细胞,使待检测细胞长满除覆盖有自组装单分子层的所述电极外的区域;3)在所述电极上施加电信号,使得电极上修饰的自组装单分子层解离;4)利用电阻抗传感方法对待测细胞在电极上的迁移情况进行检测。本发明还公开了分析细胞迁移的专用装置。该方法和装置具有实时性和定量性,可在药物筛选或评价中应用。

Description

利用电阻抗传感技术分析细胞迁移的方法及其专用装置
技术领域
本发明涉及一种分析细胞迁移的方法及其专用装置,特别涉及利用电阻抗传感技术分析细胞迁移的方法及其专用装置。 
背景技术
细胞迁移是一种细胞的运动现象,是细胞在化学信号或其他因素的影响下在空间上发生的位置转移。在包括胚胎发育、创伤愈合、免疫应答以及肿瘤转移在内的众多生理和病理过程中,细胞迁移都扮演着极为重要的角色。在肿瘤治疗过程中,肿瘤转移是导致患者死亡率增高的重要因素,而肿瘤转移则与肿瘤细胞的迁移有着极为密切的联系,为了攻克肿瘤,在抗肿瘤药物筛选和药物研发中人们也把目光投向了对肿瘤细胞迁移有抑制作用的抗转移类药物。这些都说明对于细胞迁移的分析无论对于生命科学、医学等多学科的基础研究还是对于药物工业等现代化生物技术领域来说都具有重要的意义。而传统的对细胞迁移进行检测的方法,例如愈伤分析,通常需要在体外培养的单层细胞上形成物理刮痕,然后利用显微镜对细胞迁移过程进行光学观察。这些方法往往依赖于繁重的手工劳动,而且实验重复性低,依赖于定性观察,难以进行定量测量。因而,难以满足现代生物学研究以及现代生物技术产业对细胞迁移测量的需要。这成为摆在诸多科研工作者面前的一个难题。 
自组装单分子层技术是一种利用某些分子的自组装特性在基底(例如玻璃、硅、金等)表面自动形成整齐排列的分子层结构的技术,依据用途以及基底类型的不同,有各种不同的单分子层。 
细胞电阻抗传感技术是一种能够对细胞的“形态学”变化进行实时、定量、无需标记以及无创伤检测的自动化电测量技术。这种技术的原理是在绝缘基底上加工微电极或微电极阵列,并在基底上进行细胞培养,当在电极上施加微弱的交流电信号时,由于细胞的绝缘性质,其会对电场造成一定的阻碍作用,通过对这种阻碍作用(阻抗)的测量,可以间接测量细胞的生物学行为。例如,当有细胞在培养环境中贴附、增殖或者其形态发生一定的变化时,其与基底之间的黏附状态发生变化时,其对电场的阻碍作用也会发生变化。通过对阻抗的测量就可以将细胞的这种变化动态地测量出来。细胞电阻抗传感技术已经被应用于进行细胞增殖(cell proliferation), 细胞贴附(cell attachment),细胞微运动(cell micromotion),细胞屏障功能研究(cell barrier function),细胞趋化现象研究(chemotactic cell motility),细胞凋亡(cell apoptosis),细胞愈伤分析(wound-healing assay),体外细胞毒性分析(in vitrocell cytotoxicity)以及细胞对外界物理或化学刺激的响应(cell response to physicaland chemical changes)等相关研究。 
2004年Keese等报到了一种利用强烈细胞电穿孔形成没有细胞的空白区域,配合细胞电阻抗传感技术进行细胞迁移分析的方法(Keese et al.,2004)。在该方法中,金属电极被加工在用于细胞培养的绝缘基底上,将待分析的细胞接种于绝缘基底上并进行细胞培养,待细胞长满基底(当然,也长满电极),在电极上施加幅值较大的电脉冲,使得电极区域的细胞由于强烈的不可逆细胞电穿孔而被杀死,造成电极区域出现没有细胞的空白区域,此时细胞开始由电极周围向电极表面区域迁移,用细胞电阻抗传感技术实时监测细胞在电极上的迁移状况,便可以检测细胞迁移进程。这种方法将细胞迁移的检测过程高度自动化地完成了,这是其优点,但是强烈的细胞电穿孔会对电极周围细胞的活性造成不良影响,另外,电极区域也会残留细胞死亡后留下的残骸,这些都有可能影响细胞迁移的检测结果。 
发明内容
本发明的目的是提供一种利用电阻抗传感技术分析细胞迁移的方法及其专用装置。该方法能够实现实时、连续测量细胞在自然培养状态下的迁移速率。 
本发明所提供的利用电阻抗传感技术分析细胞迁移的方法,包括如下步骤: 
1)处理设有至少一对电极的绝缘基底,使所述电极上形成自组装单分子层,该单分子层能够阻止细胞在电极表面的贴附,在所述电极上施加电信号后该分子层能够被解离; 
2)培养待检测细胞,使待检测细胞长满除覆盖有自组装单分子层的所述电极外的区域; 
3)在所述电极上施加电信号,使得电极上修饰的自组装单分子层解离; 
4)利用电阻抗传感方法对待测细胞在电极上的迁移情况进行检测。 
其中,所述电极为金属单电极和/或金属电极阵列;所述金属为金或铂;所述自组装单分子层由巯基化合物形成,如HS(CH2)11(OCH2CH2)6OH。所述电信号是直流信号、一种频率的交流信号或多种频率交流信号;所述待测细胞为肿瘤细胞。 
本发明的另一个目的是提供一种用所述方法分析细胞迁移的专用装置。 
本发明提供的用所述方法分析细胞迁移的专用装置,包括一个阻抗测量系统和至少一个细胞迁移组件,所述细胞迁移组件包括用于培养细胞的腔体、固设于所述腔体中的电极器件;所述电极器件包括绝缘基底和加工于所述绝缘基底上的电极;所述至少一个细胞迁移组件通过所述电极器件与所述一个阻抗测量系统电连接,其中,所述电极上自组装有单分子层,该单分子层能够阻止细胞在电极表面的贴附,所述电极上施加电信号后该分子层能够被解离。 
所述电极为金属单电极和/或金属电极阵列;所述金属为金或铂;所述自组装单分子层由聚乙醇巯基化合物形成,如HS(CH2)11(OCH2CH2)6OH;所述电信号是直流信号、一种频率的交流信号或多种频率交流信号;所述待测细胞为肿瘤细胞。 
本发明所述的方法、所述的装置可在药物筛选或药物评价中的应用。 
具体可按照如下方法进行: 
a、在所述装置的腔体中接种并培养待测细胞,加入待测化合物; 
b、测量细胞迁移的速率; 
c、评估待测化合物对待测细胞迁移速率的影响。 
本发明利用自组装技术在电极上形成致密的单分子层,阻止细胞在电极上的贴附和生长,最终形成没有细胞贴附的电极区域,当在电极上施加一定强度的电脉冲时,这种单分子层便会解离并离开电极,细胞从而可以从绝缘基底向电极迁移,当细胞在电极上迁移时可以阻碍电极之间的电流流动,引发测量的阻抗发生变化,这种阻抗的变化可以实时反映细胞迁移的进程,从而可以对细胞迁移过程进行实时、定量的分析。由于这种电阻抗测量的方法具有高通量和高度自动化的特征,具有实时性和定量性的优势,所以测量可以全自动进行,无需人工干预,并且具有易于在微型全分析系统中集成等诸多优势。 
附图说明
图1为用于细胞迁移自动化分析装置的示意图。其中,A为测量电极,B为参比电极,C为细胞培养腔体,D和E分别为用于将参比电极/测量电极与阻抗测量系统连接的端口,F为绝缘基底,G为阻抗测量系统。 
图2为用于实现高通量细胞迁移自动化分析装置的示意图。 
图3为利用细胞迁移分析装置分析鼠成纤维细胞系NIH/3T3细胞的迁移 
(A)为利用细胞迁移分析装置测得的阻抗曲线;(B)为在图(A)曲线的B点时拍摄的显微镜照片;(C)为在图(A)曲线的C点时拍摄的显微镜照片;(D)为 在图(A)曲线的D点时拍摄的显微镜照片;(E)为在图(A)曲线的E点时拍摄的显微镜照片。 
图4为利用细胞迁移分析装置分析秋水仙素抑制人宫颈癌CasKi细胞迁移 
(A)为利用细胞迁移分析装置测得的阻抗曲线;(B)为利用公式1计算得到的迁移的平均速率。 
具体实施方式
实施例1、制备用于细胞迁移分析的装置 
用于分析细胞迁移的装置的示意图如图1所示,包括用于培养细胞的腔体C、固设于所述腔体C中的电极器件和与所述电极器件电连接的阻抗测量系统G。所述电极器件由绝缘基底F以及加工在绝缘基底F上的微电极阵列A、单电极B、接点D和E构成。其中,微电极阵列A为测量电极,单电极B为参比电极。阻抗测量系统G通过接点D和E与电极器件相连。阻抗测量系统G为能够对电极之间阻抗的模数进行测量的仪器,例如安捷伦公司的阻抗分析仪(HP 4284A precision LCR meter)。 
该细胞迁移分析的装置可用如下方法制备:用微加工技术在绝缘基底上加工出金属电极阵列,将带有金属电极阵列的绝缘基底镶嵌于能够进行体外细胞培养的腔体底部,并使巯基化合物在电极上形成自组装单分子层,该单分子层能够阻止细胞在其表面的贴附。当在测量电极上施加特定的电信号(如用幅值为1.5V的直流电信号施加于测量电极上30秒;测量电极作为阴极,插入培养细胞腔体的铂丝作为阳极)后该单分子层能够被解离,最后将测量电极和参比电极与阻抗测量系统相连,构成完整的细胞迁移测量装置。具体的制备方法如下: 
首先,将用于加工细胞迁移分析装置的玻璃基片用浓硫酸/双氧水(体积比3∶1)清洗干净。然后,用微加工工艺中的光刻技术按照图1所示的电极结构进行光刻,形成图1中所示的电极图形。接下来,利用微加工工艺中的磁控溅射技术按照图1中电极结构的图案将金溅射在玻璃基片上,形成能够进行阻抗传感测量的微电极阵列,将带有微电极阵列的玻璃基片镶嵌于能够进行体外细胞培养的腔体底部,然后在细胞培养腔体中加入1.5mmol/L的HS(CH2)11(OCH2CH2)6OH(sigma-aldrich,675105)对微电极阵列进行浸泡,时间为6个小时,温度为室温,(HS(CH2)11(OCH2CH2)6OH与金电极表面结合而形成致密的自组装单分子层,这种单分子层能够阻止细胞的贴附。最后将金电极与阻抗测量系统相连,构成完整的细胞迁移分析装置。 
本实施例中应用的是一对电极,但也可以是多对电极,如二对、三对,电极之间可以组合,例如两对电极时,一共四个电极,可以两两连接,构成参比电极和测量电极。再如三对电极时,一共六个电极,可以任选三个电极相互连接构成测量电极,其余三连接后构成参比电极。 
本发明所述方法可以进行高通量测量,如附图2所示,阻抗测量系统与多个细胞迁移组件连接即得到高通量的细胞迁移分析的装置。 
实施例2、利用细胞迁移分析装置分析鼠成纤维细胞系NIH/3T3细胞的迁移 
在细胞迁移分析装置的细胞培养腔体中接种鼠成纤维细胞系NIH/3T3细胞,并在细胞培养箱内进行细胞培养,约24小时后,待细胞在绝缘基底上长满后,在电极上施加一个直流脉冲,金电极做负极,插入溶液的铂丝做正极,电压幅值为0.8V,时间约为30秒,单分子层可以从电极上去除。此时细胞开始向金电极上迁移,实时测量电极间的阻抗(用于阻抗测量所施加的交流电频率为40kHz,电极间的电压在微伏特量级),随着细胞在电极上的迁移,阻抗信号逐渐变大,约6个小时后阻抗信号达到饱和值。细胞开始迁移到细胞长满整个电极所需要的时间T可以从阻抗曲线获得。细胞开始迁移到细胞长满整个电极所需要的时间T为从施加直流脉冲电信号开始到阻抗曲线饱和为止所需的时间。根据公式1对细胞迁移的平均速率(AS)进行计算。 
AS=R×t-1(1) 
其中,R为测量电极(图1A)的半径。 
对HIH-3T3细胞的迁移进行分析的实验结果如图3所示。实验独立重复3次。其中图3(A)为利用细胞迁移分析装置测得的阻抗曲线;(B)为在图(A)曲线的B点时拍摄的显微镜照片,用自组装单分子层技术所形成的细胞图案,可以看出圆形的金电极上没有细胞贴附,而绝缘基底上已经布满了细胞,形成细胞单层。这有力地验证了本发明用自组装单分子层技术形成“创伤”的实验结果。(C)为在图(A)曲线的C点时拍摄的显微镜照片;(D)为在图(A)曲线的D点时拍摄的显微镜照片;(E)为在图(A)曲线的E点时拍摄的显微镜照片。这些显微镜照片验证了阻抗曲线测量的结果,即细胞在电极上迁移得越远,阻抗越大。在图3(A)中的E点所示位置,阻抗基本饱和,因而从图3(A)中的B点到E点的时间间隔即为NIH-3T3细胞开始迁移到细胞长满整个电极所需要的时间T(这里T约为6小时),用电极的半径(200μm)和时间T根据公式1便可以计算细胞迁移的平均速率AS=33.33μm/h。 
实施例3、利用细胞迁移分析装置分析秋水仙素抑制人宫颈癌CasKi细胞迁移 
在细胞迁移分析装置的细胞培养腔体中接种人宫颈癌CasKi细胞(ATCC,Manassas,VA),并在细胞培养箱内进行细胞培养约24小时,待细胞在绝缘基底上长满后,在电极上施加一个直流脉冲,电极做负极,插入溶液的铂丝做正极,电压幅值约为0.8 V,时间约为30秒,单分子层可以从电极上去除,此时在细胞培养基中加入浓度分别为0.1μM、0.2μM和0.4μM的秋水仙素(sigma-aldrich,675105),并进行阻抗测量。实验结果如图4所示。实验独立重复了3次。其中图4(A)为测得的阻抗曲线,可以明显观察到相比于对照(未加秋水仙素),加入秋水仙素的细胞迁移速度明显减慢,并且秋水仙素浓度越高,抑制效果就越发明显,呈现出秋水仙素浓度依赖性的特征。图4(B)为根据公式1计算得到的迁移平均速率。 
上述实验结果表明本发明用自组装单分子层技术与细胞电阻抗传感技术相结合而制备的细胞迁移分析装置能够对细胞迁移过程进行定量、实时和自动化的分析。本发明的细胞迁移分析装置和方法能对待测化合物进行药物筛选和评价。 

Claims (9)

1.利用电阻抗传感技术分析细胞迁移的方法,包括如下步骤:
1)加工形成含有至少一对电极的绝缘基底,使所述电极上形成自组装单分子层,该单分子层能够阻止细胞在电极表面的贴附,所述电极上施加电信号后该分子层能够被解离;所述自组装单分子层由聚乙醇巯基化合物形成;
2)培养待检测细胞,使待检测细胞长满除覆盖有自组装单分子层的所述电极外的区域;
3)在所述电极上施加电信号,使得电极上修饰的自组装单分子层解离;
4)利用电阻抗传感方法对待测细胞在电极上的迁移情况进行检测;
所述聚乙醇巯基化合物为HS(CH2)11(OCH2CH2)6OH;
所述利用电阻抗传感技术分析细胞迁移的方法为非疾病诊断和治疗方法。
2.根据权利要求1所述的方法,其特征在于:所述电极为金属单电极或金属电极阵列。
3.根据权利要求2所述的方法,其特征在于:所述金属为金或铂。
4.根据权利要求1或2所述的方法,其特征在于:所述电信号是直流信号、一种频率的交流信号或多种频率交流信号。
5.一种用于细胞迁移分析的装置,包括一个阻抗测量系统和至少一个细胞迁移组件,所述细胞迁移组件包括用于培养细胞的腔体、固设于所述腔体中的电极器件;所述电极器件包括绝缘基底和加工于所述绝缘基底上的电极;所述至少一个细胞迁移组件通过所述电极器件与所述一个阻抗测量系统电连接,其特征在于:所述电极上自组装有单分子层,该单分子层能够阻止细胞在电极表面的贴附,所述电极上施加电信号后该分子层能够被解离;
所述自组装单分子层由聚乙醇巯基化合物形成;
所述聚乙醇巯基化合物为HS(CH2)11(OCH2CH2)6OH。
6.根据权利要求5所述的装置,其特征在于:所述电极为金属单电极或金属电极阵列。
7.根据权利要求6所述的装置,其特征在于:所述金属为金或铂;
8.根据权利要求5或6所述的装置,其特征在于:所述电信号是直流信号、一种频率的交流信号或多种频率交流信号。
9.权利要求1至4中任一所述的方法或权利要求5至8中任一所述的装置在药物筛选或药物评价中的应用。
CN2008101035267A 2008-04-08 2008-04-08 利用电阻抗传感技术分析细胞迁移的方法及其专用装置 Active CN101556273B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2008101035267A CN101556273B (zh) 2008-04-08 2008-04-08 利用电阻抗传感技术分析细胞迁移的方法及其专用装置
US12/288,971 US8779779B2 (en) 2008-04-08 2008-10-24 On-chip cell migration detection
EP08169204A EP2108955B1 (en) 2008-04-08 2008-11-14 On-Chip Cell Migration Detection
AT08169204T ATE550652T1 (de) 2008-04-08 2008-11-14 On-chip-zellenmigrationserkennung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101035267A CN101556273B (zh) 2008-04-08 2008-04-08 利用电阻抗传感技术分析细胞迁移的方法及其专用装置

Publications (2)

Publication Number Publication Date
CN101556273A CN101556273A (zh) 2009-10-14
CN101556273B true CN101556273B (zh) 2013-03-20

Family

ID=40263378

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101035267A Active CN101556273B (zh) 2008-04-08 2008-04-08 利用电阻抗传感技术分析细胞迁移的方法及其专用装置

Country Status (4)

Country Link
US (1) US8779779B2 (zh)
EP (1) EP2108955B1 (zh)
CN (1) CN101556273B (zh)
AT (1) ATE550652T1 (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120077206A1 (en) 2003-07-12 2012-03-29 Accelr8 Technology Corporation Rapid Microbial Detection and Antimicrobial Susceptibility Testing
WO2005027714A2 (en) 2003-07-12 2005-03-31 Accelr8 Technology Corporation Sensitive and rapid biodetection
CN101038284B (zh) 2007-04-25 2011-04-27 博奥生物有限公司 一种提高电阻抗检测装置的电阻抗检测灵敏度的方法
CN101614729B (zh) * 2008-06-27 2013-04-24 博奥生物有限公司 用于细胞操作及电生理信号检测的微电极阵列器件及专用装置
US8421481B2 (en) * 2009-10-20 2013-04-16 Analog Devices, Inc. Detection and mitigation of particle contaminants in MEMS devices
US10254204B2 (en) 2011-03-07 2019-04-09 Accelerate Diagnostics, Inc. Membrane-assisted purification
EP2683831B1 (en) 2011-03-07 2015-09-23 Accelerate Diagnostics, Inc. Rapid cell purification systems
US9044611B2 (en) * 2013-03-15 2015-06-02 The Regents Of The University Of California Systems and methods for selectively migrating cells using electric fields
US9677109B2 (en) 2013-03-15 2017-06-13 Accelerate Diagnostics, Inc. Rapid determination of microbial growth and antimicrobial susceptibility
US9389231B2 (en) 2013-07-22 2016-07-12 Sandia Corporation Apparatus comprising magnetically actuated valves and uses thereof
US9957554B1 (en) 2013-12-19 2018-05-01 National Technology & Engineering Solutions Of Sandia, Llc Microfluidic platform for multiplexed detection in single cells and methods thereof
US9995411B1 (en) 2014-07-16 2018-06-12 National Technology & Engineering Solutions Of Sandia, Llc High-temperature, adhesive-based microvalves and uses thereof
US10253355B2 (en) 2015-03-30 2019-04-09 Accelerate Diagnostics, Inc. Instrument and system for rapid microorganism identification and antimicrobial agent susceptibility testing
US10023895B2 (en) 2015-03-30 2018-07-17 Accelerate Diagnostics, Inc. Instrument and system for rapid microogranism identification and antimicrobial agent susceptibility testing
WO2017003551A1 (en) * 2015-06-30 2017-01-05 GM Global Technology Operations LLC Sensor device and methods of making and using the same
US10874324B2 (en) 2015-10-20 2020-12-29 General Electric Company Detection of physiological changes in impedance monitoring
CN105255703B (zh) * 2015-10-21 2018-02-23 中国科学院电子学研究所 用于大序列细胞划痕迁移观测的微流控芯片及其观测方法
US10613088B2 (en) * 2016-06-12 2020-04-07 Mohammad Abdolahad Method and system for metastasis diagnosis and prognosis
EP3299804A1 (de) * 2016-09-27 2018-03-28 Georg Fischer JRG AG Verfahren und vorrichtung zur analyse der bakteriendichte in trinkwasser
CN110187091B (zh) * 2019-04-18 2020-11-27 浙江大学 一种用于抗肿瘤药物筛选的高通量3d细胞阻抗传感器及检测方法
CN110711608B (zh) * 2019-09-23 2022-03-15 中国科学院上海微系统与信息技术研究所 一种用于细胞检测的微流控芯片及其制备方法
KR20220131302A (ko) * 2020-01-21 2022-09-27 신테고 코포레이션 형질감염 및 세포의 클론 집단 생성을 위한 장치 및 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1628863A (zh) * 2004-10-14 2005-06-22 大连理工大学 一种心血管支架聚合物载药涂层制备方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3513384A (en) 1966-05-20 1970-05-19 Carl A Schneider Electrolytic conductivity cell having unplatinized metal electrodes
US4920047A (en) 1988-05-20 1990-04-24 General Electric Company Electrical detection of the immune reaction
US5187096A (en) 1991-08-08 1993-02-16 Rensselaer Polytechnic Institute Cell substrate electrical impedance sensor with multiple electrode array
US5514501A (en) 1994-06-07 1996-05-07 The United States Of America As Represented By The Secretary Of Commerce Process for UV-photopatterning of thiolate monolayers self-assembled on gold, silver and other substrates
US5523878A (en) 1994-06-30 1996-06-04 Texas Instruments Incorporated Self-assembled monolayer coating for micro-mechanical devices
US5942443A (en) 1996-06-28 1999-08-24 Caliper Technologies Corporation High throughput screening assay systems in microscale fluidic devices
US7462324B2 (en) 1997-08-07 2008-12-09 Panasonic Corporation Measurement device and method for measuring electric signal from biological sample
ATE205300T1 (de) 1997-12-17 2001-09-15 Ecole Polytech Positionierung und elektrophysiologische charakterisierung einzelner zellen und rekonstituierter membransysteme auf mikrostrukturierten trägern
US6942771B1 (en) 1999-04-21 2005-09-13 Clinical Micro Sensors, Inc. Microfluidic systems in the electrochemical detection of target analytes
US6645359B1 (en) * 2000-10-06 2003-11-11 Roche Diagnostics Corporation Biosensor
US6437551B1 (en) 1999-11-02 2002-08-20 The Regents Of The University Of California Microfabricated AC impedance sensor
US20050009004A1 (en) 2002-05-04 2005-01-13 Jia Xu Apparatus including ion transport detecting structures and methods of use
US7332313B2 (en) * 2001-06-05 2008-02-19 Applied Biophysics, Inc. Electrical wounding assay for cells in vitro
WO2003090129A1 (en) 2002-04-18 2003-10-30 University Of South Florida Global equivalent circuit modeling system for substrate mounted circuit components incoporating substrate dependent characteristics
US7560269B2 (en) 2002-12-20 2009-07-14 Acea Biosciences, Inc. Real time electronic cell sensing system and applications for cytotoxicity profiling and compound assays
WO2005047482A2 (en) 2003-11-12 2005-05-26 Xiao Xu Real time electronic cell sensing systems and applications for cell-based assays
CN100487133C (zh) 2002-07-20 2009-05-13 艾森生物(杭州)有限公司 基于阻抗的检测装置和方法
US8206903B2 (en) 2002-12-20 2012-06-26 Acea Biosciences Device and method for electroporation-based delivery of molecules into cells and dynamic monitoring of cell responses
GB0223666D0 (en) * 2002-10-10 2002-11-20 Univ Cambridge Tech Arrays of molecules and their production
US20050003396A1 (en) 2003-04-11 2005-01-06 Mihrimah Ozkan Biosensors having single reactant components immobilized over single electrodes and methods of making and using thereof
US7399631B2 (en) 2003-09-10 2008-07-15 Applied Biophysics, Inc. Real-time impedance assay to follow the invasive activities of metastatic cells in culture
US7547381B2 (en) 2003-09-26 2009-06-16 Agency For Science, Technology And Research And National University Of Singapore Sensor array integrated electrochemical chip, method of forming same, and electrode coating
US8423114B2 (en) * 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
DE602004025146D1 (de) 2004-01-29 2010-03-04 Narvalus S R L Biochip electroporationsgerät mit mehreren positionen zur einzelzellelectroporation
US8097134B2 (en) * 2004-04-01 2012-01-17 Nanyang Technological University Addressable chem/bio chip array
US20060105321A1 (en) 2004-07-28 2006-05-18 The University Of Iowa Research Foundation Methods for evaluating cell membrane properties
CN1996001A (zh) 2006-01-06 2007-07-11 博奥生物有限公司 监测细胞和生物分子生物学行为的生物传感器及传感方法
JP4735833B2 (ja) * 2006-01-13 2011-07-27 セイコーエプソン株式会社 バイオチップ及びバイオセンサ
KR100748722B1 (ko) 2006-04-03 2007-08-13 삼성전자주식회사 미소소자 패키지 모듈 및 그 제조방법
US7323892B1 (en) 2006-06-07 2008-01-29 Agilent Technologies, Inc. Probe having a frame to align spring pins perpendicularly to a printed circuit board, and method of making same
US7534968B2 (en) 2006-11-03 2009-05-19 Laird Technologies, Inc. Snap install EMI shields with protrusions and electrically-conductive members for attachment to substrates
TW200830963A (en) 2007-01-09 2008-07-16 Inventec Corp Welding clamp
CN101038284B (zh) 2007-04-25 2011-04-27 博奥生物有限公司 一种提高电阻抗检测装置的电阻抗检测灵敏度的方法
CN101614729B (zh) 2008-06-27 2013-04-24 博奥生物有限公司 用于细胞操作及电生理信号检测的微电极阵列器件及专用装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1628863A (zh) * 2004-10-14 2005-06-22 大连理工大学 一种心血管支架聚合物载药涂层制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IVAR GIAEVER AND CHARLES R. KEESE.Micromotion of mammalian cells measured electrically.《Proc. Nail. Acad. Sci. USA》.1991,第88卷7896-7900. *
张清楠.血管平滑肌细胞在高糖诱导下增殖迁移过程的监测及应用.《中国优秀硕士学位论文全文数据库(医药卫生科技辑)》.2006,(第9期),E065-57. *

Also Published As

Publication number Publication date
EP2108955B1 (en) 2012-03-21
EP2108955A2 (en) 2009-10-14
CN101556273A (zh) 2009-10-14
US20090251155A1 (en) 2009-10-08
US8779779B2 (en) 2014-07-15
ATE550652T1 (de) 2012-04-15
EP2108955A3 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
CN101556273B (zh) 利用电阻抗传感技术分析细胞迁移的方法及其专用装置
Hierlemann et al. Growing cells atop microelectronic chips: interfacing electrogenic cells in vitro with CMOS-based microelectrode arrays
Xie et al. Intracellular recording of action potentials by nanopillar electroporation
CN102382758B (zh) 基于细胞打印和多参数传感阵列集成技术的三维细胞芯片
Merz et al. Silicon chip interfaced with a geometrically defined net of snail neurons
EP1464952B1 (en) Apparatus for stimulating an animal cell and recording its physiological signal and production and use methods thereof
US10591462B2 (en) Electrochemical method and device for detecting the effect of anticancer drugs
JP3193471B2 (ja) 一体化複合電極
CN103201624B (zh) 包含心肌细胞的装置、制造方法和测量方法
CN113941378B (zh) 基于多腔式电生理微纳检测的神经类器官芯片及检测方法
JPH06296595A (ja) 一体化複合電極
KR20090099767A (ko) 셀센서 및 이를 이용하여 세포의 상태를 실시간으로모니터링하는 방법
Mohr et al. Performance of a thin film microelectrode array for monitoring electrogenic cells in vitro
Wolf et al. Microsensor-aided measurements of cellular signalling and metabolism on tumor cells: the cell monitoring system (CMS®)
US20200055041A1 (en) Device, system and methods for electrophysiological interrogation of cells and tissues
Zhang et al. Long-term and label-free monitoring for osteogenic differentiation of mesenchymal stem cells using force sensor and impedance measurement
Yadav et al. Development of multi-depth probing 3D microelectrode array to record electrophysiological activity within neural cultures
CN107354087B (zh) 一种基于可降解生物传感器的心肌细胞生长状态监控系统
US20210199638A1 (en) Sensor array and apparatus for simultaneous observation of tissue electrophysiology, contractility, and growth
CN102337211B (zh) 细胞培养装置
Prendecka et al. Electric Cell Substrate Impedance Sensing (ECIS) as a unique technique in cancer metastasis research
Das et al. Electrical characterization of suspended HeLa cells using ECIS based biosensor
CN107875456A (zh) 石墨烯包覆铜基生物材料及其制备方法与应用
US11536684B2 (en) Electrochemical method and device for detecting the effect of anticancer drugs
Gómez et al. Microelectrode array platform for cell monitoring signal acquisition system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: CAPITALBIO CORPORATION CO., LTD.

Free format text: FORMER NAME: CAPITALBIO CORPORATION

CP01 Change in the name or title of a patent holder

Address after: 102206 Beijing City, Changping District Life Science Park Road No. 18

Patentee after: CAPITALBIO CORPORATION

Patentee after: Tsinghua University

Address before: 102206 Beijing City, Changping District Life Science Park Road No. 18

Patentee before: Capitalbio Corporation

Patentee before: Tsinghua University